Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Keywords = transparent conducting coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5342 KB  
Article
Spectroscopy of ITO Films in Optical and Terahertz Spectral Ranges
by Vladimir V. Bassarab, Vadim A. Shalygin, Alexey A. Shakhmin and Grigory I. Kropotov
Appl. Sci. 2025, 15(16), 9121; https://doi.org/10.3390/app15169121 - 19 Aug 2025
Viewed by 238
Abstract
In the present study, the reflection and transmission of radiation in submicron indium tin oxide (ITO) films deposited on a borosilicate glass substrate are experimentally investigated for a wide spectral range, including ultraviolet, visible, infrared and terahertz regions. Theoretical modeling of the spectra [...] Read more.
In the present study, the reflection and transmission of radiation in submicron indium tin oxide (ITO) films deposited on a borosilicate glass substrate are experimentally investigated for a wide spectral range, including ultraviolet, visible, infrared and terahertz regions. Theoretical modeling of the spectra is performed using the transfer matrix method. The interaction of electromagnetic radiation with ITO is considered in the framework of the Drude model. The simulated spectra are in good agreement with the experimental ones. New non-destructive methods for determining the ITO film parameters (sheet resistivity, thickness, electron concentration and mobility) have been developed. They are based on a fitting procedure for reflectivity and/or transmittance spectra. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

24 pages, 19050 KB  
Article
Innovative Deposition of AZO as Recombination Layer on Silicon Nanowire Scaffold for Potential Application in Silicon/Perovskite Tandem Solar Cell
by Grażyna Kulesza-Matlak, Marek Szindler, Magdalena M. Szindler, Milena Kiliszkiewicz, Urszula Wawrzaszek, Anna Sypień, Łukasz Major and Kazimierz Drabczyk
Energies 2025, 18(15), 4193; https://doi.org/10.3390/en18154193 - 7 Aug 2025
Viewed by 453
Abstract
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined [...] Read more.
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined by cross-sectional SEM/TEM and profilometry, revealing fully conformal ALD coatings with tunable thicknesses (40–120 nm) versus tip-capped, semi-uniform MS films (100–120 nm). Optical transmission measurements on glass substrates showed that both 120 nm ALD and MS layers exhibit interference maxima near 450–500 nm and 72–89% transmission across 800–1200 nm; the thinnest ALD films reached up to 86% near-IR transparency. Four-point probe analysis demonstrated that ALD reduces surface resistance from 1150 Ω/□ at 40 nm to 245 Ω/□ at 120 nm, while MS layers achieved 317 Ω/□ at 120 nm. These results delineate the balance between conformality, transparency, and conductivity, providing design guidelines for AZO recombination interfaces in next-generation tandem photovoltaics. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

12 pages, 1774 KB  
Article
Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials
by Kei Ichikawa, Yoshiki Tanaka, Rie Horai, Yu Kato, Kazuo Ichikawa and Naoki Yamamoto
Medicina 2025, 61(8), 1384; https://doi.org/10.3390/medicina61081384 - 30 Jul 2025
Viewed by 391
Abstract
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend [...] Read more.
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend of collagen and hydroxyethyl methacrylate (HEMA), has demonstrated excellent long-term biocompatibility and optical clarity. Recently, hydrophilic acrylic Phakic-ICLs, such as the Implantable Phakic Contact Lens (IPCL), have been introduced. This study investigated the material differences among Phakic-ICLs and their interaction with fibronectin (FN), which has been reported to adhere to intraocular lens (IOL) surfaces following implantation. The aim was to compare Collamer, IPCL, and LENTIS lenses (used as control) in terms of FN distribution and cell adhesion using a small number of explanted Phakic-ICLs. Materials and Methods: Three lens types were analyzed: a Collamer Phakic-ICL (EVO+ Visian ICL), a hydrophilic acrylic IPCL, and a hydrophilic acrylic phakic-IOL (LENTIS). FN distribution and cell adhesion were evaluated across different regions of each lens. An in vitro FN-coating experiment was conducted to assess its effect on cell adhesion. Results: All lenses demonstrated minimal FN deposition and cellular adhesion in the central optical zone. A thin FN film was observed on the haptics of Collamer lenses, while FN adhesion was weaker or absent on IPCL and LENTIS surfaces. Following FN coating, Collamer lenses supported more uniform FN film formation; however, this did not significantly enhance cell adhesion. Conclusions: Collamer, which contains collagen, promotes FN film formation. Although FN film formation was enhanced, the low cell-adhesive properties of HEMA resulted in minimal cell adhesion even with FN presence. This characteristic may contribute to the long-term transparency and biocompatibility observed clinically. In contrast, hydrophilic acrylic materials used in IPCL and LENTIS demonstrated limited FN interaction. These material differences may influence extracellular matrix protein deposition and biocompatibility in clinical settings, warranting further investigation. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
Show Figures

Figure 1

20 pages, 23355 KB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 589
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

13 pages, 1995 KB  
Article
Tuning Electrical and Optical Properties of SnO2 Thin Films by Dual-Doping Al and Sb
by Yuxin Wang, Hongyu Zhang, Xinyi Zhang, Zhengkai Zhou and Lu Wang
Coatings 2025, 15(6), 669; https://doi.org/10.3390/coatings15060669 - 30 May 2025
Viewed by 701
Abstract
The Al-Sb co-doped SnO2 composite thin films were prepared by the sol–gel spin-coating method. The structure, morphology, optical and electrical properties of the samples were investigated using XRD, XPS, SEM, UV-Vis spectroscopy, and Hall effect tester, respectively. It was found that when [...] Read more.
The Al-Sb co-doped SnO2 composite thin films were prepared by the sol–gel spin-coating method. The structure, morphology, optical and electrical properties of the samples were investigated using XRD, XPS, SEM, UV-Vis spectroscopy, and Hall effect tester, respectively. It was found that when the aluminum doping amount was 15 at%, the resistivity of the sample was the lowest, and the overall optoelectronic performance was the best. Moreover, the Al-SnO2 composite thin film transformed from an n-type semiconductor to a p-type semiconductor. When Al and Sb were co-doped, the carrier concentration increased significantly from 4.234 × 1019 to 6.455 × 1020. Finally, the conduction type of the Al-Sb-SnO2 composite thin film changed from p-type to n-type. In terms of optical performance, the transmittance of the Al-Sb co-doped SnO2 composite thin films in the visible light region was significantly improved, reaching up to 80% on average, which is favorable for applications in transparent optoelectronic devices. Additionally, the absorption edge of the thin films exhibited a blue-shift after co-doping, indicating an increase in the bandgap energy, which can be exploited to tune the light-absorption properties of the thin films for specific photonic applications. Full article
Show Figures

Figure 1

21 pages, 19032 KB  
Article
Synthesis of Copper Nanowires Using Monoethanolamine and the Application in Transparent Conductive Films
by Xiangyun Zha, Depeng Gong, Wanyu Chen, Lili Wu and Chaocan Zhang
Nanomaterials 2025, 15(9), 638; https://doi.org/10.3390/nano15090638 - 22 Apr 2025
Viewed by 851
Abstract
Copper nanowires (Cu NWs) are considered a promising alternative to indium tin oxide (ITO) and silver nanowires (Ag NWs) due to their excellent electrical conductivity, mechanical properties, abundant reserves, and low cost. They have been widely applied in various optoelectronic devices. In this [...] Read more.
Copper nanowires (Cu NWs) are considered a promising alternative to indium tin oxide (ITO) and silver nanowires (Ag NWs) due to their excellent electrical conductivity, mechanical properties, abundant reserves, and low cost. They have been widely applied in various optoelectronic devices. In this study, Cu NWs were synthesized using copper chloride (CuCl2) as the precursor, monoethanolamine (MEA) as the complexing agent, and hydrated hydrazine (N2H4) as the reducing agent under strongly alkaline conditions at 60 °C. Notably, this is the first time that MEA has been employed as a complexing agent in this synthesis method for Cu NWs. Through a series of experiments, the optimal conditions for the CuCl2–MEA–N2H4 system in Cu NWs synthesis were determined. This study revealed that the presence of amines plays a crucial role in nanowire formation, as the co-ordination of MEA with copper in this system provides selectivity for the nanowire growth direction. MEA prevents the excessive conversion of Cu(I) complexes into Cu2O octahedral precipitates and exhibits an adsorption effect during Cu NWs formation. The different adsorption tendencies of MEA at the nanowire ends and lateral surfaces, depending on its concentration, influence the growth of the Cu NWs, as directly reflected by changes in their diameter and length. At an MEA concentration of 210 mM, the synthesized Cu NWs have an average diameter of approximately 101 nm and a length of about 28 μm. To fabricate transparent conductive films, the Cu NW network was transferred onto a polyethylene terephthalate (PET) substrate by applying a pressure of 20 MPa using a tablet press to ensure strong adhesion between the Cu NW-coated mixed cellulose ester (MCE) filter membrane and the PET substrate. Subsequently, the MCE membrane was dissolved by acetone and isopropanol immersion. The resulting Cu NW transparent conductive film exhibited a sheet resistance of 52 Ω sq−1 with an optical transmittance of 86.7%. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 9301 KB  
Review
Recent Progress in Copper Nanowire-Based Flexible Transparent Conductors
by Jiaxin Shi, Mingyang Zhang, Su Ding and Ge Cao
Coatings 2025, 15(4), 465; https://doi.org/10.3390/coatings15040465 - 15 Apr 2025
Viewed by 1354
Abstract
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical [...] Read more.
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical applications. This review discusses the development and challenges associated with Cu NW-based flexible transparent conductors (FTCs). Cu NWs are considered a promising alternative to traditional materials like ITO, thanks to their high electrical conductivity and low cost. This paper explores various synthesis methods for Cu NWs, including template-assisted synthesis, hydrazine reduction, and hydrothermal processes, while highlighting the advantages and limitations of each approach. The key challenges, such as contact resistance, oxidation, and the need for protective coatings, are also addressed. Several strategies to enhance the conductivity and stability of Cu NW-based FTCs are proposed, including thermal sintering, laser sintering, acid treatment, and photonic sintering. Additionally, protective coatings like noble metal core–shell layers, electroplated layers, and conductive polymers like PEDOT:PSS are discussed as effective solutions. The integration of graphene with Cu NWs is explored as a promising method to improve oxidation resistance and overall performance. The review concludes with an outlook on the future of Cu NWs in flexible electronics, emphasizing the need for scalable, cost-effective solutions to overcome current challenges and improve the practical application of Cu NW-based FTCs in advanced technologies such as displays, solar cells, and flexible electronics. Full article
(This article belongs to the Special Issue Design of Nanostructures for Energy and Environmental Applications)
Show Figures

Figure 1

29 pages, 3329 KB  
Review
Electrode Materials for Flexible Electrochromics
by Martin Rozman and Miha Lukšič
Int. J. Mol. Sci. 2025, 26(7), 3260; https://doi.org/10.3390/ijms26073260 - 1 Apr 2025
Viewed by 1279
Abstract
Flexible electrochromic devices (ECDs) represent a distinctive category in optoelectronics, leveraging advanced materials to achieve tunable coloration under applied electric voltage. This review delves into recent advancements in electrode materials for ECDs, with a focus on silver nanowires, metal meshes, conductive polymers, carbon [...] Read more.
Flexible electrochromic devices (ECDs) represent a distinctive category in optoelectronics, leveraging advanced materials to achieve tunable coloration under applied electric voltage. This review delves into recent advancements in electrode materials for ECDs, with a focus on silver nanowires, metal meshes, conductive polymers, carbon nanotubes, and transparent conductive ceramics. Each material is evaluated based on its manufacturing methods and integration potential. The analysis highlights the prominent role of transparent conductive ceramics and conductive polymers due to their versatility and scalability, while also addressing challenges such as environmental stability and production costs. Use of other alternative materials, such as metal meshes, carbon materials, nanowires and others, are presented here as a comparison as well. Emerging hybrid systems and advanced coating techniques are identified as promising solutions to overcome limitations regarding flexibility and durability. This review underscores the critical importance of electrode innovation in enhancing the performance, sustainability, and application scope of flexible ECDs for next-generation technologies. Full article
(This article belongs to the Special Issue Molecular Advances in Electrochemical Materials)
Show Figures

Figure 1

17 pages, 4841 KB  
Article
Fabricating Silver Nanowire–IZO Composite Transparent Conducting Electrodes at Roll-to-Roll Speed for Perovskite Solar Cells
by Justin C. Bonner, Bishal Bhandari, Garrett J. Vander Stouw, Geethanjali Bingi, Kurt A. Schroder, Julia E. Huddy, William J. Scheideler and Julia W. P. Hsu
Nanomanufacturing 2025, 5(2), 5; https://doi.org/10.3390/nanomanufacturing5020005 - 29 Mar 2025
Viewed by 810
Abstract
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag [...] Read more.
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag metal bus lines (Ag MBLs) coated with silver nanowires (AgNWs) and indium zinc oxide (IZO) layers. All materials are solutions deposited at speeds exceeding 10 m/min using gravure printing. We conduct a systematic study to optimize coating parameters and tune solvent composition to achieve a uniform AgNW network. The entire stack undergoes photonic curing, a low-energy annealing method that can be completed at high speeds and will not damage the plastic substrates. The resulting hybrid TCEs exhibit a transmittance of 92% averaged from 400 nm to 1100 nm and a sheet resistance of 11 Ω/sq. Mechanical durability is tested by bending the hybrid TCEs to a strain of 1% for 2000 cycles. The results show a minimal increase (<5%) in resistance. The high-throughput potential is established by showing that each hybrid TCE fabrication step can be completed at 30 m/min. We further fabricate methylammonium lead iodide solar cells to demonstrate the practical use of these TCEs, achieving an average power conversion efficiency (PCE) of 13%. The high-performance hybrid TCEs produced using R2R-compatible processes show potential as a viable choice for replacing vacuum-deposited indium tin oxide films on PET. Full article
Show Figures

Figure 1

15 pages, 3310 KB  
Article
High-Performance Ag-NWs Doped Graphene/ITO Hybrid Transparent Conductive Electrode
by Hana Bourahla, Susana Fernández, Yu Kyoung Ryu, Andres Velasco, Chahinez Malkia, Alberto Boscá, M. Belén Gómez-Mancebo, Fernando Calle and Javier Martinez
Micromachines 2025, 16(2), 204; https://doi.org/10.3390/mi16020204 - 11 Feb 2025
Viewed by 1469
Abstract
Indium tin oxide (ITO) is a commonly used material for transparent conductive electrodes (TCE) in optoelectronic applications. On the other hand, graphene has superior electrical conductivity and exceptional mechanical flexibility, which makes it a promising candidate as a TCE material. This work proposes [...] Read more.
Indium tin oxide (ITO) is a commonly used material for transparent conductive electrodes (TCE) in optoelectronic applications. On the other hand, graphene has superior electrical conductivity and exceptional mechanical flexibility, which makes it a promising candidate as a TCE material. This work proposes a CVD graphene/ITO hybrid electrode enhanced by doping with silver nanowires (Ag-NWs). The study aims to improve the performance of the electrode by optimizing two key parameters during the fabrication process: the thermal annealing time after the transfer of graphene on ITO and the Ag-NWs doping conditions. The annealing treatment is fundamental to reducing the residues on the surface of graphene and increasing the interface contact between graphene and ITO. The correct coverage and distribution of the dopant on graphene is obtained by controlling the concentration of the Ag-NWs and the spin coating speeds. The results indicate a substantial improvement in the optical and electrical performance of the Ag-NWs/graphene/ITO hybrid electrode. A remarkably low sheet resistance of 42.4 Ω/sq (±2 Ω/sq) has been achieved while maintaining a high optical transmittance of 87.3% (±0.5%). Full article
(This article belongs to the Special Issue 2D-Materials Based Fabrication and Devices)
Show Figures

Figure 1

15 pages, 17491 KB  
Article
Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating
by Jiaqi Shan, Ye Hong, Haoyu Wang, Kaixuan Cui, Jianbao Ding and Xingzhong Guo
Coatings 2025, 15(1), 95; https://doi.org/10.3390/coatings15010095 - 15 Jan 2025
Viewed by 1685
Abstract
Silver nanowire transparent conductive films (AgNW TCFs), as the novel transparent electrode materials replacing ITO, are anticipated to be applied in numerous optoelectronic devices, and slot-die coating is currently acknowledged as the most suitable method for the mass production of large-sized AgNW TCFs. [...] Read more.
Silver nanowire transparent conductive films (AgNW TCFs), as the novel transparent electrode materials replacing ITO, are anticipated to be applied in numerous optoelectronic devices, and slot-die coating is currently acknowledged as the most suitable method for the mass production of large-sized AgNW TCFs. In this study, sodium carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), as film-forming aids, and AgNWs, as conductive materials, were utilized to prepare a specialized AgNW ink, and a slot-die coating is employed to print and prepare AgNW TCFs. The optoelectrical properties of AgNW TCFs are optimized by adjusting the compositions of AgNW ink and the process parameters of slot-die coating. The suitable compositions of AgNW ink and the optimal parameters of slot-die coating are a CMC type of V, a PVA volume of 1 mL, a AgNW volume of 1.5 mL, a volume ratio of 30 and 45 nm AgNWs (2:1), and a coating height of 400 μm. The resultant AgNW TCFs achieve excellent comprehensive optoelectronic performance, with a sheet resistance of less than 50 Ω/sq, a visible light transmittance exceeding 92%, and a haze below 1.8%. This research provides a valuable approach to producing AgNW TCFs on a large scale via the slot-die coating. Full article
(This article belongs to the Special Issue Advanced Films and Coatings for Flexible Electronics)
Show Figures

Figure 1

33 pages, 6495 KB  
Review
A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications
by Jessica Patel, Razia Khan Sharme, Manuel A. Quijada and Mukti M. Rana
Nanomaterials 2024, 14(24), 2013; https://doi.org/10.3390/nano14242013 - 14 Dec 2024
Cited by 5 | Viewed by 2778
Abstract
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays [...] Read more.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p–n junction diodes, etc. are a few of the best uses for this material. Other conductive metals that show a lot of promise as substitutes for traditional conductive materials include copper, zinc oxide, aluminum, silver, gold, and tin. These metals are also utilized in AR coatings. The optimal deposition techniques for creating ITO films under the current conditions have been determined to be DC (direct current) and RF (radio frequency) MS (magnetron sputtering) deposition, both with and without the introduction of Ar gas. When producing most types of AR coatings, it is necessary to obtain thicknesses of at least 100 nm and minimum resistivities on the order of 10−4 Ω cm. For AR coatings, issues related to less-conductive materials than ITO have been considered. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

16 pages, 4937 KB  
Article
Temperature and Flexural Endurances of Aluminum-Doped Zinc Oxide Thin Films on Flexible Polyethylene Terephthalate Substrates: Pathways to Enhanced Flexibility and Conductivity
by Mohammad M. Hamasha, Sa’d Hamasha, Khalid Alzoubi, Mohammed Said Obeidat and Raghad Massadeh
Coatings 2024, 14(12), 1527; https://doi.org/10.3390/coatings14121527 - 3 Dec 2024
Cited by 1 | Viewed by 1061
Abstract
This work investigates the endurance and performance of aluminum-doped zinc oxide (AZO) thin films fabricated on flexible polyethylene terephthalate (PET) substrates, providing new insights into their degradation linked to mechanical flexing and accelerated thermal cycling (ATC). The current study uniquely combines cyclic bending [...] Read more.
This work investigates the endurance and performance of aluminum-doped zinc oxide (AZO) thin films fabricated on flexible polyethylene terephthalate (PET) substrates, providing new insights into their degradation linked to mechanical flexing and accelerated thermal cycling (ATC). The current study uniquely combines cyclic bending fatigue at 23 °C and 70 °C with ATC between 0 °C and 100 °C, simulating operational stresses in real-world environments, in contrast to previous research that has focused primarily on either isolated mechanical or thermal effects. The 425 nm thick films showed high transparency and conductivity, making them suitable materials for flexible electronics and optoelectronic devices. In this work, electrical resistivity, one of the most important performance parameters, was investigated after each mechanical or thermal cycle. The results indicate that mechanical cycling at high temperatures can drastically enhance the crack formation and electrical degradation, with an over 250% change in the electrical resistance (PCER) after 12,000 cycles at 70 °C and more than 300% after 500 thermal cycles. The highly deleterious effects of combined stressors on the structural integrity and electrical properties of AZO films are underlined by these observations. This study further suggests that the design of more robust AZO-based materials/coatings would contribute toward achieving better durability in flexible electronic applications. These findings also go hand in glove with the ninth goal of the United Nations’ Sustainable Development Goals, specifically Target 9.5: Enhance Research and Upgrade Industrial Technologies. Full article
Show Figures

Figure 1

10 pages, 4052 KB  
Article
An In Situ Automated System for Real-Time Monitoring of Failures in Large-Scale Field Emitter Arrays
by Reza Farsad Asadi, Tao Zheng, Menglin Wang, Han Gao, Kenneth Sangston and Bruce Gnade
Instruments 2024, 8(4), 44; https://doi.org/10.3390/instruments8040044 - 6 Oct 2024
Cited by 1 | Viewed by 2145
Abstract
Nano-scale vacuum transistors (NVCTs) based on field emission have the potential to operate at high frequencies and withstand harsh environments, such as radiation, high temperatures, and high power. However, they have demonstrated instability and failures over time. To achieve high currents from NVCTs, [...] Read more.
Nano-scale vacuum transistors (NVCTs) based on field emission have the potential to operate at high frequencies and withstand harsh environments, such as radiation, high temperatures, and high power. However, they have demonstrated instability and failures over time. To achieve high currents from NVCTs, these devices are typically fabricated in large-scale arrays known as field emitter arrays (FEAs), which share a common gate, cathode, and anode. Consequently, the measured currents come from the entire array, providing limited information about the emission characteristics of individual tips. Arrays can exhibit nonuniform emission behavior across the emitting area. A phosphor screen can be used to monitor the emission pattern of the array. Additionally, visible damage can occur on the surface of the FEAs, potentially leading to the destruction of the gate and emitters, causing catastrophic failure of the FEAs. To monitor damage while operating the device, an ITO-coated glass anode, which is electrically conductive and visible-light-transparent, can be used. In this work, a method was developed to automatically monitor the emission pattern of the emitters and the changes in surface morphology while operating the devices and collecting electrical data, providing real-time information on the failure sequence of the FEAs. Full article
Show Figures

Figure 1

27 pages, 11026 KB  
Article
Niobium Oxide Thin Films Grown on Flexible ITO-Coated PET Substrates
by Alice Marciel, Alexandre Bastos, Luiz Pereira, Suresh Kumar Jakka, Joel Borges, Filipe Vaz, Marco Peres, Katharina Lorenz, Arijeta Bafti, Luka Pavić, Rui Silva and Manuel Graça
Coatings 2024, 14(9), 1127; https://doi.org/10.3390/coatings14091127 - 2 Sep 2024
Cited by 4 | Viewed by 2041
Abstract
Niobium oxide thin films were grown on both rigid and flexible substrates using DC magnetron sputtering for electrochromic applications. Three experimental series were conducted, varying the oxygen to argon flow rate ratio and deposition time. In the first series, the oxygen to argon [...] Read more.
Niobium oxide thin films were grown on both rigid and flexible substrates using DC magnetron sputtering for electrochromic applications. Three experimental series were conducted, varying the oxygen to argon flow rate ratio and deposition time. In the first series, the oxygen to argon ratio was adjusted from 0 to 0.32 while maintaining a constant growth time of 30 min. For the second and third series, the oxygen to argon ratios were fixed at 0.40 and 0.56, respectively, with deposition times ranging from 15 to 60 min. A structural transition from crystalline to amorphous was observed at an oxygen to argon flow rate ratio of 0.32. This transition coincided with a change in appearance, from non-transparent with metallic-like electrical conductivity to transparent with dielectric behavior. The transparent niobium oxide films exhibited thicknesses between 51 nm and 198 nm, with a compact, dense, and featureless morphology, as evidenced by both top-view and cross-sectional images. Films deposited on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates displayed a maximum surface roughness (Sq) of 9 nm and a maximum optical transmission of 83% in the visible range. The electrochromic response of niobium oxide thin films on ITO-coated PET substrates demonstrated a maximum coloration efficiency of 30 cm2 C1 and a reversibility of 96%. Mechanical performance was assessed through bending tests. The ITO-coated PET substrate exhibited a critical bending radius of 6.5 mm. Upon the addition of the niobium oxide layer, this decreased to 5 mm. Electrical resistance measurements indicated that the niobium oxide film mitigated rapid mechanical degradation of the underlying ITO electrode beyond the critical bending radius. Full article
Show Figures

Figure 1

Back to TopTop