Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = torsional rigidity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 8910 KB  
Article
Engineering Evaluation of the Buffeting Response of a Variable-Depth Continuous Rigid-Frame Bridge: Time-Domain Analysis with Three-Component Aerodynamic Coefficients and Comparison Against Six-Component Wind Tunnel Tests
by Lin Dong, Chengyun Tao and Jie Jia
Buildings 2025, 15(20), 3715; https://doi.org/10.3390/buildings15203715 - 15 Oct 2025
Viewed by 321
Abstract
Tall-pier, long-span continuous rigid-frame bridges are prone to wind-induced vibration due to their large spans and pier heights; during cantilever erection, the maximum double-cantilever stage has reduced stiffness and buffeting becomes more evident. Accordingly, a time-domain framework driven by three-component aerodynamic coefficients and [...] Read more.
Tall-pier, long-span continuous rigid-frame bridges are prone to wind-induced vibration due to their large spans and pier heights; during cantilever erection, the maximum double-cantilever stage has reduced stiffness and buffeting becomes more evident. Accordingly, a time-domain framework driven by three-component aerodynamic coefficients and their angle-of-attack derivatives is adopted. Code-based target spectra are used to synthesize multi-point fluctuating wind time histories via harmonic superposition, followed by statistical and spectral consistency checks. Buffeting forces are then computed under the quasi-steady assumption, mapped to finite-element nodes, and integrated in time to obtain global responses (displacement and acceleration). In parallel, static six-component wind tunnel tests provide mean force and moment coefficients and their derivatives for comparison. The results indicate that the three-component time-domain approach captures the buffeting features dominated by vertical and torsional responses. When pronounced along-span sectional variation and high angle-of-attack sensitivity are present, errors associated with the strip assumption increase, whereas the force–moment coupling revealed by the six-component data helps explain discrepancies between simulation and tests. These response patterns and error characteristics delineate the applicability and limits of the three-component time-domain evaluation for variable-depth continuous rigid-frame bridges, offering a reference for wind resistance assessment and construction-stage checking of similar bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 362 KB  
Review
The Role of Kirschner Wires in Foot and Ankle Surgery: A Comprehensive Review and Practical Appraisal of Applications, Benefits, and Challenges
by Alberto Arceri, Antonio Mazzotti, Simone Ottavio Zielli, Laura Langone, Federico Sgubbi, Gianmarco Di Paola, Giuseppe D’Antonio and Cesare Faldini
Medicina 2025, 61(10), 1836; https://doi.org/10.3390/medicina61101836 - 14 Oct 2025
Viewed by 728
Abstract
Kirschner wires (K-wires) have remained an integral part of orthopedic surgery for decades, particularly in the management of foot and ankle pathologies. This review examines the role of K-wires by analyzing the applications in fracture fixation and deformity correction, highlighting advantages such as [...] Read more.
Kirschner wires (K-wires) have remained an integral part of orthopedic surgery for decades, particularly in the management of foot and ankle pathologies. This review examines the role of K-wires by analyzing the applications in fracture fixation and deformity correction, highlighting advantages such as cost-effectiveness and minimal soft-tissue disruption, while acknowledging limitations including lower torsional stability compared with rigid fixation and the risk of pin-tract infection. The purpose was to provide a comprehensive perspective on the clinical applications, advantages, and limitations of K-wires in contemporary surgical practice, with a focus on the most recent evidence from clinical studies. Full article
(This article belongs to the Section Orthopedics)
24 pages, 5243 KB  
Article
Multi-Segment Extendable Soft Manipulator Driven by a Pneumatic–Tendon Coupling Mechanism
by Hongxi Yang, Yufeng Zeng, Zeyu Zhong, Zhiyan Chen, Junxi Zhou, Zhicheng Ling, Ye Chen and Yunquan Li
Biomimetics 2025, 10(10), 643; https://doi.org/10.3390/biomimetics10100643 - 23 Sep 2025
Viewed by 662
Abstract
Continuum robots have garnered significant attention for their high flexibility and adaptability to complex environments. However, achieving the same level of high-precision control as rigid robots remains a significant challenge. This paper introduces an innovative Multi-Segment Extendable Soft Manipulator (MSESM) that employs a [...] Read more.
Continuum robots have garnered significant attention for their high flexibility and adaptability to complex environments. However, achieving the same level of high-precision control as rigid robots remains a significant challenge. This paper introduces an innovative Multi-Segment Extendable Soft Manipulator (MSESM) that employs a pneumatic–tendon hybrid drive mechanism. The design, utilizing off-the-shelf industrial bellows and 3D-printed components, allows the manipulator to achieve an extension ratio of up to 156.85%. By adopting a differential stiffness design, its bending stiffness was increased by approximately 4–5 times, its axial stiffness was increased by approximately 10 times, and its torsional resistance was enhanced, preventing inter-segment coupling during motion. At the control level, this paper proposes a hybrid control method that integrates a Constant Curvature (CC) physical prior with a data-driven neural network. Experimental results show that in tracking rectangular, triangular, and circular trajectories, this hybrid method reduced the average tracking error by 60.43% compared to a purely neural network-based controller, with the error reduction for the rectangular trajectory reaching 74.19%. This research validates a practical and effective approach for creating soft manipulators that successfully merge high flexibility with high-precision control. Full article
Show Figures

Graphical abstract

6 pages, 724 KB  
Short Note
4,11-Dimethyl-2,13-di-m-tolyltribenzo[b,e,g][1,4]dioxocine-7,8-dicarbonitrile
by Dmitry Erzunov, Vyacheslav Baklagin, Vladimir Bukhalin, Igor Abramov, Kyrill Yu. Suponitsky and Arthur Vashurin
Molbank 2025, 2025(3), M2059; https://doi.org/10.3390/M2059 - 15 Sep 2025
Viewed by 427
Abstract
The synthesis and crystal structure of 4,11-dimethyl-2,13-di-m-tolyltribenzo[b,e,g][1,4]dioxocine-7,8-dicarbonitrile are reported. X-ray diffraction analysis reveals a rigid dioxocine core with m-tolyl substituents adopting torsional angles of 25–40°. The crystal packing is stabilized by C-H···N hydrogen bonds (2.6 Å) and π-π [...] Read more.
The synthesis and crystal structure of 4,11-dimethyl-2,13-di-m-tolyltribenzo[b,e,g][1,4]dioxocine-7,8-dicarbonitrile are reported. X-ray diffraction analysis reveals a rigid dioxocine core with m-tolyl substituents adopting torsional angles of 25–40°. The crystal packing is stabilized by C-H···N hydrogen bonds (2.6 Å) and π-π stacking interactions (3.4 Å) between dicarbonitrile groups, forming dimeric motifs. These structural insights provide a foundation for designing dioxocine-based functional materials. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

17 pages, 2901 KB  
Article
Preliminary Modeling of Single Pulp Fiber Using an Improved Mass–Spring Method
by Yin Liu, Wenhao Shen, Douglas W. Coffin, Tao Song, Jean-Francis Bloch and Jean-Pierre Corriou
Solids 2025, 6(3), 50; https://doi.org/10.3390/solids6030050 - 3 Sep 2025
Viewed by 817
Abstract
An improved Mass–Spring Model (iMSM) is developed by adding central springs to the conventional Mass–Spring Models (MSMs) of tubular structures. This improvement is necessary to model fibers that have enough stiffness so that they do not collapse under transverse loading. Such is the [...] Read more.
An improved Mass–Spring Model (iMSM) is developed by adding central springs to the conventional Mass–Spring Models (MSMs) of tubular structures. This improvement is necessary to model fibers that have enough stiffness so that they do not collapse under transverse loading. Such is the case with many pulp fibers used in papermaking. Four different types of pulp fibers (Aspen CTMP, Aspen BCTMP, Birch BCTMP, and Spruce BKP) were simulated in the study. A geometric model and iMSM of a single fiber were developed, in which the topological structure of iMSM is explained in detail. The mass of mass points and the elastic coefficient of different springs in iMSM were calculated using axial tensile and torsional responses. A dynamic simulation of transverse bending of the fiber over a rigid cylinder and subjected to a transverse pressure was used to determine the effective elastic modulus for four different single fibers and compared to experimental values with an average relative error of 8.49%. The dynamic simulations were completed in 1.04–2.64 min for the four different paper fibers representing sufficient speeds to meet the needs of most real application scenarios. The acceptable accuracy and the fast simulation speed with the developed iMSM fiber model demonstrate the feasibility of the methodology in analyzing paper structures as well as similar fiber-based materials. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

18 pages, 1709 KB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 548
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

21 pages, 5767 KB  
Article
Research on the Spatial Torsional Effect of Column-Supported Structural Silo Groups Based on Shaking Table Tests
by Huifen Wang, Yonggang Ding, Xuesen Li, Guoqi Ren, Zhiyao Zhou and Qikeng Xu
Buildings 2025, 15(11), 1851; https://doi.org/10.3390/buildings15111851 - 28 May 2025
Viewed by 506
Abstract
Food security is a critical component of national security. Grain silos, as key infrastructure for food storage, must remain structurally resilient under seismic actions to ensure the stability of grain reserves. However, column-supported vertical-group silo structures are prone to spatial torsional effects during [...] Read more.
Food security is a critical component of national security. Grain silos, as key infrastructure for food storage, must remain structurally resilient under seismic actions to ensure the stability of grain reserves. However, column-supported vertical-group silo structures are prone to spatial torsional effects during earthquakes due to eccentricities between the mass center and the stiffness center after grain loading, which can lead to serious structural damage or collapse. Based on this background, shaking table tests were conducted on a column-supported vertical-group silo structure as the research subject, with a scale ratio of 1/25 and in the 1 row × 3 column combination form. The dynamic response and spatial torsional effect of the structure under different grain storage conditions and seismic intensity effects were studied. To thoroughly analyze the factors influencing the spatial torsion in the structure, finite element–discrete element numerical analysis models of the structure were established based on experiments in Abaqus (6.14) software. The results indicate that in the column-supported vertical-group silo structure, the mass center of the group silo structure deviates from its center of rigidity after grain storage, resulting in significant and irregular spatial torsional effects under earthquake motion. The torsional displacement ratio and inter-story horizontal torsional angle of the structure gradually increased with an increase in the seismic intensity, reaching maximum values of 1.34 and 0.035 rad, respectively, when the peak acceleration input on the table was 0.4 g and under the full–full–empty storage condition. The effects of the void distribution, mass void ratio, and combination form of the group silo structure on the spatial torsional effect of the structure were studied to provide a scientific reference for the seismic design of column-supported silo structures for grain storage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 58457 KB  
Article
Design, Modeling, and Experimental Validation of a Bio-Inspired Rigid–Flexible Continuum Robot Driven by Flexible Shaft Tension–Torsion Synergy
by Jiaxiang Dong, Quanquan Liu, Peng Li, Chunbao Wang, Xuezhi Zhao and Xiping Hu
Biomimetics 2025, 10(5), 301; https://doi.org/10.3390/biomimetics10050301 - 8 May 2025
Viewed by 1146
Abstract
This paper presents a bio-inspired rigid–flexible continuum robot driven by flexible shaft tension–torsion synergy, tackling the trade-off between actuation complexity and flexibility in continuum robots. Inspired by the muscular arrangement of octopus arms, enabling versatile multi-degree-of-freedom (DoF) movements, the robot achieves 6-DoF motion [...] Read more.
This paper presents a bio-inspired rigid–flexible continuum robot driven by flexible shaft tension–torsion synergy, tackling the trade-off between actuation complexity and flexibility in continuum robots. Inspired by the muscular arrangement of octopus arms, enabling versatile multi-degree-of-freedom (DoF) movements, the robot achieves 6-DoF motion and 1-DoF gripper opening and closing movement with only six flexible shafts, simplifying actuation while boosting dexterity. A comprehensive kinetostatic model, grounded in Cosserat rod theory, is developed; this model explicitly incorporates the coupling between the spinal rods and flexible shafts, the distributed gravitational effects of spacer disks, and friction within the guide tubes. Experimental validation using a physical prototype reveals that accounting for spacer disk gravity diminishes the maximum shape prediction error from 20.56% to 0.60% relative to the robot’s total length. Furthermore, shape perception experiments under no-load and 200 g load conditions show average errors of less than 2.01% and 2.61%, respectively. Performance assessments of the distal rigid joint showcased significant dexterity, including a 53° grasping range, 360° continuous rotation, and a pitching range from −40° to +45°. Successful obstacle avoidance and long-distance target reaching experiments further demonstrate the robot’s effectiveness, highlighting its potential for applications in medical and industrial fields. Full article
(This article belongs to the Special Issue Biologically Inspired Design and Control of Robots: Second Edition)
Show Figures

Figure 1

15 pages, 1623 KB  
Article
Examining the Main Properties of a “Meso-Scale” Torsional Flutter Harvester in Gusty Winds
by Luca Caracoglia
Wind 2025, 5(2), 10; https://doi.org/10.3390/wind5020010 - 27 Apr 2025
Viewed by 594
Abstract
This study examines output energy and efficiency of a torsional flutter harvester in gusty winds. The proposed apparatus exploits the torsional flutter of a rigid flapping foil, able to rotate about a pivot axis located in the proximity of the windward side. The [...] Read more.
This study examines output energy and efficiency of a torsional flutter harvester in gusty winds. The proposed apparatus exploits the torsional flutter of a rigid flapping foil, able to rotate about a pivot axis located in the proximity of the windward side. The apparatus operates at the “meso-scale”; i.e., the apparatus’ projected area is equal to a few square meters. It has unique properties in comparison with most harvesting devices and small wind turbines. The reference geometric chord length of the flapping foil is about one meter. Energy conversion is achieved by an adaptable linkage connected to a permanent magnet that produces eddy currents in a multi-loop winding coil. Operational conditions and the post-critical flutter regime are investigated by numerical simulations. Several configurations are examined to determine the output power and to study the effects of stationary turbulent flows on the energy-conversion efficiency. This paper is a continuation of recent studies. The goal is to examine the operational conditions of the apparatus for a potentially wide range of applications and moderate mean wind speeds. Full article
Show Figures

Figure 1

20 pages, 8570 KB  
Article
The Fluid-Structure Interaction Characteristics of the Pantograph-Rigid Catenary in the Context of Extra-Long Tunnels
by Xia Zhao, Sen Wang, Xiaoqiang Chen, Ying Wang and Zhanning Chang
Electronics 2025, 14(8), 1628; https://doi.org/10.3390/electronics14081628 - 17 Apr 2025
Viewed by 680
Abstract
The geological structure in western China is complex, and rigid catenary systems are commonly used for pantograph power supply in railway tunnel construction. Due to the space constraints within tunnels, the aerodynamic characteristics and fluid–structure interaction effects between pantographs and catenary systems directly [...] Read more.
The geological structure in western China is complex, and rigid catenary systems are commonly used for pantograph power supply in railway tunnel construction. Due to the space constraints within tunnels, the aerodynamic characteristics and fluid–structure interaction effects between pantographs and catenary systems directly affect train operational safety. Numerical simulation analysis of the pantograph–rigid catenary interaction in tunnels is revealed. In the pantograph, the connecting rod areas endure high pressure and are prone to fatigue damage, necessitating structural strength optimization. The rigid catenary exhibits laterally symmetric vibration with high torsional stiffness, meeting operational requirements. This study provides theoretical support for design improvements of pantograph–catenary systems in tunnel environments. Full article
Show Figures

Figure 1

17 pages, 10920 KB  
Article
Effect of Twist Angle Regulation via Flexible Variable-Twist Blades on External Characteristics of Axial-Flow Pumps
by Jiayuan Liang, Weidong Liu, Xiaocui Chen and Yongjian Wang
Water 2025, 17(7), 1085; https://doi.org/10.3390/w17071085 - 5 Apr 2025
Viewed by 724
Abstract
In the field of marine resource development, conventional axial-flow adjustable-blade pumps rely on the monolithic rotation of rigid blades for operational condition regulation, a mechanism constrained by simplistic angular adjustments that inadequately adapt to the dynamic and complex marine operational environment. To address [...] Read more.
In the field of marine resource development, conventional axial-flow adjustable-blade pumps rely on the monolithic rotation of rigid blades for operational condition regulation, a mechanism constrained by simplistic angular adjustments that inadequately adapt to the dynamic and complex marine operational environment. To address this limitation, this study proposes a novel angle-adjustment scheme utilizing flexible variable-twist blades, where operational condition regulation is achieved through active blade twisting, enabling refined and adaptive angle modulation. Four typical blade profiles were selected for the variable-twist blades at distinct angular positions (−1°, +1°, −2°, and +2°), corresponding to the four conventional angle-adjustment positions of axial-flow adjustable-blade pumps. Numerical simulations were conducted to investigate the hydraulic performance impacts of the proposed flexible variable-twist blades compared to traditional rigid blades under identical angular configurations. The results demonstrate that under high-flow conditions (1.2 Q), the torsion-based angle-adjustment strategy exhibits superior efficiency across all four angular positions: −1° configuration: 11.1% efficiency improvement; +1° configuration: comparable efficiency; −2° configuration: 78% efficiency improvement; and +2° configuration: 3.2% efficiency improvement. Moreover, at equivalent angular settings, the variable-twist blades significantly enhance hydraulic performance and expand the high-efficiency operating range of the pump compared to conventional rigid blades. The implementation of flexible variable-twist blade technology not only advances the performance of axial-flow pumps in marine engineering applications but also provides a new approach for high-efficiency research on axial-flow pumps. Full article
Show Figures

Figure 1

28 pages, 19884 KB  
Article
Study on Dynamic Characteristics and Fracture Failure of Rigid Truss Trawl System During Towing Process
by Dapeng Zhang, Bowen Zhao, Yi Zhang, Keqiang Zhu and Jin Yan
J. Mar. Sci. Eng. 2025, 13(3), 586; https://doi.org/10.3390/jmse13030586 - 17 Mar 2025
Cited by 1 | Viewed by 666
Abstract
Deep-sea fisheries depend on various fishing methods, including trawling, purse seining, and longline fishing, among others. Studying the dynamic characteristics of trawling operations is essential for the trawl mechanism. Because of the solid truss support, the beam trawl system may be employed in [...] Read more.
Deep-sea fisheries depend on various fishing methods, including trawling, purse seining, and longline fishing, among others. Studying the dynamic characteristics of trawling operations is essential for the trawl mechanism. Because of the solid truss support, the beam trawl system may be employed in extreme sea conditions, the high-speed driving of tugs, and maneuvering situations. This study systematically investigates the dynamic responses and structural safety of a midwater beam trawl during towing via the lumped mass method and OrcaFlex 9.7e simulations. Firstly, a trawl model with four towlines was developed and validated against flume tank experiments. Secondly, multiple operational scenarios were analyzed: towing speeds, angular velocity variations under a fixed turning radius, and radius effects under constant angular velocity. The results show that line tension increases with the speed increment and that the rigid frame destabilizes at angular velocities exceeding 20°/s due to centrifugal overload. Furthermore, line fracture scenarios during startup and straight-line towing were emphasized. Single-line failure leads to edge constraint loss, redistributing stress to the remaining lines, and asymmetric dual-line fracture triggers net torsion, reducing fishing efficiency. This study provides theoretical guidance for optimizing the safe operational parameters of midwater beam trawls. Full article
Show Figures

Figure 1

18 pages, 3668 KB  
Article
Droplet Deposition Behavior on the Surface of Flexible Pepper Leaves
by Xiaoya Dong, Liang Dong, Zhouming Gao, Kaiyuan Wang, Xiaolong Wang, Song Wang, Baijing Qiu and Xin Wang
Agronomy 2025, 15(3), 708; https://doi.org/10.3390/agronomy15030708 - 14 Mar 2025
Cited by 1 | Viewed by 777
Abstract
In spray application contexts, plant leaves are bent and twisted upon droplet impact, which has a significant impact on the droplet’s impact behavior and its deposition effect on the leaves. This study examines the impact behavior of droplets on flexible pepper leaves and [...] Read more.
In spray application contexts, plant leaves are bent and twisted upon droplet impact, which has a significant impact on the droplet’s impact behavior and its deposition effect on the leaves. This study examines the impact behavior of droplets on flexible pepper leaves and develops a mathematical model for droplet spreading and rebound, integrating the effects of leaf bending and torsion via energy conservation and cantilever beam theory. The energy required for leaf bending and twisting due to droplet impact was estimated in accordance with Hooke’s law. The droplets attained their maximum spreading diameter 4 ms post-impact on flexible pepper leaves, with droplet retraction occurring significantly faster on flexible leaves than on rigid ones, resulting in a return to steady state in half the duration required by rigid leaves. This study aims to establish a scientific foundation for optimizing pesticide application strategies and selecting parameters for spraying equipment in pepper production. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

24 pages, 12859 KB  
Article
A DNN-Based Surrogate Constitutive Equation for Geometrically Exact Thin-Walled Rod Members
by Marcos Pires Kassab, Eduardo de Morais Barreto Campello and Adnan Ibrahimbegovic
Computation 2025, 13(3), 63; https://doi.org/10.3390/computation13030063 - 3 Mar 2025
Viewed by 1005
Abstract
Kinematically exact rod models were a major breakthrough to evaluate complex frame structures undergoing large displacements and the associated buckling modes. However, they are limited to the analysis of global effects, since the underlying kinematical assumptions typically take into account only cross-sectional rigid-body [...] Read more.
Kinematically exact rod models were a major breakthrough to evaluate complex frame structures undergoing large displacements and the associated buckling modes. However, they are limited to the analysis of global effects, since the underlying kinematical assumptions typically take into account only cross-sectional rigid-body motion and ocasionally torsional warping. For thin-walled members, local effects can be notably important in the overall behavior of the rod. In the present work, high-fidelity simulations using elastic 3D-solid finite elements are employed to provide input data to train a Deep Neural Newtork-(DNN) to act as a surrogate model of the rod’s constitutive equation. It is capable of indirectly representing local effects such as web/flange bending and buckling at a stress-resultant level, yet using only usual rod degrees of freedom as inputs, given that it is trained to predict the internal energy as a function of generalized rod strains. A series of theoretical constraints for the surrogate model is elaborated, and a practical case is studied, from data generation to the DNN training. The outcome is a successfully trained model for a particular choice of cross-section and elastic material, that is ready to be employed in a full rod/frame simulation. Full article
(This article belongs to the Special Issue Synergy between Multiphysics/Multiscale Modeling and Machine Learning)
Show Figures

Figure 1

19 pages, 4941 KB  
Article
Sensitivity Analysis of Unmanned Aerial Vehicle Composite Wing Structural Model Regarding Material Properties and Laminate Configuration
by Artur Kierzkowski, Jakub Wróbel, Maciej Milewski and Angelos Filippatos
Drones 2025, 9(2), 99; https://doi.org/10.3390/drones9020099 - 28 Jan 2025
Cited by 3 | Viewed by 2578
Abstract
This study optimizes the structural design of a composite wing shell by minimizing mass and maximizing the first natural frequency. The analysis focuses on the effects of polyvinyl chloride (PVC) foam thickness and the fiber orientation angle of the inner carbon layers, with [...] Read more.
This study optimizes the structural design of a composite wing shell by minimizing mass and maximizing the first natural frequency. The analysis focuses on the effects of polyvinyl chloride (PVC) foam thickness and the fiber orientation angle of the inner carbon layers, with the outer layers fixed at ±45° for torsional rigidity. A Multi-Objective Genetic Algorithm (MOGA), well suited for complex engineering problems, was employed alongside Design of Experiments to develop a precise response surface model, achieving predictive errors of 0% for mass and 2.99% for frequency. The optimal configuration—90° and 0° fiber orientations for the upper and lower layers and a foam thickness of 1.05 mm—yielded a mass of 412 g and a frequency of 122.95 Hz. These findings demonstrate the efficacy of MOGA in achieving innovative lightweight aerospace designs, striking a balance between material efficiency and structural performance. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

Back to TopTop