Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (547)

Search Parameters:
Keywords = titer decrease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1247 KiB  
Article
Intranasal Administration of Cold-Adapted Live-Attenuated Eurasian Avian-like H1N1 Vaccine Candidate Confers Protection Against Different-Lineage H1N1 Viruses in Mice
by Qiu Zhong, Zuchen Song, Fei Meng, Yanwen Wang, Yijie Zhang, Zijian Feng, Yali Zhang, Yujia Zhai, Yan Chen, Chuanling Qiao, Hualan Chen and Huanliang Yang
Vaccines 2025, 13(6), 596; https://doi.org/10.3390/vaccines13060596 (registering DOI) - 30 May 2025
Abstract
Background/Objectives: Eurasian avian-like (EA) H1N1 swine influenza viruses, with their persistent evolution and zoonotic potential, seriously threaten both swine and human health. The objective was to develop an effective vaccine against these viruses. Methods: A cold-adapted, temperature-sensitive live-attenuated influenza vaccine (LAIV) candidate, GX18 [...] Read more.
Background/Objectives: Eurasian avian-like (EA) H1N1 swine influenza viruses, with their persistent evolution and zoonotic potential, seriously threaten both swine and human health. The objective was to develop an effective vaccine against these viruses. Methods: A cold-adapted, temperature-sensitive live-attenuated influenza vaccine (LAIV) candidate, GX18ca, was developed. It was derived from the wild-type EA H1N1 strain A/swine/Guangxi/18/2011 (GX18) through serial passaging in embryonated eggs at temperatures decreasing from 33 °C to 25 °C. Its characteristics were studied in mice, including attenuation, immune responses (mucosal IgA, serum IgG, IFN-γ+ CD4+/CD8+ T-cell responses), and protective efficacy against homologous (GX18), heterologous EA H1N1 (LN972), and human 2009/H1N1 (SC1) viruses. Results: GX18ca showed cold-adapted and temperature-sensitive phenotypes. In mice, it was attenuated, with viral titers in the nasal turbinates and lungs reduced 1000–10,000-fold compared to the wild-type strain, and it cleared by day 5 post infection. Intranasal immunization elicited strong cross-reactive immune responses. Mucosal IgA had broad reactivity, and serum IgG titers reached high levels. IFN-γ+ CD4+/CD8+ T-cell responses were detected against all the tested viruses. A single dose of GX18ca fully protected against GX18 and LN972 challenges, and two doses significantly reduced SC1 lung viral loads, preventing mortality and weight loss. Conclusions: GX18ca is a promising LAIV candidate. It can induce broad immunity, addressing the cross-protection gaps against evolving EA H1N1 SIVs and zoonotic H1N1 variants, which is crucial for swine influenza control and pandemic preparedness. Full article
(This article belongs to the Special Issue Vaccination Against Major Respiratory Pathogens in Livestock Farming)
16 pages, 1306 KiB  
Article
The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study
by Boglárka Oesch-Régeni, Nicolas Germann, Georg Hafer, Dagmar Schmid and Norbert Arn
J. Clin. Med. 2025, 14(11), 3802; https://doi.org/10.3390/jcm14113802 - 29 May 2025
Viewed by 157
Abstract
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition with not fully understood causes, though evidence points to immune system involvement and possible autoimmunity. ME/CFS could be triggered by various infectious pathogens, like SARS-CoV-2; furthermore, a subset of the post-COVID-19 condition (PCC) [...] Read more.
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition with not fully understood causes, though evidence points to immune system involvement and possible autoimmunity. ME/CFS could be triggered by various infectious pathogens, like SARS-CoV-2; furthermore, a subset of the post-COVID-19 condition (PCC) patients fulfill the diagnostic criteria of ME/CFS. According to the Canadian Consensus Criteria (CCC), the presence of specific symptoms such as fatigue, post-exertional malaise, sleep dysfunction, pain, neurological/cognitive manifestations, and symptoms from at least two of the following categories lead to the diagnosis of ME/CFS: autonomic, neuroendocrine, and immune manifestation. In this study, the patient selection was based on the identification of ME/CFS patients with elevated autoantibodies, regardless of the triggering factor of their condition. Methods: The aim of this study was to identify ME/CFS patients among long COVID patients with elevated autoantibodies. In seven cases, plasmapheresis (PE) and intravenous immunoglobulins (IVIGs) with repetitive autoantibody measurements were applied: four PE sessions on days 1, 5, 30, and 60, and a low-dose IVIG therapy after each treatment. Antibodies were measured before the first PE and two weeks after the last PE session. To monitor clinical outcomes, the following somatic and psychometric follow-up assessments were conducted before the first PE, 2 weeks after the second, and 2 weeks after the last PE: the Schellong test, ISI (insomnia), FSS (fatigue), HADS (depression and anxiety), and EQ-5D-5L (quality of life) questionnaires. Results: There was a negative association between both the β2-adrenergic and M3-muscarinic receptor autoantibody concentration and the quality of life measurements assessed with the EQ-5D-5L questionnaire. Per 1 U/mL increase in the concentration levels of β2-adrenergic receptor antibodies or M3-muscarinic acetylcholine receptor antibodies, the EQ-5D-5L index score [−0.59 to 1] decreased by 0.01 (0.63%) or 0.02 (1.26%), respectively. There were no significant associations between the ISI, HADS, and FSS questionnaires and the β1-adrenergic and M4-muscarinic receptor antibodies titers. Conclusions: After a thorough selection of patients with present autoantibodies, this pilot study found negative associations concerning autoantibody concentration and somatic, as well as psychological wellbeing. To validate these promising feasibility study results—indicating the potential therapeutic potential of antibody-lowering methods—further investigation with larger sample sizes is needed. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

14 pages, 1599 KiB  
Article
Chronic Low-Dose Phoxim Exposure Impairs Silk Production in Bombyx mori L. (Lepidoptera: Bombycidae) by Disrupting Juvenile Hormone Signaling-Mediated Fibroin Synthesis
by Xinyi Xie, Jiayin Hou, Meng Li, Zhiyu Liu, Mengai He, Chenxi Li, Xiaohua Du and Liezhong Chen
Toxics 2025, 13(6), 427; https://doi.org/10.3390/toxics13060427 - 23 May 2025
Viewed by 126
Abstract
Phoxim is a pesticide extensively applied in mulberry fields, and residues may persist on leaves even after the recommended pre-harvest interval. However, the potential risks of these residues to Bombyx mori L. (Lepidoptera: Bombycidae) have long been overlooked. The results demonstrated that chronic [...] Read more.
Phoxim is a pesticide extensively applied in mulberry fields, and residues may persist on leaves even after the recommended pre-harvest interval. However, the potential risks of these residues to Bombyx mori L. (Lepidoptera: Bombycidae) have long been overlooked. The results demonstrated that chronic low-dose exposure from the second to fifth instars significantly impaired silkworm development and silk production. Specifically, larvae in the 0.316 μg/mL treatment group (1/2 LC50) exhibited a significant reduction in body weight, while the cocoon shell ratio was significantly decreased in both the 0.079 μg/mL (1/8 LC50) and 1/2 LC50 groups. Cocoon deformities were observed in the 0.032 μg/mL (1/20 LC50), 1/8 LC50, and 1/2 LC50 groups. Histopathological analysis revealed silk gland damage in the treatment groups, with severity increasing with higher phoxim concentrations. Biochemical analyses indicated elevated malondialdehyde (MDA) levels accompanied by increased superoxide dismutase (SOD) and peroxidase (POD) activities. Notably, phoxim exposure selectively reduced juvenile hormone (JH) titers without affecting ecdysone titers. JH-regulated genes including the receptors Met1 and Met2, and transcription factors Kr-h1 and Dimm were downregulated, accompanied by suppressed expression of the fibroin synthesis gene Fib-H. These results collectively indicate that chronic low-concentration phoxim exposure disrupts endocrine regulation, damages silk gland integrity, and ultimately reduces silk production in silkworm. Full article
(This article belongs to the Special Issue Impacts of Agrochemicals on Insects and Soil Organisms)
Show Figures

Graphical abstract

19 pages, 1463 KiB  
Article
Influence of Ovophospholipids on Lymphocyte Subsets and Humoral Immune Response in Mice
by Magdalena Lis, Marianna Szczypka, Agnieszka Suszko-Pawłowska, Aleksandra Pawlak, Łukasz Bobak and Bożena Obmińska-Mrukowicz
Molecules 2025, 30(11), 2253; https://doi.org/10.3390/molecules30112253 - 22 May 2025
Viewed by 115
Abstract
Designed hen eggs enriched in DHA and EPA are an alternative source of essential phospholipids. This study assessed the effects of ovophospholipids on lymphocyte subsets in non-immunized mice and on the humoral immune response in sheep red blood cells (SRBC)-immunized mice. Ovophospholipids were [...] Read more.
Designed hen eggs enriched in DHA and EPA are an alternative source of essential phospholipids. This study assessed the effects of ovophospholipids on lymphocyte subsets in non-immunized mice and on the humoral immune response in sheep red blood cells (SRBC)-immunized mice. Ovophospholipids were administered orally for 14 days (once a day) at doses of 100, 10, and 1 mg/kg. Ovophospholipids increased the total lymphocyte count of in the lymphoid organs. At 10 and 1 mg/kg, ovophospholipids increased the subsets of CD4CD8 and CD4+CD8+ thymocytes but decreased the percentage of CD4+ and CD8+ thymocytes. A stimulating effect on splenocytes was particularly evident 24 h after administration of the 10 and 1 mg/kg doses. Ovophospholipids also elevated the absolute counts of CD3+ and CD19+ splenocytes. An increase in the absolute count of CD3+, CD4+, CD8+, and CD19+ lymphocytes of the mesenteric lymph nodes was observed 24 h after administration of the lowest dose. The increase in the percentage and absolute count of CD19+ cells and in the absolute count of CD3+ cells was still observed after 72 h. At all doses, ovophospholipids elevated the number of plaque-forming cells on day 4 and increased 2-mercaptoethanol-resistant antibody titer on day 7 after priming. In conclusion, ovophospholipids can modulate the immune response in mice. Full article
(This article belongs to the Special Issue Bioactive Compounds from Functional Foods, 2nd Edition)
Show Figures

Figure 1

15 pages, 2156 KiB  
Article
Molecular Characterization and Expression of the Ecdysone Receptor and Ultraspiracle Genes in the Wheat Blossom Midge, Sitodiplosis mosellana
by Qitong Huang, Linqing Meng, Yuhan Liu, Keyan Zhu-Salzman and Weining Cheng
Insects 2025, 16(5), 537; https://doi.org/10.3390/insects16050537 - 19 May 2025
Viewed by 321
Abstract
20-hydroxyecdysone (20E) is essential for insect development and diapause. Ecdysone receptor (EcR) and ultraspiracle (USP) proteins are crucial regulators of 20E signaling. To explore their potential roles in the development of Sitodiplosis mosellana, a major wheat pest that undergoes obligatory diapause as [...] Read more.
20-hydroxyecdysone (20E) is essential for insect development and diapause. Ecdysone receptor (EcR) and ultraspiracle (USP) proteins are crucial regulators of 20E signaling. To explore their potential roles in the development of Sitodiplosis mosellana, a major wheat pest that undergoes obligatory diapause as a larva, one SmEcR and two SmUSPs (SmUSP-A and SmUSP-B) from this species were isolated and characterized. The deduced SmEcR and SmUSP-A/B proteins contained a conserved DNA-binding domain with two zinc finger motifs that bind to specific DNA sequences. Expression of SmEcR and the SmUSPs was developmentally controlled, as was 20E induction. Their transcription levels increased as the larvae entered pre-diapause, followed by downregulation during diapause and upregulation during the shift to post-diapause quiescence, which is highly consistent with ecdysteroid titers in this species. Topical application of 20E to diapausing larvae also elicited a dose-dependent expression of the three genes. Expression of SmEcR and SmUSPs decreased markedly during the pre-pupal stage and was higher in adult females compared to males. These findings suggested that 20E-induced expression of SmEcR and SmUSPs has key roles in diapause initiation and maintenance, post-diapause quiescence, and adult reproduction, while the larval–pupal transformation may be associated with a decrease in their expression levels. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

17 pages, 2378 KiB  
Article
Eliciting Clavulanic Acid Biosynthesis: The Impact of Bacillus velezensis FZB42 on the Metabolism of Streptoyces clavuligerus ATCC 27064
by Luisa F. Patiño, Carlos Caicedo-Montoya, Laura Pinilla-Mendoza, Jaison H. Cuartas and Rigoberto Ríos-Estepa
Metabolites 2025, 15(5), 337; https://doi.org/10.3390/metabo15050337 - 19 May 2025
Viewed by 262
Abstract
Background/Objectives: Clavulanic acid (CA) is produced by cell suspension cultures of Streptomyces clavuligerus ATCC 27064, and is widely used as a beta-lactamase inhibitor to combat antibiotic resistance. CA titers are moderate due to bioprocess complexity, prompting ongoing efforts to overcome these limitations. Methods: [...] Read more.
Background/Objectives: Clavulanic acid (CA) is produced by cell suspension cultures of Streptomyces clavuligerus ATCC 27064, and is widely used as a beta-lactamase inhibitor to combat antibiotic resistance. CA titers are moderate due to bioprocess complexity, prompting ongoing efforts to overcome these limitations. Methods: In this study, we aimed to evaluate the effect of live and inactivated Bacillus velezensis FZB42 cells on CA production in S. clavuligerus, and to explore the transcriptional response underlying this interaction using RNA-seq technology. Results: The addition of dead and live cells of B. velezensis improved CA production by 1.4 and 2.0-fold, respectively. Furthermore, the transcriptome of S. clavuligerus, obtained with live cells of B. velezensis FZB42 at the peak of maximum CA production, revealed that 410 genes were up-regulated and 594 were down-regulated under these conditions, with a padj < 0.05. Most of the genes from the cephamycin C and CA clusters were up-regulated, which correlates well with the increase in CA production. Likewise, S. clavuligerus ATCC 27064 enhanced the expression of genes encoding enzymes that scavenge endogenous H2O2, as well as other genes related to oxidative stress defense. Regarding downregulated genes, we found that S. clavuligerus decreased the expression of genes involved in the biosynthesis of terpenoids, polyketides, and lantibiotics, as well as the expression of the operon involved in the synthesis of the pyrroloquinoline quinone (PQQ) cofactor. Conclusions: These findings contribute to the understanding of S. clavuligerus metabolism and pave the way for future metabolic engineering efforts aimed at obtaining CA-overproducing strains. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

13 pages, 1177 KiB  
Article
Differences in Mpox and Vaccinia Immunity Induced by Non-Replicating and Replicating Vaccinia-Based Vaccines
by Getahun Abate, Krystal Meza, Yinyi Yu, Chase Colbert, Anna Jaunarajs, Azra Blazevic, Daniel F. Hoft and Sharon E. Frey
Vaccines 2025, 13(5), 520; https://doi.org/10.3390/vaccines13050520 - 14 May 2025
Viewed by 244
Abstract
Background: The recent global outbreak with clade IIb and the concurrent emergence of clade I mpox virus in Africa show that mpox is a challenging problem. MVA-BN induces low-level mpox-neutralizing antibody responses that wane rapidly. This study was conducted to compare the [...] Read more.
Background: The recent global outbreak with clade IIb and the concurrent emergence of clade I mpox virus in Africa show that mpox is a challenging problem. MVA-BN induces low-level mpox-neutralizing antibody responses that wane rapidly. This study was conducted to compare the mpox immunity induced by a replication-competent smallpox vaccine and non-replicating MVA-BN. Methods: Stored sera (n = 302) and PBMCs (n = 244) collected pre-vaccination and at five post-vaccination time points in MVA-BN and six post-vaccination time points in Dryvax clinical trials were used. Antibody titers that neutralized at least 50% of mpox in cell culture were determined by the focus reduction neutralization test (FRNT) 50, and the mpox-specific T cell responses were measured using an IFN-γ ELISPOT assay. Results: The peak geometric fold rise (95% CI) (i.e., the maximum GMFR across all study visits) in the mpox FRNT50 for subcutaneous (SC) MVA-BN, intradermal (ID) MVA-BN, and Dryvax was 22.1 (8.3, 59.1), 18.5 (8.0, 43.1), and 245.8 (100.4, 601.6), respectively. The GMFR at day 180 post-vaccination for MVA-BN (SC), MVA-BN (ID), and Dryvax was 2.4, 2.7, and 64, respectively. The mean (95% CI) peak number of mpox-specific IFN-γ-producing SFCs was 127 (43.1, 238.3), 87.3 (46, 137), and 61.2 (44.3, 77.7) for MVA-BN (SC), MVA-BN (ID), and Dryvax, respectively. On day 180, the mean SFCs in the three groups decreased to 10.8 (−34.4, 3.8), 3.3 (−6.2, 18.6), and 2.2 (−9, 12.5), respectively. Conclusions: The peak mpox-neutralizing antibody titer was >10-fold lower in MVA-BN recipients compared to those who received a replication-competent smallpox vaccine, and the level at day 180 was >20 times lower in MVA-BN recipients. MVA-BN induced similar or higher T cell responses. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

18 pages, 2646 KiB  
Article
The IL-6/JAK/STAT3 Axis in Cholangiocarcinoma and Primary Sclerosing Cholangitis: Unlocking Therapeutic Strategies Through Patient-Derived Organoids
by Corinna Boden, Laura K. Esser, Leona Dold, Bettina Langhans, Taotao Zhou, Dominik J. Kaczmarek, Maria A. Gonzalez-Carmona, Tobias J. Weismüller, Glen Kristiansen, Jörg C. Kalff, Michael Hölzel, Hanno Matthaei, Marieta I. Toma and Vittorio Branchi
Biomedicines 2025, 13(5), 1083; https://doi.org/10.3390/biomedicines13051083 - 29 Apr 2025
Viewed by 422
Abstract
Background/Objectives: Primary sclerosing cholangitis (PSC) is a rare, incurable liver disease characterized by chronic biliary inflammation and fibrosis. PSC is a significant risk factor for biliary tract cancer (BTC). This study aims to evaluate STAT3 expression in BTC and its prognostic significance as [...] Read more.
Background/Objectives: Primary sclerosing cholangitis (PSC) is a rare, incurable liver disease characterized by chronic biliary inflammation and fibrosis. PSC is a significant risk factor for biliary tract cancer (BTC). This study aims to evaluate STAT3 expression in BTC and its prognostic significance as well as explore the potential of organoids derived from PSC and liver tumor patients as an in vitro model for testing novel therapeutic strategies in both PSC and BTC. Methods: Fresh tissue samples obtained from 10 PSC patients through targeted endoscopic retrograde cholangiography (ERC) and biopsy samples from liver tumor patients were used to establish organoid cultures. Organoids were treated with different agents and the therapeutic effect was measured by CellTiterGlo. Treatment with the JAK inhibitor baricitinib was followed by the measurement of cytokine concentrations in the supernatant. Archived formalin-fixed paraffin-embedded (FFPE) samples from 55 surgically resected BTC tumors were analyzed for STAT3 expression using immunohistochemistry. Results: We successfully established organoid cultures from all ERC samples. STAT3 protein expression was detected in 56% of tumor samples and 69% of the immune microenvironment. STAT3 positivity in the immune cell compartment was associated with longer disease-free survival, although the multivariate analysis could not confirm its value as an independent prognostic factor. Chemotherapy testing on liver tumor organoids showed various degrees of decreases in viability after treatment with gemcitabine, cisplatin, and cabozantinib. Baricitinib treatment significantly reduced IL-6 and MCP-1 secretion in cholangiocarcinoma Conclusions: The patient-derived organoid model of PSC and liver tumors is a valuable tool for testing novel and established therapeutic strategies, including JAK inhibitors and chemotherapy regimens. STAT3 expression in the immune microenvironment of BTC may serve as a prognostic marker. Further studies are needed to explore the integration of co-cultured organoid systems with stromal and immune components to improve physiological relevance. Full article
Show Figures

Figure 1

10 pages, 2546 KiB  
Brief Report
Humoral and Cell-Mediated Immunity Against SARS-CoV-2 in Healthcare Personnel Who Received Multiple mRNA Vaccines: A 4-Year Observational Study
by Hideaki Kato, Kaori Sano, Kei Miyakawa, Takayuki Kurosawa, Kazuo Horikawa, Yayoi Kimura, Atsushi Goto and Akihide Ryo
Infect. Dis. Rep. 2025, 17(3), 42; https://doi.org/10.3390/idr17030042 - 29 Apr 2025
Viewed by 311
Abstract
Background/Objectives: The long-term effects of multiple updated vaccinations against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have not been clarified. Humoral or cellular immunity dynamics in healthcare workers for four years were analyzed. Methods: Blood samples were collected at five time points from April [...] Read more.
Background/Objectives: The long-term effects of multiple updated vaccinations against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have not been clarified. Humoral or cellular immunity dynamics in healthcare workers for four years were analyzed. Methods: Blood samples were collected at five time points from April 2021 to January 2024. Humoral immunity was analyzed using the 50% neutralizing titer (NT50) against the original Omicron XBB and Omicron BA.2.86 strains and cellular immunity were analyzed using the ELISpot interferon-gamma releasing assay. NT50s and the spot-forming count (SFC) of the ELISpot assay were compared in the SARS-CoV-2 Omicron XBB-, Omicron-infected, and uninfected subjects. Results: 32 healthcare workers (median age, 47 years) who received 3–7 vaccine doses were enrolled. The NT50s against the original strain decreased after the second vaccination but were maintained after the third vaccine dose. NT50s against the Omicron XBB and BA.2.86 strains were detected before the Omicron vaccine was introduced and increased following the updated vaccination. The NT50s against the Omicron XBB and BA.2.86 strains were elevated after natural infection by the Omicron strain, albeit without differences compared with the findings in uninfected subjects. Multivariate regression analysis revealed no confounder that affected the antibody titer against the BA.2.86 strain at the fifth blood sampling. The median number of SFCs ranged from 78 to 208 after the first two doses. Conclusions: Multiple vaccinations induced the production of antibodies with divergent activity against emerging mutant strains and enhanced protective effects against the original strain. This finding supported the importance of updated vaccination. Full article
Show Figures

Figure 1

15 pages, 3784 KiB  
Article
Loading of Oregano Oil in Natural Nanogel and Preliminary Studies on Its Antiviral Activity on Betacoronavirus 1
by Lyubomira Radeva, Maya M. Zaharieva, Sevda Naydenska, Pelagia Foka, Erini Karamichali, Efthymia Ioanna Koufogeorgou, Urania Georgopoulou, Stanislav Philipov, Alexander Kroumov, Hristo Najdenski, Ivanka Spassova, Daniela Kovacheva and Krassimira Yoncheva
Molecules 2025, 30(9), 1939; https://doi.org/10.3390/molecules30091939 - 27 Apr 2025
Viewed by 385
Abstract
Oregano oil was successfully encapsulated into chitosan–albumin nanogel via emulsification and electrostatic gelation. The system was characterized with a mean diameter around 26 nm, narrow size distribution (PDI = 0.242) and approximately 40% encapsulation efficiency. The incorporation of the oil into the nanogel [...] Read more.
Oregano oil was successfully encapsulated into chitosan–albumin nanogel via emulsification and electrostatic gelation. The system was characterized with a mean diameter around 26 nm, narrow size distribution (PDI = 0.242) and approximately 40% encapsulation efficiency. The incorporation of the oil into the nanogel was confirmed by XRD and FTIR analyses, and the dissolution of the oil was enhanced after the encapsulation. Furthermore, the treatment of Betacoronavirus 1 infected bovine kidney MDBK cells with the oregano oil-loaded nanogel (25 µg/mL) showed more than 50% protection against the infection, as compared to the non-treated virus infected control. The cytopathic effect (CPE) of the virus was inhibited in a concentration-dependent manner. The system inhibited the virus replication, resulting in a decrease of the viral particles by more than half, as shown by the cytotoxicity and CPE assays. The virus titer in treated and non-treated samples was determined by digital droplet PCR and revealed Δ3 log diminishment of the virus particles in samples treated with 25 µg/mL encapsulated oregano oil. This study is a basis for further investigations on the pharmacodynamics of the nanogel and its possible combinations with clinically applied chemotherapeutics. Full article
(This article belongs to the Special Issue Advances in Targeted Delivery of Nanomedicines)
Show Figures

Figure 1

11 pages, 6718 KiB  
Article
Attenuation of a Novel Goose Parvovirus Strain NMG21 via Serial Cell Passage
by Jing Yang, Dalin He, Bingrong Wu, Yun Yan, Yupei Zhang, Jiaping Zhou, Feng Wei and Youjiang Diao
Viruses 2025, 17(5), 618; https://doi.org/10.3390/v17050618 - 25 Apr 2025
Viewed by 276
Abstract
The novel goose parvovirus (N-GPV), responsible for beak atrophy and dwarfism syndrome (BADS), has caused significant economic losses in China’s duck-raising industry. In this study, a highly virulent N-GPV strain NMG21 was serially passaged in duck embryo fibroblast cells (DEFs). The virus titers [...] Read more.
The novel goose parvovirus (N-GPV), responsible for beak atrophy and dwarfism syndrome (BADS), has caused significant economic losses in China’s duck-raising industry. In this study, a highly virulent N-GPV strain NMG21 was serially passaged in duck embryo fibroblast cells (DEFs). The virus titers and virulence of selected passages were evaluated in 1-day-old ducklings. An increased virus titer was observed at the 5th passage (P5). Compared with the parent strain NMG21, the P35 (NMG21-35 strain) has a clear decrease in pathogenicity for ducklings, with less tissue damage. The NMG21-35 also exhibited relatively lower tissue replication rates and higher antibody levels. Collectively, the virulence of N-GPV strain NMG21 was reduced via serial passage in DEFs for 35 passages. Our research successfully prepared a N-GPV attenuated variant which might serve as a potential live vaccine candidate against N-GPV infection. Developing a live attenuated vaccine candidate against N-GPV infection in China is crucial for mitigating the economic impact of N-GPV on the duck industry. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 5797 KiB  
Article
Antiviral Activity of Marine Bacterium Paraliobacillus zengyii Against Enterovirus 71 In Vitro and In Vivo
by Qianjin Fan, Haoyue Huangfu, Lan Chen, Mengqi Jiao, Beijie Li, Zhijie Cao, Hui Sun, Xuelian Luo and Jianguo Xu
Int. J. Mol. Sci. 2025, 26(8), 3500; https://doi.org/10.3390/ijms26083500 - 8 Apr 2025
Viewed by 436
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease (HFMD), leading to a serious health threat to young children. Probiotics are effective at treating or preventing gastrointestinal infections, especially viral infections. Probiotics against EV71 are mainly traditional lactic [...] Read more.
Enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease (HFMD), leading to a serious health threat to young children. Probiotics are effective at treating or preventing gastrointestinal infections, especially viral infections. Probiotics against EV71 are mainly traditional lactic acid-producing bacteria, and most of them have been proven to be effective only in vitro. Here, we report that the marine bacterium Paraliobacillus zengyii X-1125 (P. zengyii) has promising anti-EV71 activity. The antiviral effect of P. zengyii against EV71 was assessed in different cell lines, and the viral RNA levels and titers were obviously reduced after treatment with P. zengyii. Furthermore, we established an EV71-infected mouse model to evaluate its antiviral efficacy in vivo. The oral administration of P. zengyii significantly decreased the viral loads in the hindlimb muscles, spleens, and ileums. Further research revealed that P. zengyii enhances the expression of type I interferon (IFN-I) in EV71-infected cells. Similarly, transcriptome analysis indicated that the expression of interferon-stimulated genes (ISGs) in EV71-infected mice significantly increased after P. zengyii treatment. Taken together, the results of this study indicated that P. zengyii markedly reduces EV71 infection by regulating the IFN response both in vivo and in vitro, providing a potential means to work against EV71 infection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

13 pages, 3230 KiB  
Article
Toxoplasmosis in Sheep Caused by Toxoplasma gondii Clonal Type I
by Yurong Yang, Yiheng Ma, Kai Quan, Bingyan Guo and Yibao Jiang
Animals 2025, 15(8), 1074; https://doi.org/10.3390/ani15081074 - 8 Apr 2025
Viewed by 324
Abstract
Ovine toxoplasmosis has a significant negative impact on sheep farming, and abortion is the main clinical manifestation. The objective of the present study was to survey ovine toxoplasmosis and assess its potential harm T. gondii in sheep. Sheep serum or heart fluid was [...] Read more.
Ovine toxoplasmosis has a significant negative impact on sheep farming, and abortion is the main clinical manifestation. The objective of the present study was to survey ovine toxoplasmosis and assess its potential harm T. gondii in sheep. Sheep serum or heart fluid was collected from 1035 sheep, along with the tissue or blood samples collected from 164 of them. We investigated ovine toxoplasmosis by a modified agglutination test (MAT) (n = 1035 sheep) and by a polymerase chain reaction (PCR) (n = 164 sheep) in China. The results showed that 75 sheep were seropositive (titer ≥ 1:100), with a prevalence of 7.2%, as assessed by MAT. The molecular prevalence of T. gondii in sheep was 16.4% (27/164), as assessed by PCR. From these 164 tissue or blood samples, 22 tissues and 2 blood samples were selected in order to isolate T. gondii by mouse bioassay. A viable T. gondii strain (TgSheepCHn15, ToxoDB #10) was isolated from sheep tissues in the veterinary clinic. This strain was avirulent for Swiss mice, and the survival time of mice was 97 ± 31 days. This is the first instance of the isolation of a Type I strain from sheep with avirulence in mice. The prevalence of T. gondii has been decreasing in sheep from China. However, T. gondii remains present in sheep herds and should not be ignored. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

13 pages, 905 KiB  
Article
Impact of the Hepatitis B Immunization Strategy Adopted in Italy from 1991: The Results of a Seroprevalence Study on the Adult Population of Florence, Italy
by Sara Boccalini, Beatrice Zanella, Marco Del Riccio, Benedetta Bonito, Massimiliano Alberto Biamonte, Mario Bruschi, Giulia Ionita, Diana Paolini, Maddalena Innocenti, Lorenzo Baggiani, Monica Della Fonte, Giovanna Mereu, Paolo Bonanni, Working Group and Angela Bechini
Pathogens 2025, 14(4), 362; https://doi.org/10.3390/pathogens14040362 - 7 Apr 2025
Viewed by 432
Abstract
Italy was one of the first countries to implement a hepatitis B (HBV) immunization strategy in 1991; since its introduction, the epidemiology of this disease has significantly changed. The aim of this retrospective study was to assess the seroprevalence of three HBV markers [...] Read more.
Italy was one of the first countries to implement a hepatitis B (HBV) immunization strategy in 1991; since its introduction, the epidemiology of this disease has significantly changed. The aim of this retrospective study was to assess the seroprevalence of three HBV markers (anti-HBs, anti-HBc, and HBsAg) and describe the acquired immunity in a representative sample of the adult general population in the province of Florence (Italy) between April 2018 and December 2019. We conducted an enzyme-linked immunosorbent assay on 430 serum samples collected from the adult general population to quantify anti-HBs titers and assess the presence of anti-HBc and HBsAg. For the interpretation of hepatitis B serologic results, we referred to the US CDC guidelines. We conducted two multivariate logistic regression analyses (applied to the entire enrolled population and to the unvaccinated) to assess predictors of immunity against HBV using sex, age, and nationality as predictors. The overall anti-HBs prevalence was 30%, with a significant decreasing trend in seropositivity with increasing age. The overall anti-HBc prevalence was 11.6%, with seropositivity increasing with age. Only one subject tested positive for HBsAg (0.2%). Approximately 67.4% (290/430) of the study population was susceptible, 20.9% (90/430) was vaccinated, 9.1% (39/430) had naturally acquired immunity, and 0.2% (1/430) had an acute infection. Older age and foreign nationality were identified as risk factors in both multivariate logistic regression models. The comparison highlights a reduction in the circulation of HBV infection markers (anti-HBc and HBsAg) over 30 years in Tuscany, particularly in younger age groups. Our seroprevalence study demonstrated a good level of protection against hepatitis B, primarily among individuals under 40 years old, the target group of the vaccination strategy. Full article
Show Figures

Figure 1

15 pages, 4182 KiB  
Article
A Phase 1/2 Randomized Study to Evaluate the Safety, Tolerability, and Immunogenicity of Nucleoside-Modified Messenger RNA Influenza Vaccines in Healthy Adults
by Angela Branche, Mark J. Mulligan, Alok Maniar, Orlando Puente, Islamiat Oladipupo, Graham Crowther, Agnieszka M. Zareba, Zhuobiao Yi, Ingrid Scully, Emily Gomme, Kenneth Koury, Nicholas Kitchin, Pirada Suphaphiphat Allen, Annaliesa S. Anderson, Alejandra Gurtman and Kelly Lindert
Vaccines 2025, 13(4), 383; https://doi.org/10.3390/vaccines13040383 - 3 Apr 2025
Viewed by 573
Abstract
Background/Objectives: Circulating influenza strains antigenically differing from vaccine antigens increase disease burden by decreasing vaccine efficacy. Nucleoside-modified mRNA (modRNA) influenza vaccines may facilitate rapid production allowing later antigen selection and improved antigenic similarity compared to circulating strains. We studied different influenza modRNA vaccine [...] Read more.
Background/Objectives: Circulating influenza strains antigenically differing from vaccine antigens increase disease burden by decreasing vaccine efficacy. Nucleoside-modified mRNA (modRNA) influenza vaccines may facilitate rapid production allowing later antigen selection and improved antigenic similarity compared to circulating strains. We studied different influenza modRNA vaccine (IRV) formulations and dose levels. Methods: This phase 1/2 randomized study evaluated IRV safety/tolerability and immunogenicity in healthy 18- through 85-year-olds. Based on safety and immunogenicity for different IRV doses, schedules, and valencies versus the quadrivalent influenza vaccine (QIV; Fluzone High-Dose Quadrivalent, Sanofi Pasteur) in phase 1 (65–85-year-olds), quadrivalent IRV (qIRV) was further evaluated in 65- through 85-year-olds and 18- through 64-year-olds in phase 2, leading to phase 3 dose selection. Results: Phase 1 (65–85-year-olds) safety/tolerability and immunogenicity findings supported qIRV 30-µg and 60-µg phase 2 assessment (18–85-year-olds, N = 610). qIRV was well tolerated. Injection site pain was the most frequently reported local reaction. Reactogenicity event incidences ≤ 7 days postvaccination for qIRV were generally higher versus QIV, observed more frequently in 18- through 64-year-olds than 65- through 85-year-olds, and showed dose-related trends (60 μg > 30 μg). qIRV and QIV adverse event profiles in 65- through 85-year-olds were similar. There were higher postvaccination hemagglutination inhibition assay geometric mean titers and fold rises and seroconversion rates observed with qIRV versus QIV for A strains, with no consistent pattern for B strains. Cell-mediated immune responses to qIRV by Day 7 showed overall higher T-cell responses against all strains versus QIV. Antibody and cell-mediated immune responses showed comparable trends across qIRV doses in 18- through 85-year-olds; a dose-related pattern was observed in 65- through 85-year-olds (60 μg > 30 μg). Conclusions: Phase 3 investigations of qIRV 60 µg in older adults and qIRV 30 µg in younger adults are warranted (ClinicalTrials.gov Identifier: NCT05052697). Full article
Show Figures

Figure 1

Back to TopTop