Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = tilt-rotor UAV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 9119 KB  
Article
ProVANT Simulator: A Virtual Unmanned Aerial Vehicle Platform for Control System Development
by Junio E. Morais, Daniel N. Cardoso, Brenner S. Rego, Richard Andrade, Iuro B. P. Nascimento, Jean C. Pereira, Jonatan M. Campos, Davi F. Santiago, Marcelo A. Santos, Leandro B. Becker, Sergio Esteban and Guilherme V. Raffo
Aerospace 2025, 12(9), 762; https://doi.org/10.3390/aerospace12090762 - 25 Aug 2025
Viewed by 365
Abstract
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. [...] Read more.
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. Addressing key challenges such as modeling complex multi-body dynamics, simulating disturbances, and supporting real-time implementation, the framework features a modular architecture, an intuitive graphical interface, and versatile capabilities for modeling, control, and hardware validation. Case studies demonstrate its effectiveness across various UAV configurations, including quadrotors, tilt-rotors, and unmanned aerial manipulators, highlighting its applications in aggressive maneuvers, load transportation, and trajectory tracking under disturbances. Serving both academic research and industrial development, the ProVANT Simulator reduces prototyping costs, development time, and associated risks. Full article
Show Figures

Figure 1

27 pages, 12164 KB  
Article
Neural Network Adaptive Attitude Control of Full-States Quad Tiltrotor UAV
by Jiong He, Binwu Ren, Yousong Xu, Qijun Zhao, Siliang Du and Bo Wang
Aerospace 2025, 12(8), 684; https://doi.org/10.3390/aerospace12080684 - 30 Jul 2025
Viewed by 475
Abstract
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics [...] Read more.
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics model of the quad tiltrotor UAV is established based on the approach of component-based mechanistic modeling. Secondly, the effects of internal uncertainties and external disturbances on the model are eliminated, whilst the online adaptive parameter tuning problem for the nonlinear active disturbance rejection controller is addressed. The superior nonlinear function approximation capability of the RBF neural network is then utilized by taking both the control inputs computed by the controller and the system outputs of the quad tiltrotor model as neural network inputs to implement adaptive parameter adjustments for the Extended State Observer (ESO) component responsible for disturbance estimation and the Nonlinear State Error Feedback (NLSEF) control law of the active disturbance rejection controller. Finally, an adaptive attitude control system for the quad tiltrotor UAV is constructed, centered on the ADRC-RBF controller. Subsequently, the efficacy of the attitude control system is validated through simulation, encompassing a range of flight conditions. The simulation results demonstrate that the Integral of Absolute Error (IAE) of the pitch angle response controlled by the ADRC-RBF controller is reduced to 37.4° in comparison to the ADRC controller in the absence of external disturbance in the full-states mode state of the quad tiltrotor UAV, and the oscillation amplitude of the pitch angle response controlled by the ADRC-RBF controller is generally reduced by approximately 50% in comparison to the ADRC controller in the presence of external disturbance. In comparison with the conventional ADRC controller, the proposed ADRC-RBF controller demonstrates superior performance with regard to anti-disturbance capability, adaptability, and tracking accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

29 pages, 3661 KB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 399
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

35 pages, 5917 KB  
Review
Trajectory Planning of Unmanned Aerial Vehicles in Complex Environments Based on Intelligent Algorithm
by Zhekun Cheng, Jueying Yang, Jinfeng Sun and Liangyu Zhao
Drones 2025, 9(7), 468; https://doi.org/10.3390/drones9070468 - 1 Jul 2025
Cited by 1 | Viewed by 1200
Abstract
In recent years, effective trajectory planning has been developed to promote the extensive application of unmanned aerial vehicles (UAVs) in various domains. However, the actual operation of UAVs in complex environments presents significant challenges to their trajectory planning, particularly in maintaining task reliability [...] Read more.
In recent years, effective trajectory planning has been developed to promote the extensive application of unmanned aerial vehicles (UAVs) in various domains. However, the actual operation of UAVs in complex environments presents significant challenges to their trajectory planning, particularly in maintaining task reliability and ensuring safety. To overcome these challenges, this review presents a comprehensive summary of various trajectory planning techniques currently applied to UAVs based on the emergence of intelligent algorithms, which enhance the adaptability and learning ability of UAVs and offer innovative solutions for their application in complex environments. Firstly, the characteristics of different UAV types, including fixed-wing, multi-rotor UAV, single-rotor UAV, and tilt-rotor UAV, are introduced. Secondly, the key constraints of trajectory planning in complex environments are summarized. Thirdly, the research trend from 2010 to 2024, together with the implementation, advantages, and existing problems of machine learning, evolutionary algorithms, and swarm intelligence, are compared. Based on these algorithms, the related applications of UAVs in complex environments, including transportation, inspection, and other tasks, are summarized. Ultimately, this review provides practical guidance for developing intelligent trajectory planning methods for UAVs to achieve the minimal amount of time spent on computation, efficient dynamic collision avoidance, and superior task completion ability. Full article
Show Figures

Figure 1

20 pages, 3225 KB  
Article
Pigeon-Inspired Transition Trajectory Optimization for Tilt-Rotor UAVs
by Jinlai Deng, Yunjie Yang, Jihong Zhu, Wenan Liao, Xiaming Yuan and Xiangyang Wang
Drones 2025, 9(6), 432; https://doi.org/10.3390/drones9060432 - 14 Jun 2025
Viewed by 557
Abstract
The continuous configuration changes and velocity variations of tilt-rotor UAVs during the transition phase pose significant challenges to flight safety. Hence, the transition phase trajectory must be specially designed. The transition corridor is an effective means of characterizing the controllable flight state and [...] Read more.
The continuous configuration changes and velocity variations of tilt-rotor UAVs during the transition phase pose significant challenges to flight safety. Hence, the transition phase trajectory must be specially designed. The transition corridor is an effective means of characterizing the controllable flight state and safe flight boundary of the tilt-rotor UAV transition phase. However, the conventional transition corridor is established based on the trim criterion, which cannot fully characterize the dynamic characteristics of the transition phase, resulting in deviations in the delineation of the flight boundary. This paper proposes a method that characterizes the dynamic transition corridor of a tilt-rotor UAV during the transition phase. A three-dimensional transition corridor considering the nacelle angle, velocity, and angle of attack is established by relaxing the force constraints and introducing angle of attack variables, allowing the dynamic characteristics of acceleration and deceleration in the transition phase to be characterized. On this basis, a transition trajectory optimization method based on the three-dimensional dynamic transition corridor is established using pigeon-inspired optimization with an objective that considers the smooth transition of tilt-rotor UAVs. Numerical simulations show that, compared with the transition trajectory obtained using a two-dimensional transition corridor, the proposed method ensures smoother changes in the velocity, nacelle angle, and expected angle of attack during the transition phase, resulting in stronger engineering practicality. Full article
(This article belongs to the Special Issue Biological UAV Swarm Control)
Show Figures

Figure 1

21 pages, 4228 KB  
Article
Real-Time TECS Gain Tuning Using Steepest Descent Method for Post-Transition Stability in Unmanned Tilt-Rotor eVTOLs
by Choonghyun Lee, Ngoc Phi Nguyen, Sangjun Bae and Sung Kyung Hong
Drones 2025, 9(6), 414; https://doi.org/10.3390/drones9060414 - 6 Jun 2025
Viewed by 1095
Abstract
Unmanned tilt-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft face significant control challenges during the transition from hover to forward flight, particularly when using open-source autopilot systems that rely on open-loop tilt control and static control gains. After the transition, the Total Energy [...] Read more.
Unmanned tilt-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft face significant control challenges during the transition from hover to forward flight, particularly when using open-source autopilot systems that rely on open-loop tilt control and static control gains. After the transition, the Total Energy Control System (TECS) becomes active in fixed-wing mode, but its default static gains often fail to correct energy imbalances, resulting in substantial altitude loss. This paper presents the Steepest Descent-based Total Energy Control System (SD-TECS), a real-time adaptive TECS framework that dynamically tunes gains using the steepest descent method to enhance post-transition altitude and airspeed regulation in unmanned tilt-rotor eVTOLs. The proposed method integrates gain adaptation directly into the TECS loop, optimizing control actions based on instantaneous flight states such as altitude and energy-rate errors. This enables improved responsiveness to nonlinear dynamics during the critical post-transition phase. Simulation results demonstrate that the SD-TECS approach significantly improves control performance compared to the default PX4 TECS, achieving a 35.5% reduction in the altitude settling time, a 57.3% improvement in the airspeed settling time, and a 66.1% decrease in the integrated altitude error. These improvements highlight the effectiveness of SD-TECS in enhancing the stability and reliability of unmanned tilt-rotor eVTOLs operating under autonomous control. Full article
Show Figures

Figure 1

42 pages, 9332 KB  
Article
Design and Validation of a New Tilting Rotor VTOL Drone: Structural Optimization, Flight Dynamics, and PID Control
by Haixia Gong, Wei He, Shuping Hou, Ming Chen, Ziang Yang, Qin Si and Deming Zhao
Sensors 2025, 25(11), 3537; https://doi.org/10.3390/s25113537 - 4 Jun 2025
Viewed by 1524
Abstract
This study addresses the gap in the experimental validation of the tilt-rotor vertical take-off and landing (VTOL) UAVs by developing a novel prototype that integrates fixed-wing and multi-rotor advantages. A dynamic model based on the “X” quadrotor configuration was established, and Euler parameters [...] Read more.
This study addresses the gap in the experimental validation of the tilt-rotor vertical take-off and landing (VTOL) UAVs by developing a novel prototype that integrates fixed-wing and multi-rotor advantages. A dynamic model based on the “X” quadrotor configuration was established, and Euler parameters were employed to derive the attitude transformation matrix. Structural optimization using hybrid meshing and inertia release methods revealed a maximum deformation of 57.1 mm (2.82% of half-wingspan) and stress concentrations below material limits (379.21 MPa on fasteners). The landing gear was optimized using the unified objective method, and the stress was reduced by 32.63 MPa compared to the pre-optimization stress. Vibration analysis identified hazardous frequencies (11–12 Hz) to avoid resonance. Stable motor speed tracking (±5 RPM) and rolling attitude control (less than 10% error) are achieved using a dual-serial PID control system based on the DSP28377D master. Experimental validation in low-altitude flights confirmed the prototype’s feasibility, though ground effects impacted pitch/yaw performance. This work provides critical experimental data for future tilt-rotor UAV development. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 1951 KB  
Article
Control Allocation Strategy Based on Min–Max Optimization and Simple Neural Network
by Kaixin Li, Mei Liu, Xinliang Li, Xiaobin Yu and Kun Liu
Drones 2025, 9(5), 372; https://doi.org/10.3390/drones9050372 - 15 May 2025
Viewed by 557
Abstract
Servo-free tilt-rotor UAVs decouple position and attitude control without using servos, which cuts structural weight and removes the travel limits of traditional designs. In many applications—such as aerial platform operations and airborne photogrammetry—large attitude changes are required during hover. Conventional control-allocation schemes tend [...] Read more.
Servo-free tilt-rotor UAVs decouple position and attitude control without using servos, which cuts structural weight and removes the travel limits of traditional designs. In many applications—such as aerial platform operations and airborne photogrammetry—large attitude changes are required during hover. Conventional control-allocation schemes tend to distribute thrust unevenly, making actuators prone to saturation. To overcome these challenges, we propose a thrust-balancing control-allocation strategy specifically for passive-hinge tilt-rotor octocopters. The presented method integrates min–max optimization with the force decomposition (FD) algorithm, effectively handling actuator saturation while maintaining low computational complexity. Additionally, an offline-trained neural network is employed to replace the online optimization process, enabling the complete controller to operate on the flight control board without relying on an onboard computer. Simulation and experiment results confirm the effectiveness of the proposed strategy, demonstrating enhanced control performance and its practical feasibility for real-world UAV applications. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

18 pages, 13241 KB  
Article
Experimental Investigation of Aerodynamic Interaction in Non-Parallel Tandem Dual-Rotor Systems for Tiltrotor UAV
by He Zhu, Yuhao Du, Hong Nie, Zhiyang Xin and Xi Geng
Drones 2025, 9(5), 374; https://doi.org/10.3390/drones9050374 - 15 May 2025
Viewed by 778
Abstract
The distributed electric tilt-rotor Unmanned Aerial Vehicle (UAV) combines the vertical take-off and landing (VTOL) capability of helicopters with the high-speed cruise performance of fixed-wing aircraft, offering a transformative solution for Urban Air Mobility (UAM). However, aerodynamic interference between rotors is a new [...] Read more.
The distributed electric tilt-rotor Unmanned Aerial Vehicle (UAV) combines the vertical take-off and landing (VTOL) capability of helicopters with the high-speed cruise performance of fixed-wing aircraft, offering a transformative solution for Urban Air Mobility (UAM). However, aerodynamic interference between rotors is a new challenge to improving their flight efficiency, especially the dynamic interactions during the transition phase of non-parallel tandem dual-rotor systems, which require in-depth investigation. This study focuses on the aerodynamic performance evolution of the tilt-rotor system during asynchronous transition processes, with an emphasis on quantifying the influence of rotor tilt angles. A customized experimental platform was developed to investigate a counter-rotating dual-rotor model with fixed axial separation. Key performance metrics, including thrust, torque, and power, were systematically measured at various tilt angles (0–90°) and rotational speeds (1500–3500 RPM). The aerodynamic coupling mechanisms between the front and rear rotor disks were analyzed. The experimental results indicate that the relative tilt angle of the dual rotors significantly affects aerodynamic interference between the rotors. In the forward tilt mode, the thrust of the aft rotor recovers when the tilt angle reaches 45°, while in the aft tilt mode, it requires a tilt angle of 75°. By optimizing the tilt configuration, the aerodynamic performance loss of the aft rotor due to rotor-to-rotor aerodynamic interference can be effectively mitigated. This study provides important insights for the aerodynamic performance optimization and transition control strategies of the distributed electric tilt-rotor UAV. Full article
(This article belongs to the Special Issue Dynamics Modeling and Conceptual Design of UAVs)
Show Figures

Figure 1

21 pages, 4820 KB  
Article
A Novel Overactuated Quadrotor: Prototype Design, Modeling, and Control
by Zhan Zhang, Yan Li, Hengzhi Jiang, Jieqi Li and Zhong Wang
Actuators 2025, 14(5), 223; https://doi.org/10.3390/act14050223 - 30 Apr 2025
Cited by 1 | Viewed by 684
Abstract
Traditional multirotor UAVs (unmanned aerial vehicles) are inherently underactuated, with coupled position and attitude control, which limits their maneuverability in specific applications. This paper presents a fully actuated quadrotor design based on a swashplateless rotor mechanism. Unlike existing fully actuated UAV designs that [...] Read more.
Traditional multirotor UAVs (unmanned aerial vehicles) are inherently underactuated, with coupled position and attitude control, which limits their maneuverability in specific applications. This paper presents a fully actuated quadrotor design based on a swashplateless rotor mechanism. Unlike existing fully actuated UAV designs that rely on servo-driven tilt mechanisms, this approach minimizes additional weight and simplifies the structure, resulting in a more maintainable system. The design, modeling, and control strategies for the quadrotor are presented. Furthermore, we propose a decoupled control method to address the need for both fully actuated and underactuated modes. The control architecture employs parallel attitude and position control structures and decouples the two subsystems using a nonlinear dynamic inversion (NDI) method. A compensation module is introduced to address the constraints imposed by the maximum rotor deflection angle and the corresponding feasible force set. This compensation module actively adjusts the attitude to mitigate the saturation of the required thrust, effectively overcoming the impact of rotor deflection angle limitations on trajectory tracking performance. The approach facilitates seamless switching between fully actuated and underactuated modes, enhancing the system’s flexibility and robustness. Simulation and flight experiments demonstrate the effectiveness and performance of the proposed design. Full article
(This article belongs to the Special Issue Actuation and Robust Control Technologies for Aerospace Applications)
Show Figures

Figure 1

24 pages, 92916 KB  
Review
Beyond Conventional Drones: A Review of Unconventional Rotary-Wing UAV Design
by Mengtang Li
Drones 2025, 9(5), 323; https://doi.org/10.3390/drones9050323 - 22 Apr 2025
Cited by 1 | Viewed by 3250
Abstract
This paper explores unconventional configurations of rotary-wing unmanned aerial vehicles (UAVs), focusing on designs that transcend the limitations of traditional ones. Through innovative rotor arrangements, refined airframe structures, and novel flight mechanisms, these advanced designs aim to significantly enhance performance, versatility, and functionality. [...] Read more.
This paper explores unconventional configurations of rotary-wing unmanned aerial vehicles (UAVs), focusing on designs that transcend the limitations of traditional ones. Through innovative rotor arrangements, refined airframe structures, and novel flight mechanisms, these advanced designs aim to significantly enhance performance, versatility, and functionality. Rotary-wing UAVs that deviate markedly from conventional models in terms of mechanical topology, aerodynamic principles, and movement modalities are rigorously examined. These unique UAVs are categorized into four distinct groups based on their mechanical configurations and dynamic characteristics: (1) UAVs with tilted or tiltable propellers, (2) UAVs featuring expanded mechanical structures, (3) UAVs with morphing multirotor capabilities, and (4) UAVs incorporating groundbreaking aerodynamic concepts. This classification establishes a structured framework for analyzing the advancements in these innovative designs. Finally, key challenges identified in the review are summarized, and corresponding research outlooks are derived to guide future development in rotary-wing drone technology. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

10 pages, 7745 KB  
Proceeding Paper
Design and Implementation of a Novel Tilt-Rotor Tri-Copter UAV Configuration
by Zishi Shen and Fan Liu
Eng. Proc. 2024, 80(1), 39; https://doi.org/10.3390/engproc2024080039 - 4 Mar 2025
Viewed by 1232
Abstract
Hover-capable unmanned aerial vehicles (UAVs), including rotary-wing UAVs such as unmanned helicopters, multi-rotor drones, and tilt-rotor UAVs, are widely employed due to their hovering capabilities. In recent years, tilt-rotor aircraft, which offer both vertical takeoff and landing as well as rapid maneuverability, have [...] Read more.
Hover-capable unmanned aerial vehicles (UAVs), including rotary-wing UAVs such as unmanned helicopters, multi-rotor drones, and tilt-rotor UAVs, are widely employed due to their hovering capabilities. In recent years, tilt-rotor aircraft, which offer both vertical takeoff and landing as well as rapid maneuverability, have increasingly become a research focus. This paper first proposes a design concept for a flying-wing configuration tilt-rotor tri-rotor UAV, detailing the selection of airfoils and the calculation of aerodynamic parameters. To address the specific operational requirements and flight characteristics of this UAV, a specialized tilting mechanism was developed, and a flight control system was designed and implemented using classical PID control methods. Finally, a prototype of the tilt-rotor tri-rotor UAV was fabricated and subjected to flight tests. The results from both simulations and flight tests confirmed that the UAV met the design performance criteria and that the control method was effective. Full article
(This article belongs to the Proceedings of 2nd International Conference on Green Aviation (ICGA 2024))
Show Figures

Figure 1

27 pages, 10043 KB  
Article
An Over-Actuated Hexacopter Tilt-Rotor UAV Prototype for Agriculture of Precision: Modeling and Control
by Gabriel Oliveira Pimentel, Murillo Ferreira dos Santos, José Lima, Paolo Mercorelli and Fernanda Mara Fernandes
Sensors 2025, 25(2), 479; https://doi.org/10.3390/s25020479 - 15 Jan 2025
Cited by 2 | Viewed by 1835
Abstract
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch [...] Read more.
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft’s steering accuracy. This arrangement is particularly beneficial for precision agriculture (PA) applications where accurate monitoring and management of crops are critical. The enhanced maneuverability allows for precise navigation in complex vineyard environments, enabling the unmanned aerial vehicle (UAV) to perform tasks such as aerial imaging and crop health monitoring. The employed control architecture consists of cascaded proportional (P)-proportional, integral and derivative (PID) controllers using the successive loop closure (SLC) method on the five controlled degrees of freedom (DoFs). Simulated results using Gazebo demonstrate that the HTR achieves stability and maneuverability throughout the flight path, significantly improving precision agriculture practices. Furthermore, a comparison of the HTR with a traditional hexacopter validates the proposed approach. Full article
(This article belongs to the Special Issue Dynamics and Control System Design for Robot Manipulation)
Show Figures

Figure 1

29 pages, 1017 KB  
Article
Comparative Analysis of Deep Reinforcement Learning Algorithms for Hover-to-Cruise Transition Maneuvers of a Tilt-Rotor Unmanned Aerial Vehicle
by Mishma Akhtar and Adnan Maqsood
Aerospace 2024, 11(12), 1040; https://doi.org/10.3390/aerospace11121040 - 19 Dec 2024
Cited by 2 | Viewed by 2161
Abstract
Work on trajectory optimization is evolving rapidly due to the introduction of Artificial-Intelligence (AI)-based algorithms. Small UAVs are expected to execute versatile maneuvers in unknown environments. Prior studies on these UAVs have focused on conventional controller design, modeling, and performance, which have posed [...] Read more.
Work on trajectory optimization is evolving rapidly due to the introduction of Artificial-Intelligence (AI)-based algorithms. Small UAVs are expected to execute versatile maneuvers in unknown environments. Prior studies on these UAVs have focused on conventional controller design, modeling, and performance, which have posed various challenges. However, a less explored area is the usage of reinforcement-learning algorithms for performing agile maneuvers like transition from hover to cruise. This paper introduces a unified framework for the development and optimization of a tilt-rotor tricopter UAV capable of performing Vertical Takeoff and Landing (VTOL) and efficient hover-to-cruise transitions. The UAV is equipped with a reinforcement-learning-based control system, specifically utilizing algorithms such as Deep Deterministic Policy Gradient (DDPG), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). Through extensive simulations, the study identifies PPO as the most robust algorithm, achieving superior performance in terms of stability and convergence compared with DDPG and TRPO. The findings demonstrate the efficacy of DRL in leveraging the unique dynamics of tilt-rotor UAVs and show a significant improvement in maneuvering precision and control adaptability. This study demonstrates the potential of reinforcement-learning algorithms in advancing autonomous UAV operations by bridging the gap between dynamic modeling and intelligent control strategies, underscoring the practical benefits of DRL in aerial robotics. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

34 pages, 3218 KB  
Article
Neural Network Design and Training for Longitudinal Flight Control of a Tilt-Rotor Hybrid Vertical Takeoff and Landing Unmanned Aerial Vehicle
by Guillaume Ducard and Gregorio Carughi
Drones 2024, 8(12), 727; https://doi.org/10.3390/drones8120727 - 2 Dec 2024
Cited by 4 | Viewed by 2230
Abstract
This paper considers a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). By tilting its propellers, the aircraft can transition from rotary-wing (RW) multirotor mode to fixed-wing (FW) mode and vice versa. A novel architecture of a neural network-based controller (NNC) [...] Read more.
This paper considers a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). By tilting its propellers, the aircraft can transition from rotary-wing (RW) multirotor mode to fixed-wing (FW) mode and vice versa. A novel architecture of a neural network-based controller (NNC) is presented. An “imitative learning” approach is employed to train the NNC to mimic the response of an expert but computationally expensive model predictive controller (MPC). The resulting NNC approximates the MPC’s solution while significantly decreasing the computational cost. The NNC is trained on the longitudinal axis. Successful simulations and real flight tests prove that the NNC is suitable for the longitudinal axis control of a complex nonlinear system such as the tilt-rotor VTOL UAV through a sequence of transitions between the RW mode to the FW mode, and vice versa, in a forward flight. Full article
Show Figures

Figure 1

Back to TopTop