Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = thymidine phosphorylase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3487 KB  
Article
Untargeted Plasma Metabolomics Extends the Biomarker Profile of Mitochondrial Neurogastrointestinal Encephalomyopathy
by Bridget E. Bax and Sema Kalkan Uçar
Int. J. Mol. Sci. 2025, 26(18), 9107; https://doi.org/10.3390/ijms26189107 - 18 Sep 2025
Viewed by 230
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by pathogenic mutations in the nuclear TYMP gene, which encodes the cytosolic enzyme thymidine phosphorylase. In addition to the systemic accumulation of thymidine and deoxyuridine, several case studies have reported abnormalities in a range of other metabolites [...] Read more.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by pathogenic mutations in the nuclear TYMP gene, which encodes the cytosolic enzyme thymidine phosphorylase. In addition to the systemic accumulation of thymidine and deoxyuridine, several case studies have reported abnormalities in a range of other metabolites in patients with MNGIE. Since metabolites are intermediates or end-products of numerous biochemical reactions, they serve as highly informative indicators of an organism’s metabolic activity. This study aimed to perform an untargeted metabolomic profiling to determine whether individuals with MNGIE exhibit a distinct plasma metabolic signature compared to 15 age- and sex-matched healthy controls. Metabolites were profiled using Ultra-High-Performance Liquid Chromatography–Mass Spectrometry (UHPLC-MS). A total of 160 metabolites were found to be significantly upregulated and 260 downregulated in patients with MNGIE. KEGG pathway enrichment analysis revealed disruptions in 20 metabolic pathways, with arachidonic acid metabolism and bile acid biosynthesis being the most significantly upregulated. Univariate receiver operating characteristic (ROC) curve analyses identified 23 individual metabolites with diagnostic potential, each showing an area under the curve (AUC) ≥ 0.80. We propose that an impaired resolution of inflammation contributes to a chronic inflammatory state in MNGIE, potentially driving disease progression. Additionally, we suggest that the gut–liver axis plays a central role in MNGIE pathophysiology, with hepatic function being bidirectionally influenced by gut-derived factors. Full article
(This article belongs to the Special Issue Advances in Biomarker Discovery for Rare Diseases)
Show Figures

Figure 1

16 pages, 2009 KB  
Article
Incorporation and Repair of Epigenetic Intermediates as Potential Chemotherapy Agents
by Jason L. Herring, Mark L. Sowers, James W. Conrad, Linda C. Hackfeld, Bruce Chang-Gu, Rahul Dilawari and Lawrence C. Sowers
Molecules 2025, 30(15), 3239; https://doi.org/10.3390/molecules30153239 - 1 Aug 2025
Viewed by 992
Abstract
The incorporation of nucleoside analogs into DNA by polymerases, followed by their removal through base excision repair (BER), represents a promising strategy for cancer chemotherapy. In this study, we investigated the incorporation and cytotoxic effects of several nucleoside analogs—some of which are epigenetic [...] Read more.
The incorporation of nucleoside analogs into DNA by polymerases, followed by their removal through base excision repair (BER), represents a promising strategy for cancer chemotherapy. In this study, we investigated the incorporation and cytotoxic effects of several nucleoside analogs—some of which are epigenetic reprogramming intermediates—in the U87 glioblastoma cell line. We found that two analogs, 5-hydroxymethyl-2′-deoxyuridine (5HmdU) and trifluorothymidine (TFT), are both cytotoxic and are efficiently incorporated into genomic DNA. In contrast, the 5-carboxy analogs—5-carboxy-2′-deoxyuridine (5CadU) and 5-carboxycytidine (5CadC)—showed no cytotoxicity and were not incorporated into DNA. Interestingly, 5-hydroxymethyl-2′-deoxycytidine (5HmdC) was cytotoxic but was not directly incorporated into DNA. Instead, it was deaminated into 5HmdU, which was then incorporated and likely responsible for the observed toxicity. 5HmdU is actively removed from DNA through the BER pathways. In contrast, TFT remains stably incorporated and is neither excised by BER nor does it hydrolyze into 5CadU—a known substrate for the DNA glycosylase SMUG1. We also found that N6-benzyladenosine (BzAdo), an inhibitor of the enzyme 2′-deoxynucleoside 5′-phosphate N-hydrolase (DNPH1), enhances the cytotoxicity of 5HmdU. However, the thymidine phosphorylase inhibitor tipiracil hydrochloride (TPI) does not increase the cytotoxic effect of TFT in U87 cells. Together, these findings highlight 5HmdU and TFT as promising chemotherapeutic agents for glioblastoma, each with distinct mechanisms of action and cellular processing. Full article
Show Figures

Graphical abstract

23 pages, 3865 KB  
Review
From Infection to Tumor: Exploring the Therapeutic Potential of Ciprofloxacin Derivatives as Anticancer Agents
by Hesham M. Hassan, Roket Hassan, Ranya Mohammed Elmagzoub, Ahmed Al-Emam, Konstantinos Kossenas, Ahmed S. Abdel-Samea, Hazim O. Khalifa, Suleyman Akocak, Stefan Bräse and Hamada Hashem
Pharmaceuticals 2025, 18(1), 72; https://doi.org/10.3390/ph18010072 - 9 Jan 2025
Cited by 2 | Viewed by 2961
Abstract
Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position [...] Read more.
Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position 7, the carboxylic acid group at position 3, or both. It further investigates the mechanisms by which these derivatives fight cancer, such as inducing apoptosis, arresting the cell cycle, inhibiting topoisomerase I and II, preventing tubulin polymerization, suppressing interleukin 6, blocking thymidine phosphorylase, inhibiting multidrug resistance proteins, and hindering angiogenesis. Additionally, it outlines their future directions, such as enhancing their efficacy, selectivity, and investigating potential synergy with other chemotherapeutic agents, offering a promising avenue for developing new therapies for cancer. Full article
(This article belongs to the Special Issue Novel Anti-proliferative Agents, 2nd Edition)
Show Figures

Figure 1

12 pages, 4477 KB  
Article
Eradication of Cancer Cells Using Doxifluridine and Mesenchymal Stem Cells Expressing Thymidine Phosphorylase
by Xutu Wang, Ian Peng and Ching-An Peng
Bioengineering 2024, 11(12), 1194; https://doi.org/10.3390/bioengineering11121194 - 26 Nov 2024
Cited by 1 | Viewed by 1021
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been developed over several decades as a targeted cancer treatment aimed at minimizing toxicity to healthy cells. This approach involves three key components: a non-toxic prodrug, a gene encoding an enzyme that converts the prodrug into an [...] Read more.
Gene-directed enzyme prodrug therapy (GDEPT) has been developed over several decades as a targeted cancer treatment aimed at minimizing toxicity to healthy cells. This approach involves three key components: a non-toxic prodrug, a gene encoding an enzyme that converts the prodrug into an active chemotherapy drug, and a gene carrier to target cancer cells. In this study, the prodrug doxifluridine was enzymatically converted into the chemotherapy drug 5-fluorouracil via thymidine phosphorylase, using human mesenchymal stem cells (hMSCs) as delivery vehicles. The hMSCs were first transduced with thymidine phosphorylase-encoded lentiviral vectors produced by HEK293T cells, then co-cultured with A549 adenocarcinoma cells in the presence of doxifluridine. The results showed that after 3 days of prodrug treatment, cell viability in both A549 cancer cells and hMSCs dropped by about 50%, and by day 5, viability had decreased to 10%. In summary, exogenous thymidine phosphorylase expressed in hMSCs successfully converted the non-toxic prodrug doxifluridine into the chemotherapy agent 5-fluorouracil, effectively eliminating both cancer cells and hMSCs within a short period. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

11 pages, 2769 KB  
Article
Design, Synthesis, and Evaluation of Doxifluridine Derivatives as Nitroreductase-Responsive Anticancer Prodrugs
by Xinmeng Zhang, Taimin Dong, Xu Li, Changjie Xu, Fanghui Chen, Shiben Wang and Xuekun Wang
Molecules 2024, 29(21), 5077; https://doi.org/10.3390/molecules29215077 - 27 Oct 2024
Viewed by 1526
Abstract
Antimetabolite antitumor drugs interfere with nucleic acid and DNA synthesis, causing cancer cell death. However, they also affect rapidly dividing normal cells and cause serious side effects. Doxifluridine (5′-deoxy-5-fluorouridine [5′-DFUR]), a 5-fluorouracil (5-FU) prodrug converted to 5-FU by thymidine phosphorylase (TP), exerts antitumor [...] Read more.
Antimetabolite antitumor drugs interfere with nucleic acid and DNA synthesis, causing cancer cell death. However, they also affect rapidly dividing normal cells and cause serious side effects. Doxifluridine (5′-deoxy-5-fluorouridine [5′-DFUR]), a 5-fluorouracil (5-FU) prodrug converted to 5-FU by thymidine phosphorylase (TP), exerts antitumor effects. Since TP is distributed in tumor and normal tissues, 5′-DFUR features side effects. Here we designed a series of novel 5′-DFUR derivatives based on high nitroreductase (NTR) levels in the hypoxic microenvironment of tumor tissues by introducing nitro-containing moieties into the 5′-DFUR structure. These derivatives exert their antitumor effects by producing 5-FU under the dual action of TP and NTR in the tumor microenvironment. The derivatives were synthesized and their stability, release, and cytotoxicity evaluated in vitro and antitumor activity evaluated in vivo. Compound 2c, featuring nitrofuran fragments, was stable in phosphate-buffered saline and plasma at different pH values and reduced rapidly in the presence of NTR. The in vitro cytotoxicity evaluation indicated that compound 2c showed excellent selectivity in the MCF-7 and HT29 cell lines. Moreover, it exhibited antitumor effects comparable to those of 5′-DFUR in vivo without significant toxic side effects. These results suggest that compound 2c is a promising antitumor prodrug. Full article
Show Figures

Figure 1

16 pages, 2232 KB  
Article
Engineering a Bifunctional Fusion Purine/Pyrimidine Nucleoside Phosphorylase for the Production of Nucleoside Analogs
by Daniel Hormigo, Jon Del Arco, Javier Acosta, Maximilian J. L. J. Fürst and Jesús Fernández-Lucas
Biomolecules 2024, 14(9), 1196; https://doi.org/10.3390/biom14091196 - 23 Sep 2024
Viewed by 1909
Abstract
Nucleoside phosphorylases (NPs) are pivotal enzymes in the salvage pathway, catalyzing the reversible phosphorolysis of nucleosides to produce nucleobases and α-D-ribose 1-phosphate. Due to their efficiency in catalyzing nucleoside synthesis from purine or pyrimidine bases, these enzymes hold significant industrial importance in the [...] Read more.
Nucleoside phosphorylases (NPs) are pivotal enzymes in the salvage pathway, catalyzing the reversible phosphorolysis of nucleosides to produce nucleobases and α-D-ribose 1-phosphate. Due to their efficiency in catalyzing nucleoside synthesis from purine or pyrimidine bases, these enzymes hold significant industrial importance in the production of nucleoside-based drugs. Given that the thermodynamic equilibrium for purine NPs (PNPs) is favorable for nucleoside synthesis—unlike pyrimidine NPs (PyNPs, UP, and TP)—multi-enzymatic systems combining PNPs with PyNPs, UPs, or TPs are commonly employed in the synthesis of nucleoside analogs. In this study, we report the first development of two engineered bifunctional fusion enzymes, created through the genetic fusion of purine nucleoside phosphorylase I (PNP I) and thymidine phosphorylase (TP) from Thermus thermophilus. These fusion constructs, PNP I/TP-His and TP/PNP I-His, provide an innovative one-pot, single-step alternative to traditional multi-enzymatic synthesis approaches. Interestingly, both fusion enzymes retain phosphorolytic activity for both purine and pyrimidine nucleosides, demonstrating significant activity at elevated temperatures (60–90 °C) and within a pH range of 6–8. Additionally, both enzymes exhibit high thermal stability, maintaining approximately 80–100% of their activity when incubated at 60–80 °C over extended periods. Furthermore, the transglycosylation capabilities of the fusion enzymes were explored, demonstrating successful catalysis between purine (2′-deoxy)ribonucleosides and pyrimidine bases, and vice versa. To optimize reaction conditions, the effects of pH and temperature on transglycosylation activity were systematically examined. Finally, as a proof of concept, these fusion enzymes were successfully employed in the synthesis of various purine and pyrimidine ribonucleoside and 2′-deoxyribonucleoside analogs, underscoring their potential as versatile biocatalysts in nucleoside-based drug synthesis. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

17 pages, 3148 KB  
Case Report
A New Histology-Based Prognostic Index for Aggressive T-Cell lymphoma: Preliminary Results of the “TCL Urayasu Classification”
by Hideaki Nitta, Haruko Takizawa, Toru Mitsumori, Hiroko Iizuka-Honma, Tomonori Ochiai, Chiho Furuya, Yoshihiko Araki, Maki Fujishiro, Shigeki Tomita, Akane Hashizume, Tomohiro Sawada, Kazunori Miyake, Mitsuo Okubo, Yasunobu Sekiguchi, Miki Ando and Masaaki Noguchi
J. Clin. Med. 2024, 13(13), 3870; https://doi.org/10.3390/jcm13133870 - 30 Jun 2024
Cited by 1 | Viewed by 1302
Abstract
Background: Aggressive mature T-cell lymphoma (TCL) is a disease that carries a poor prognosis. Methods: We analyzed the expression of 22 tumor cell functional proteins in 16 randomly selected patients with TCL. Immunohistochemistry was performed in paraffin-embedded tumor tissue sections to determine the [...] Read more.
Background: Aggressive mature T-cell lymphoma (TCL) is a disease that carries a poor prognosis. Methods: We analyzed the expression of 22 tumor cell functional proteins in 16 randomly selected patients with TCL. Immunohistochemistry was performed in paraffin-embedded tumor tissue sections to determine the protein expression statuses in tumor cells. Results: Glucose-regulated protein 94 (GRP94), a protein that serves as a pro-survival component under endoplasmic reticulum (ER) stress in the tumor microenvironment, was significantly associated with a shortened survival. Furthermore, significant differences were observed when GRP94 was combined with six other factors. The six factors were (1) programmed cell death-ligand 1 (PD-L1); (2) programmed cell death 1 (PD-1); (3) aldo-keto reductase family 1 member C3 (AKR1C3); (4) P53, a tumor suppressor; (5) glucose-regulated protein 78 (GRP78), an ER stress protein; and (6) thymidine phosphorylase (TP). Based on the combination of GRP94 and the six other factors expressed in the tumors, we propose a new prognostic classification system for TCL (TCL Urayasu classification). Group 1 (relatively good prognosis): GRP94-negative (n = 6; median OS, 88 months; p < 0.01); Group 2 (poor prognosis): GRP94-positive, plus expression of two of the six factors mentioned above (n = 5; median OS, 25 months; p > 0.05); and Group 3 (very poor prognosis): GRP94-positive, plus expression of at least three of the six factors mentioned above (n = 5; median OS, 10 months; p < 0.01). Conclusions: Thus, the TCL Urayasu prognostic classification may be a simple, useful, and innovative classification that also explains the mechanism of resistance to treatment for each functional protein. If validated in a larger number of patients, the TCL Urayasu classification will enable a targeted treatment using selected inhibitors acting on the abnormal protein found in each patient. Full article
(This article belongs to the Special Issue Hematologic Malignancies: Treatment Strategies and Future Challenges)
Show Figures

Figure 1

20 pages, 3326 KB  
Article
Analyzing the Impact of Oncological Data at Different Time Points and Tumor Biomarkers on Artificial Intelligence Predictions for Five-Year Survival in Esophageal Cancer
by Leandra Lukomski, Juan Pisula, Naita Wirsik, Alexander Damanakis, Jin-On Jung, Karl Knipper, Rabi Datta, Wolfgang Schröder, Florian Gebauer, Thomas Schmidt, Alexander Quaas, Katarzyna Bozek, Christiane Bruns and Felix Popp
Mach. Learn. Knowl. Extr. 2024, 6(1), 679-698; https://doi.org/10.3390/make6010032 - 19 Mar 2024
Viewed by 2968
Abstract
AIM: In this study, we use Artificial Intelligence (AI), including Machine (ML) and Deep Learning (DL), to predict the long-term survival of resectable esophageal cancer (EC) patients in a high-volume surgical center. Our objective is to evaluate the predictive efficacy of AI methods [...] Read more.
AIM: In this study, we use Artificial Intelligence (AI), including Machine (ML) and Deep Learning (DL), to predict the long-term survival of resectable esophageal cancer (EC) patients in a high-volume surgical center. Our objective is to evaluate the predictive efficacy of AI methods for survival prognosis across different time points of oncological treatment. This involves comparing models trained with clinical data, integrating either Tumor, Node, Metastasis (TNM) classification or tumor biomarker analysis, for long-term survival predictions. METHODS: In this retrospective study, 1002 patients diagnosed with EC between 1996 and 2021 were analyzed. The original dataset comprised 55 pre- and postoperative patient characteristics and 55 immunohistochemically evaluated biomarkers following surgical intervention. To predict the five-year survival status, four AI methods (Random Forest RF, XG Boost XG, Artificial Neural Network ANN, TabNet TN) and Logistic Regression (LR) were employed. The models were trained using three predefined subsets of the training dataset as follows: (I) the baseline dataset (BL) consisting of pre-, intra-, and postoperative data, including the TNM but excluding tumor biomarkers, (II) clinical data accessible at the time of the initial diagnostic workup (primary staging dataset, PS), and (III) the PS dataset including tumor biomarkers from tissue microarrays (PS + biomarkers), excluding TNM status. We used permutation feature importance for feature selection to identify only important variables for AI-driven reduced datasets and subsequent model retraining. RESULTS: Model training on the BL dataset demonstrated similar predictive performances for all models (Accuracy, ACC: 0.73/0.74/0.76/0.75/0.73; AUC: 0.78/0.82/0.83/0.80/0.79 RF/XG/ANN/TN/LR, respectively). The predictive performance and generalizability declined when the models were trained with the PS dataset. Surprisingly, the inclusion of biomarkers in the PS dataset for model training led to improved predictions (PS dataset vs. PS dataset + biomarkers; ACC: 0.70 vs. 0.77/0.73 vs. 0.79/0.71 vs. 0.75/0.69 vs. 0.72/0.63 vs. 0.66; AUC: 0.77 vs. 0.83/0.80 vs. 0.85/0.76 vs. 0.86/0.70 vs. 0.76/0.70 vs. 0.69 RF/XG/ANN/TN/LR, respectively). The AI models outperformed LR when trained with the PS datasets. The important features shared after AI-driven feature selection in all models trained with the BL dataset included histopathological lymph node status (pN), histopathological tumor size (pT), clinical tumor size (cT), age at the time of surgery, and postoperative tracheostomy. Following training with the PS dataset with biomarkers, the important predictive features included patient age at the time of surgery, TP-53 gene mutation, Mesothelin expression, thymidine phosphorylase (TYMP) expression, NANOG homebox protein expression, and indoleamine 2,3-dioxygenase (IDO) expressed on tumor-infiltrating lymphocytes, as well as tumor-infiltrating Mast- and Natural killer cells. CONCLUSION: Different AI methods similarly predict the long-term survival status of patients with EC and outperform LR, the state-of-the-art classification model. Survival status can be predicted with similar predictive performance with patient data at an early stage of treatment when utilizing additional biomarker analysis. This suggests that individual survival predictions can be made early in cancer treatment by utilizing biomarkers, reducing the necessity for the pathological TNM status post-surgery. This study identifies important features for survival predictions that vary depending on the timing of oncological treatment. Full article
(This article belongs to the Section Learning)
Show Figures

Figure 1

18 pages, 2404 KB  
Article
Determination of Capecitabine and Its Metabolites in Plasma of Egyptian Colorectal Cancer Patients
by Sara Shamseldin, Liza Samir Botros, Salem Eid Salem, Sahar Abdel-Maksoud, Mohamed Zakaria Gad and Rasha Sayed Hanafi
Analytica 2023, 4(4), 397-414; https://doi.org/10.3390/analytica4040029 - 1 Oct 2023
Cited by 1 | Viewed by 3049
Abstract
The incidence of colorectal cancer (CRC) is increasing worldwide. It has variable signs and symptoms starting from changes in bowel habit to nausea and vomiting. Chemotherapeutic agents are often prescribed in CRC such as Capecitabine (CCB) and 5-Fluorouracil (FU). CCB is the prodrug [...] Read more.
The incidence of colorectal cancer (CRC) is increasing worldwide. It has variable signs and symptoms starting from changes in bowel habit to nausea and vomiting. Chemotherapeutic agents are often prescribed in CRC such as Capecitabine (CCB) and 5-Fluorouracil (FU). CCB is the prodrug of FU in oral dosage form, which makes it preferable by physicians, since no hospitalization is needed for drug administration. CCB is activated to FU in a three-step reaction producing 5′-deoxy-5-fluorocytidine (DFCR) (by carboxylesterase (CES) enzyme), then 5′-deoxy-5-fluorouridine (DFUR) (by cytidine deaminase (CDD) enzyme) and finally FU (by thymidine phosphorylase (TP) enzyme), the active form, which is later deactivated to give 5,6-dihydro-5-fluorouracil (DHFU). Different patients exhibit variable drug responses and adverse in response to CCB therapy, despite being treated by the same dose, which could be attributed to the occurrence of different possible enzyme single nucleotide polymorphisms (SNPs) along the activation and deactivation pathways of CCB. The most commonly occurring toxicities in CCB therapy are hand-foot syndrome and diarrhea. This study aims at developing and validating a new method for the simultaneous determination of CCB and its metabolites by HPLC-UV, followed by a correlation study with the toxicities occurring during therapy, where predictions of toxicity could be based on metabolites’ levels instead of the tedious process of genotyping. A new superior analytical method was optimized by a quality-by-design approach using DryLab® 2000 software achieving a baseline resolution of the six analytes within the least possible gradient time of 10 min. The method also showed linearity (in a range from 1 to 500 μg/mL), accuracy, precision and robustness upon validation: The LOD was found to be 3.0 ng/mL for DHFU and CCB, and 0.3 ng/mL for DFUR, DFCR and FU. The LOQ was found to be 10.0 ng/mL for DHFU and CCB, and 1.0 ng/mL for DFUR, DFCR and FU. The clinical results showed a positive correlation between the concentration of DFCR and mucositis and between the concentration of DFUR and hand-foot syndrome, confirming that this technique could be used for predicting such toxicities. Full article
Show Figures

Figure 1

13 pages, 433 KB  
Article
RETRO-TAS, a Retrospective Observational Study of Trifluridine/Tipiracil in Chemorefractory Metastatic Colorectal Cancer
by Anna Koumarianou, Anastasios Ntavatzikos, David Symeonidis, Christos Vallilas, Maria Giannakakou, Georgios Papaxoinis, Spyridon Xynogalos, Ioannis Boukovinas, Stamatina Demiri, Katerina Kampoli, Georgios Oikonomopoulos, Epaminontas Samantas, Eleni Res, Nikolaos Androulakis, Georgia Vourli, Ioannis Souglakos and Michalis Karamouzis
Biomedicines 2023, 11(5), 1267; https://doi.org/10.3390/biomedicines11051267 - 24 Apr 2023
Cited by 1 | Viewed by 2376
Abstract
Background: Trifluridine/tipiracil (FTD/TPI) is an oral antimetabolite agent comprised of trifluridine, a thymidine-based nucleoside analogue that inhibits cell proliferation following its incorporation into DNA, and tipiracil that helps maintain the blood concentration of trifluridine by inhibiting the enzyme thymidine phosphorylase which inactivates trifluridine. [...] Read more.
Background: Trifluridine/tipiracil (FTD/TPI) is an oral antimetabolite agent comprised of trifluridine, a thymidine-based nucleoside analogue that inhibits cell proliferation following its incorporation into DNA, and tipiracil that helps maintain the blood concentration of trifluridine by inhibiting the enzyme thymidine phosphorylase which inactivates trifluridine. It is approved as a third-line treatment option for patients with metastatic colorectal cancer (mCRC) and is administered at 35 mg/m2 two times daily from day 1 to 5 and from day 8 to 12 every 28 days. The aim of this investigator-initiated retrospective study (RETRO-TAS; NCT04965870) was to document real-world data on the clinical efficacy of FTD/TPI in patients with chemorefractory mCRC. Methods: The clinical characteristics of patients with mCRC treated with FTD/TPI in 8 Cancer Centres were collected to assess physician’s choice in the third or beyond line of treatment as well as the duration of treatment, dose modification, and toxicity. In addition, other important prognostic features related to mCRC such as molecular profile, performance status (PS), and primary site were analyzed. Statistical analysis for progression-free survival (PFS), overall survival (OS), 6-/8-month PFS rate and disease control rate (DCR) along with Cox regression model, Kaplan–Meier curves, and log-rank tests were carried out by using Stata/MP 16.0 for Windows. Results: From October 2018 to October 2021, a total of 200 patients with mCRC and a median age of 67.0 (IQR 58.0, 75.0) years were treated with FTD/TPI. Τhe median follow-up time was 14 months (IQR 7, 23), 158 PDs and 106 deaths were reported at the time of this analysis. Of all the patients, 58% were males and 58% had mCRC at diagnosis. The molecular analysis identified mutations in KRAS (52%), NRAS (5%), HER2 (3.5%), BRAF (3.5%), and MSI (9%). Previous treatments included radical surgery in 51.5% and adjuvant chemotherapy in 39.5% of patients. FTD/TPI was administered in the third- (70.5%), fourth- (17.0%), or fifth-line (12.5%) treatment setting. Serious adverse events related to FTD/TPI included neutropenia (2%), anaemia (1%), thrombocytopenia (0.5%), diarrhoea (0.5%), nausea (0.5%), and fatigue (4%). A reduction of FTD/TPI dose, delay of next cycle initiation, and shorter duration were reported in 25%, 31%, and 14.5% of patients, respectively. Of all the patients 71.5% received FTD/TPI as monotherapy, 24.5% in combination with bevacizumab, and 4.0% with an anti-EGFR agent. The median FTD/TPI treatment duration was 119.5 days and 81% of patients discontinued treatment due to progressive disease. The DCR recorded by investigators’ assessment was 45.5%. The median PFS was 4.8 and the median OS was 11.4 months. The 6- and the 8-month PFS rate was 41.4% and 31.5%, respectively. In the multivariate analysis, PS > 1 and presence of liver and lung metastasis were adversely associated with PFS and OS whereas mutational status and tumor sidedness were not. Conclusions: RETRO-TAS is a real-world observational study that confirms and adds on the findings of the pivotal RECOURSE Phase III study in relation to the efficacy of FTD/TPI in the third-line setting and in all subgroups of patients regardless of mutational status and sidedness. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

20 pages, 8496 KB  
Article
Dihydropyrimidone Derivatives as Thymidine Phosphorylase Inhibitors: Inhibition Kinetics, Cytotoxicity, and Molecular Docking
by Tian-Meng Cui, Muhammad Altaf, Abdu Aldarhami, Abdulrahman S. Bazaid, Nizar H. Saeedi, Almohanad A. Alkayyal, Fahad M. Alshabrmi, Farman Ali, Mohammed Aladhadh, Muhammad Yasir Khan, Ahad Amer Alsaiari and Yue-Rong Ma
Molecules 2023, 28(8), 3634; https://doi.org/10.3390/molecules28083634 - 21 Apr 2023
Cited by 5 | Viewed by 3117
Abstract
Overexpression of the thymidine phosphorylase (TP) enzyme induces angiogenesis, which eventually leads to metastasis and tumor growth. The crucial role of TP in cancer development makes it an important target for anticancer drug discovery. Currently, there is only one US-FDA-approved drug, i.e., Lonsurf, [...] Read more.
Overexpression of the thymidine phosphorylase (TP) enzyme induces angiogenesis, which eventually leads to metastasis and tumor growth. The crucial role of TP in cancer development makes it an important target for anticancer drug discovery. Currently, there is only one US-FDA-approved drug, i.e., Lonsurf, a combination of trifluridine and tipiracil, for the treatment of metastatic colorectal cancer. Unfortunately, numerous adverse effects are associated with its use, such as myelosuppression, anemia, and neutropenia. Since the last few decades, the discovery of new, safe, and effective TP inhibitory agents has been rigorously pursued. In the present study, we evaluated a series of previously synthesized dihydropyrimidone derivatives 140 for their TP inhibitory potential. Compounds 1, 12, and 33 showed a good activity with IC50 = 314.0 ± 0.90, 303.5 ± 0.40, and 322.6 ± 1.60 µM, respectively. The results of mechanistic studies revealed that compounds 1, 12, and 33 were the non-competitive inhibitors. These compounds were also evaluated for cytotoxicity against 3T3 (mouse fibroblast) cells and were found to be non-cytotoxic. Finally, the molecular docking suggested the plausible mechanism of non-competitive inhibition of TP. The current study thus identifies some dihydropyrimidone derivatives as potential inhibitors of TP, which can be further optimized as leads for cancer treatment. Full article
Show Figures

Graphical abstract

42 pages, 31284 KB  
Review
An Understanding of Mechanism-Based Approaches for 1,3,4-Oxadiazole Scaffolds as Cytotoxic Agents and Enzyme Inhibitors
by Davinder Kumar, Navidha Aggarwal, Aakash Deep, Harsh Kumar, Hitesh Chopra, Rakesh Kumar Marwaha and Simona Cavalu
Pharmaceuticals 2023, 16(2), 254; https://doi.org/10.3390/ph16020254 - 7 Feb 2023
Cited by 27 | Viewed by 8062
Abstract
The world’s health system is plagued by cancer and a worldwide effort is underway to find new drugs to treat cancer. There has been a significant improvement in understanding the pathogenesis of cancer, but it remains one of the leading causes of death. [...] Read more.
The world’s health system is plagued by cancer and a worldwide effort is underway to find new drugs to treat cancer. There has been a significant improvement in understanding the pathogenesis of cancer, but it remains one of the leading causes of death. The imperative 1,3,4-oxadiazole scaffold possesses a wide variety of biological activities, particularly for cancer treatment. In the development of novel 1,3,4-oxadiazole-based drugs, structural modifications are important to ensure high cytotoxicity towards malignant cells. These structural modification strategies have shown promising results when combined with outstanding oxadiazole scaffolds, which selectively interact with nucleic acids, enzymes, and globular proteins. A variety of mechanisms, such as the inhibition of growth factors, enzymes, and kinases, contribute to their antiproliferative effects. The activity of different 1,3,4-oxadiazole conjugates were tested on the different cell lines of different types of cancer. It is demonstrated that 1,3,4-oxadiazole hybridization with other anticancer pharmacophores have different mechanisms of action by targeting various enzymes (thymidylate synthase, HDAC, topoisomerase II, telomerase, thymidine phosphorylase) and many of the proteins that contribute to cancer cell proliferation. The focus of this review is to highlight the anticancer potential, molecular docking, and SAR studies of 1,3,4-oxadiazole derivatives by inhibiting specific cancer biological targets, such as inhibiting telomerase activity, HDAC, thymidylate synthase, and the thymidine phosphorylase enzyme. The purpose of this review is to summarize recent developments and discoveries in the field of anticancer drugs using 1,3,4-oxadiazoles. Full article
(This article belongs to the Special Issue Hybrid Drugs: Design and Applications)
Show Figures

Graphical abstract

18 pages, 1256 KB  
Review
Druggable Biomarkers Altered in Clear Cell Renal Cell Carcinoma: Strategy for the Development of Mechanism-Based Combination Therapy
by Youcef M. Rustum, Ryan Reis and Tara M. Rustum
Int. J. Mol. Sci. 2023, 24(2), 902; https://doi.org/10.3390/ijms24020902 - 4 Jan 2023
Cited by 6 | Viewed by 3707
Abstract
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative ‘druggable’ targets to those currently [...] Read more.
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative ‘druggable’ targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer. Full article
Show Figures

Figure 1

14 pages, 2729 KB  
Article
Pulmonary Thrombosis Promotes Tumorigenesis via Myeloid Hypoxia-Inducible Factors
by Xiao Lu, Alice Prodger, Jingwei Sim and Colin E. Evans
Biomolecules 2022, 12(10), 1354; https://doi.org/10.3390/biom12101354 - 23 Sep 2022
Cited by 5 | Viewed by 2309
Abstract
Cancer patients have a greater risk of thrombosis than individuals without cancer. Conversely, thrombosis is a diagnostic predictor of cancer, but the mechanisms by which thrombosis promotes tumor propagation are incompletely understood. Our previous studies showed that hypoxia-inducible factors (HIF) 1α and HIF2α [...] Read more.
Cancer patients have a greater risk of thrombosis than individuals without cancer. Conversely, thrombosis is a diagnostic predictor of cancer, but the mechanisms by which thrombosis promotes tumor propagation are incompletely understood. Our previous studies showed that hypoxia-inducible factors (HIF) 1α and HIF2α are stabilized in myeloid cells of murine thrombi. We also previously showed that pulmonary thrombosis increases the levels of HIF1α and HIF2α in murine lungs, enhances the levels of tumorigenic factors in the circulation, and promotes pulmonary tumorigenesis. In this study, we aimed to investigate the regulation of thrombosis-induced tumorigenesis by myeloid cell-specific HIFs (i.e., HIF1 and HIF2 in neutrophils and macrophages). Our in vitro studies showed that multiple tumorigenic factors are upregulated in the secretome of hypoxic versus normoxic neutrophils and macrophages, which promotes lung cancer cell proliferation and migration in a myeloid-HIF-dependent manner. Next, we used a mouse model of pulmonary microvascular occlusion to study the impact of pulmonary thrombosis and myeloid HIFs on lung tumorigenesis. Experiments on mice lacking either HIF1α or HIF2α in myeloid cells demonstrated that loss of either factor eliminates the advantage given to pulmonary tumor formation by thrombotic insult. The myeloid HIF-dependent and tumorigenic impact of pulmonary thrombosis on tumor burden may be partly driven by paracrine thymidine phosphorylase (TP), given that TP levels were increased by hypoxia in neutrophil and macrophage supernates, and that plasma TP levels were positively correlated with multiple measures of tumor progression in wild type mice but not myeloid cell-specific HIF1α or HIF2α knockout mice. These data together demonstrate the importance of thrombotic insult in a model of pulmonary tumorigenesis and the essential role of myeloid HIFs in mediating tumorigenic success. Full article
(This article belongs to the Special Issue Feature Paper from Biomolecules Journal Reviewers)
Show Figures

Figure 1

11 pages, 266 KB  
Review
Capecitabine—A “Permanent Mission” in Head and Neck Cancers “War Council”?
by Camil Ciprian Mireștean, Roxana Irina Iancu and Dragoș Petru Teodor Iancu
J. Clin. Med. 2022, 11(19), 5582; https://doi.org/10.3390/jcm11195582 - 23 Sep 2022
Cited by 5 | Viewed by 2786
Abstract
Capecitabine, an oral pro-drug that is metabolized to 5-FU, has been used in clinical practice for more than 20 years, being part of the therapeutic standard for digestive and breast cancers. The use of capecitabine has been evaluated in many trials including cases [...] Read more.
Capecitabine, an oral pro-drug that is metabolized to 5-FU, has been used in clinical practice for more than 20 years, being part of the therapeutic standard for digestive and breast cancers. The use of capecitabine has been evaluated in many trials including cases diagnosed in recurrent or metastatic settings. Induction regimens or a combination with radiation therapy were evaluated in head and neck cancers, but 5-FU still remained the fluoropyrimidine used as a part of the current therapeutic standard. Quantifications of levels or ratios for enzymes are involved in the capecitabine metabolism to 5-FU but are also involved in its conversion and elimination that may lead to discontinuation, dose reduction or escalation of treatment in order to obtain the best therapeutic ratio. These strategies based on biomarkers may be relevant in the context of the implementation of precision oncology. In particular for head and neck cancers, the identification of biomarkers to select possible cases of severe toxicity requiring discontinuation of treatment, including “multi-omics” approaches, evaluate not only serological biomarkers, but also miRNAs, imaging and radiomics which will ensure capecitabine a role in both induction and concomitant or even adjuvant and palliative settings. An approach including routine testing of dihydropyrimidine dehydrogenase (DPD) or even the thymidine phosphorylase (TP)/DPD ratio and the inclusion of miRNAs, imaging and radiomics parameters in multi-omics models will help implement “precision chemotherapy” in HNC, a concept supported by the importance of avoiding interruptions or treatment delays in this type of cancer. The chemosensitivity and prognostic features of HPV-OPC cancers open new horizons for the use of capecitabine in heavily pretreated metastatic cases. Vorinostat and lapatinib are agents that can be associated with capecitabine in future clinical trials to increase the therapeutic ratio. Full article
Back to TopTop