Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (202)

Search Parameters:
Keywords = turbulent airflow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12508 KiB  
Article
Investigating the Impact of Structural Features on F1 Car Diffuser Performance Using Computational Fluid Dynamics (CFD)
by Eugeni Pérez Nebot, Antim Gupta and Mahak Mahak
Mathematics 2025, 13(9), 1455; https://doi.org/10.3390/math13091455 - 29 Apr 2025
Viewed by 225
Abstract
This study utilizes Computational Fluid Dynamics (CFD) to optimize the aerodynamic performance of a Formula 1 (F1) car diffuser, investigating the effects of vane placements, end-flap positions, and other structural modifications. Diffusers are critical in managing airflow, enhancing downforce, and reducing drag, directly [...] Read more.
This study utilizes Computational Fluid Dynamics (CFD) to optimize the aerodynamic performance of a Formula 1 (F1) car diffuser, investigating the effects of vane placements, end-flap positions, and other structural modifications. Diffusers are critical in managing airflow, enhancing downforce, and reducing drag, directly influencing vehicle stability and speed. Despite ongoing advancements, the interaction between diffuser designs and turbulent flow dynamics requires further exploration. A Three-Dimensional k-Omega-SST RANS-based CFD methodology was developed to evaluate the aerodynamic performance of various diffuser configurations using Star CCM+. The findings reveal that adding lateral vane parallel to the divergence section improved high-intensity fluid flow distribution within the main channel, achieving 13.49% increment in downforce and 5.58% reduction in drag compared to the baseline simulation. However, incorporating an airfoil cross-section flap parallel to the divergence end significantly enhances the car’s performance, leading to a substantial improvement in downforce while relatively small increase in drag force. This underscores the critical importance of precise flap positioning for optimizing aerodynamic efficiency. Additionally, the influence of adding flaps underneath the divergence section was also analyzed to manipulate boundary layer separation to achieve improved performance by producing additional downforce. This research emphasizes the critical role of vortex management in preventing flow detachment and improving diffuser efficiency. The findings offer valuable insights for potential FIA F1 2023 undertray regulation changes, with implications for faster lap times and heightened competitiveness in motorsports. Full article
Show Figures

Figure 1

25 pages, 26783 KiB  
Article
Performance Enhancement of a Solar Air Heater Equipped with a Tree-like Fractal Cylindrical Pin for Drying Applications: Tests Under Real Climatic Conditions
by Chotiwut Prasopsuk, Kittiwoot Sutthivirode and Tongchana Thongtip
Energies 2025, 18(9), 2230; https://doi.org/10.3390/en18092230 - 27 Apr 2025
Viewed by 244
Abstract
This paper reports the improved thermal and drying performance of a solar air heater powered by real solar irradiance and equipped with a tree-like fractal-based cylindrical pin (SAH-TFCP) as a turbulator for drying applications. The main purpose of this work is to demonstrate [...] Read more.
This paper reports the improved thermal and drying performance of a solar air heater powered by real solar irradiance and equipped with a tree-like fractal-based cylindrical pin (SAH-TFCP) as a turbulator for drying applications. The main purpose of this work is to demonstrate the SAH-TFCP’s improvement potential based on its thermal and drying performance as compared with a conventional solar air heater based on a flat-plate absorber (SAH-FP). The test was implemented based on solar time from 8:30 to 17:30 under Thailand’s climatic conditions at a latitude angle of 14° and a longitude angle of 100°. Turmeric slices were used to evaluate the SAH’s drying performance. The thermal efficiency, moisture content wet basis (MCwb), drying rate (DR), and drying efficiency were measured as parameters of interest to assess the improvement potential of the SAH-TFCP over the SAH-FP. The results indicate that the SAH-TFCP provides better thermal and drying performance than the SAH-FP. A higher flow rate yields a higher thermal efficiency and a greater improvement potential. The improvement potential is around 44–85%. The drying efficiency of the SAH-TFCP is always higher than that of the SAH-FP and has an improvement potential of 32–44%, depending on the airflow rate. Full article
Show Figures

Figure 1

6 pages, 1638 KiB  
Proceeding Paper
The Efficiency of Drone Propellers—A Relevant Step Towards Sustainability
by Jaan Susi, Karl-Eerik Unt and Siim Heering
Eng. Proc. 2025, 90(1), 89; https://doi.org/10.3390/engproc2025090089 - 31 Mar 2025
Viewed by 238
Abstract
The static efficiency of a propeller cannot be determined in the same way as for propellers operating in the presence of freestream airflow. As various kinds of multirotor drones and small UAVs operate in hovering or nearly hovering modes, it is necessary to [...] Read more.
The static efficiency of a propeller cannot be determined in the same way as for propellers operating in the presence of freestream airflow. As various kinds of multirotor drones and small UAVs operate in hovering or nearly hovering modes, it is necessary to develop methods for determining and measuring the static aerodynamic efficiency of small-scale propellers. Propellers with a Reynolds number near the 0.75 R, where the blade section is less than 500,000, are considered to be at a critical value, i.e., the estimated border between two flow modes—laminar and turbulent. The efficiency of small-scale propellers may be hard to predict through modeling, making direct empirical measurements invaluable in this situation. Full article
Show Figures

Figure 1

35 pages, 24673 KiB  
Article
Enhancing Automotive Paint Curing Process Efficiency: Integration of Computational Fluid Dynamics and Variational Auto-Encoder Techniques
by Mohammad-Reza Pendar, Silvio Cândido, José Carlos Páscoa and Rui Lima
Sustainability 2025, 17(7), 3091; https://doi.org/10.3390/su17073091 - 31 Mar 2025
Viewed by 363
Abstract
The impetus of the present work is to propose a comprehensive methodology for the numerical evaluation of drying/curing, as one of the most complex and energy-consuming stages in the paint shop plant, to guarantee a decrease in energy costs without sacrificing the final [...] Read more.
The impetus of the present work is to propose a comprehensive methodology for the numerical evaluation of drying/curing, as one of the most complex and energy-consuming stages in the paint shop plant, to guarantee a decrease in energy costs without sacrificing the final paint film quality and manufacturability. Addressing the complexities of vehicle assembly, such as intricate geometry and multi-zoned ovens, our approach employs a sophisticated conjugate heat transfer (CHT) algorithm, developed under the OpenFOAM framework, providing efficient heat transfer with the accompaniment of the Large Eddy Simulation (LES) turbulence model, thereby delivering high-fidelity data. This algorithm accurately simulates turbulence and stress in the oven, validated through heat sink cases and closely aligning with experimental data. Applying modifications for the intake supply heated airflow rate and direction leads to optimal recirculation growth in the measured mean temperature within with the curing oven and along the car body surface, saving a significant amount of energy. Key adjustments in airflow direction improved temperature regulation and energy efficiency while enhancing fluid dynamics, such as velocity and temperature distribution. Furthermore, the study integrates machine learning to refine the oven’s heat-up region, which is crucial for preventing paint burnout. A data-based model using a variational auto-encoder (VAE) and an artificial neural network (ANN) effectively encodes temperature and velocity fields. This model achieves an impressive 98% accuracy within a 90% confidence interval, providing a reliable tool for predicting various operational conditions and ensuring optimal oven performance. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Simulation: Application in Industries)
Show Figures

Figure 1

26 pages, 10344 KiB  
Article
Spatial Distribution of Dynamic Characteristics of Fan Airflows and Their Impact on Thermal Comfort
by Kailong Wang, Zuoyu Xie, Ye Xiao, Xiang Zhou and Maohui Luo
Buildings 2025, 15(3), 308; https://doi.org/10.3390/buildings15030308 - 21 Jan 2025
Viewed by 754
Abstract
As one of the most widely used appliances in home and office scenarios over recent decades, electrical fans and their use in built environments have garnered considerable research interest. However, current methods are insufficient to reflect the overall characteristics of different types of [...] Read more.
As one of the most widely used appliances in home and office scenarios over recent decades, electrical fans and their use in built environments have garnered considerable research interest. However, current methods are insufficient to reflect the overall characteristics of different types of fan equipment. This study conducted airflow field tests for six typical electrical fans and human comfort experiments across background temperature conditions of 26 °C, 28 °C, and 30 °C. The airflow test results showed the following: (1) for the mechanical airflow generated by fans, the mean airflow speed (MAS) had a strong negative correlation with turbulence intensity (Tu) and the power spectral index (β), which made Tu and β have a complementary distribution with airflow speed, meaning that areas with a higher airflow speed had lower dynamic characteristics; and (2) the form of the fan mainly affected the flow field distribution in the near-fan area (within 2 m), where tower fans and vaneless fans with elongated outlets had a mainstream airflow area that spread to about 0.2 m in width but 0.6 m in height at a distance of 0.25 m from the fan. The airflow speed distribution shape of axial-flow fans with circular outlets was circular on the test surface at the same position, with a radius of about 0.1–0.2 m. The human comfort experiment revealed that, at 28 °C, in the low-airflow-speed area (v < 1.5 m/s), the increased Tu and power spectral β of the airflow near the head and chest could reduce the thermal sensation vote (TSV). Additionally, this improvement slightly increased as the room temperature rose. When the airflow speed was high, the dynamic characteristics were generally low, and at this time, airflow speed played a leading role in reducing thermal sensation. The results of this paper have certain reference value for the improvement of comfortable dynamic characteristics and functional flow field design in subsequent fan product development. Full article
(This article belongs to the Special Issue Indoor Environmental Quality and Human Wellbeing)
Show Figures

Figure 1

25 pages, 4996 KiB  
Review
Effect of Different Mechanical Fans on Virus Particle Transport: A Review
by Xiaofei Han, Norhayati Mahyuddin, Mingyuan Qin, Puyi Wang, Changchang Zhang, Yixuan Wei and Song Pan
Buildings 2025, 15(3), 303; https://doi.org/10.3390/buildings15030303 - 21 Jan 2025
Viewed by 758
Abstract
In recent years, repeated outbreaks of airborne viruses have normalized human coexistence with these viruses. The complex turbulence and vortices generated by different fan types and operation modes affect virus removal effectiveness. This paper reviews the potential impact and actual effectiveness of different [...] Read more.
In recent years, repeated outbreaks of airborne viruses have normalized human coexistence with these viruses. The complex turbulence and vortices generated by different fan types and operation modes affect virus removal effectiveness. This paper reviews the potential impact and actual effectiveness of different fans in mitigating indoor virus transmission, highlighting their advantages and limitations. Downward rotating ceiling fans can rapidly dilute virus concentration (21–87%) in the breathing zone due to jet cores, with efficiency depending on rotational speed and particle diameter. However, the reprocessing problems of large particles being deposited on surfaces, and small particles settling and rebounding into the air remain unresolved. Upward-rotating ceiling fans do not contribute to indoor virus removal. Exhaust fans generate a negative-pressure environment, which helps expel viruses quickly. But improper vortex zones can increase virus retention time 16–40 times. Air-apply fans effectively dilute and transport viruses only when delivering airflow exceeding 0.5 m/s directly into the breathing zone. Additionally, combined fan strategies remain underexplored, despite potential benefits. This review underscores the need for standardized definitions of particle removal effectiveness and calls for further research on how climatic conditions and thermal comfort influence fan-based interventions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 1696 KiB  
Article
Near-Field Aeroacoustics of Spanwise Forcing on a Transonic Wing: A DNS Study
by Niccolò Berizzi, Davide Gatti, Giulio Soldati, Sergio Pirozzoli and Maurizio Quadrio
Appl. Sci. 2025, 15(2), 814; https://doi.org/10.3390/app15020814 - 15 Jan 2025
Viewed by 804
Abstract
The transonic airflow around a supercritical wing with a shock wave is described via direct numerical simulations. Flow control for turbulent drag reduction is applied via streamwise traveling waves of spanwise velocity applied on a finite portion of the suction side. The near-field [...] Read more.
The transonic airflow around a supercritical wing with a shock wave is described via direct numerical simulations. Flow control for turbulent drag reduction is applied via streamwise traveling waves of spanwise velocity applied on a finite portion of the suction side. The near-field modifications caused by the forcing are studied via the analysis of the wake profile downstream of the trailing edge. Moreover, for the first time, the effects of spanwise forcing on aeroacoustic noise are considered to establish whether active flow control for drag reduction could possibly increase noise. By extracting the acoustic signals on a circumference placed in the near-field around the wing and by studying them in terms of sound intensity and frequency content, it is found that noise intensity is not significantly increased by spanwise forcing and that frequency content is only minimally altered. Furthermore, if the angle of attack is reduced to take into account the increased lift and the reduced drag made possible by the control action, changes in the noise characteristics become negligible. Full article
(This article belongs to the Special Issue Computational Active Flow and Noise Control)
Show Figures

Figure 1

21 pages, 3838 KiB  
Article
Computational Fluid Dynamics as a Digital Tool for Enhancing Safety Uptake in Advanced Manufacturing Environments Within a Safe-by-Design Strategy
by Dionysia Maria Voultsou, Stratos Saliakas, Spyridon Damilos and Elias P. Koumoulos
Materials 2025, 18(2), 262; https://doi.org/10.3390/ma18020262 - 9 Jan 2025
Viewed by 825
Abstract
In modern manufacturing environments, pollution management is critical as exposure to harmful substances can cause serious health issues. This study presents a two-stage computational fluid dynamic (CFD) model to estimate the distribution of pollutants in indoor production spaces. In the first stage, the [...] Read more.
In modern manufacturing environments, pollution management is critical as exposure to harmful substances can cause serious health issues. This study presents a two-stage computational fluid dynamic (CFD) model to estimate the distribution of pollutants in indoor production spaces. In the first stage, the Reynolds-averaged Navier–Stokes (RANS) method was used to simulate airflow and temperature. In the second stage, the Lagrangian method was applied for particle tracing. The model was applied to a theoretical acrylonitrile butadiene styrene (ABS) filament 3D printing process to evaluate the factors affecting the distribution of ultrafine particles (30 nm). Key parameters such as ventilation system effects, the presence of cooling fans and the print bed, and nozzle temperatures were considered. The results show that the highest flow velocities (1.97 × 10−6 m/s to 3.38 m/s) occur near the ventilation system’s inlet and outlet, accompanied by regions of high turbulent kinetic energy (0.66 m2/s2). These conditions promote dynamic airflow, facilitating particulate removal by reducing stagnant zones prone to pollutant buildup. The effect of cooling fans and thermal sources was investigated, showing limited contribution on particle removal. These findings emphasize the importance of digital twins for better worker safety and air quality in 3D printing environments. Full article
Show Figures

Graphical abstract

26 pages, 7027 KiB  
Article
Parametric CFD Study of Spray Drying Chamber Geometry: Part I—Effects on Airflow Dynamics
by Jairo Andrés Gutiérrez Suárez, Carlos Humberto Galeano Urueña and Alexánder Gómez Mejía
ChemEngineering 2025, 9(1), 5; https://doi.org/10.3390/chemengineering9010005 - 4 Jan 2025
Viewed by 1272
Abstract
Internal airflow dynamics play a crucial role in spray drying engineering by governing particle transport and, consequently, the quality of dried products. For this application, airflow dynamics represent short- and long-timescale behaviors across the main jet and recirculation regions and have been related, [...] Read more.
Internal airflow dynamics play a crucial role in spray drying engineering by governing particle transport and, consequently, the quality of dried products. For this application, airflow dynamics represent short- and long-timescale behaviors across the main jet and recirculation regions and have been related, among other factors, to spray chamber design. This study examines the parametric effects of key geometrical design parameters on internal airflow dynamics using Design of Experiments (DOE) methodologies and 3D Computational Fluid Dynamics (CFD) simulations. The CFD model adopts a cost-efficient approach, including adaptive mesh refinement (AMR) methods, enabling running multiple simulation cases while retaining turbulence-resolving capabilities. The results provide quantitative parameter–response relationships, offering insights into the impact of chamber geometry on complex airflow behaviors. Among the parameters studied, the chamber aspect ratio strongly influences the strength of external recirculation flows. The inlet swirl primarily governs the stability of central and recirculating flows, while the conical–cylindrical section topology, in conjunction with the jet Reynolds number, affects flow impingement on walls, predominantly caused by the precession and reversal of the central jet. This methodology demonstrates significant potential for future studies on particle drying, equipment, process scale-up, and alternative chamber configurations in spray drying systems. Full article
Show Figures

Figure 1

17 pages, 4871 KiB  
Article
Comparative Study on the Evolution of Airflow Temperature and Valid Ventilation Distance Under Different Cooling Strategies in High-Temperature Tunnels for Mining Thermal Energy
by Fangchao Kang, Jinlong Men, Binbin Qin, Guoxi Sun, Ruzhen Chen, Weikang Zhang, Jiamei Chen and Zhenpeng Ye
Fire 2025, 8(1), 16; https://doi.org/10.3390/fire8010016 - 3 Jan 2025
Viewed by 727
Abstract
A comprehensive understanding of airflow temperature distribution within high-temperature tunnels is crucial for developing effective cooling strategies that ensure a safe environment and acceptable construction costs. In this paper, we introduce a novel cooling strategy that integrates thermal insulation layers and heat exchangers [...] Read more.
A comprehensive understanding of airflow temperature distribution within high-temperature tunnels is crucial for developing effective cooling strategies that ensure a safe environment and acceptable construction costs. In this paper, we introduce a novel cooling strategy that integrates thermal insulation layers and heat exchangers aligned along the tunnel axis (TIL-HE strategy). We investigate variations in airflow temperature and valid ventilation distance (VVD) and compare them with two other cooling strategies: natural tunnels only employing mechanical ventilation (NT strategy) and tunnels featuring thermal insulation layers (TIL strategy), through the 3D k-ε turbulence model in COMSOL Multiphysics. Our findings indicate that (1) the TIL-HE strategy demonstrates superior cooling performance, resulting in significantly lower airflow temperatures and markedly higher VVD; (2) higher water velocity and more heat exchangers contribute to lower airflow temperature and prolonged VVD; (3) positioning the heat exchangers within the surrounding rock rather than inside the insulation layer leads to even lower airflow temperature and longer VVD. Longitudinal-arranged heat exchangers present fewer construction challenges compared to traditional radial-drilled ones, ultimately reducing tunnel construction costs. These findings provide valuable insights for optimizing cooling strategies and engineering parameters in high-temperature tunnel environments. Full article
(This article belongs to the Special Issue Clean Combustion and New Energy)
Show Figures

Figure 1

20 pages, 5101 KiB  
Article
Numerical Analysis of the Influence of Rectangular Deflectors and Geometry of L-Shaped Channel over the Performance of a Savonius Turbine
by Andrei Luís Garcia Santos, Jaifer Corrêa Martins, Liércio André Isoldi, Gustavo da Cunha Dias, Luiz Alberto Oliveira Rocha, Jeferson Avila Souza and Elizaldo Domingues dos Santos
J. Mar. Sci. Eng. 2025, 13(1), 28; https://doi.org/10.3390/jmse13010028 - 29 Dec 2024
Viewed by 613
Abstract
The present work investigates the influence of rectangular deflectors on the performance of a Savonius turbine mounted in an L-shaped channel, which represents a geometry like that found in one oscillating water column (OWC) device. It also performs a geometric investigation of the [...] Read more.
The present work investigates the influence of rectangular deflectors on the performance of a Savonius turbine mounted in an L-shaped channel, which represents a geometry like that found in one oscillating water column (OWC) device. It also performs a geometric investigation of the entrance region of the channel. More precisely, it investigates the effect of the height/length ratio (H1/L1) of the entering region of the channel on the system performance for three different configurations: (1) without the use of deflectors, (2) with just one deflector upstream the turbine, and (3) with one deflector upstream and another downstream the turbine. The geometric investigation is performed based on the constructal design method, and the entering channel area (A1) is the problem constraint. The performance indicators are the mechanical power in the Savonius turbine and the available power in the device. For all cases, it is considered turbulent airflow in the domain, being solved by the unsteady Reynolds Averaged Navier–Stokes mass and momentum equations. The numerical solution was obtained with the finite-volume method using the Ansys FLUENT software (version 2021 R1). The k-ω shear stress transport turbulence closure model is used. The results demonstrated that the mechanical and available powers depend on the H1/L1 ratio, regardless of the usage of deflectors. For instance, differences of up to 16.35% in mechanical power and 7.25% in available power were observed between the best and worst performance configurations in the case without deflectors. The use of deflectors resulted in increases of two and three times in available and mechanical powers, respectively, when the cases with one and two deflectors are compared with those without deflectors. This demonstrates that the enclosed domain and the insertion of the deflectors can enhance the performance of the Savonius turbine. Full article
(This article belongs to the Special Issue Advances in Marine Computational Fluid Dynamics)
Show Figures

Figure 1

22 pages, 14229 KiB  
Communication
Evidence of Terrain-Induced Windshear Due to Lantau Island over the Third Runway of the Hong Kong International Airport—Examples and Numerical Simulations
by Pak Wai Chan and Kai Kwong Lai
Appl. Sci. 2025, 15(1), 83; https://doi.org/10.3390/app15010083 - 26 Dec 2024
Viewed by 653
Abstract
The new third runway of the Hong Kong International Airport was commissioned in November 2022. With the increased distance away from the mountains of Lantau Island to its south, it is not certain if terrain-induced windshear could still happen over the corridors of [...] Read more.
The new third runway of the Hong Kong International Airport was commissioned in November 2022. With the increased distance away from the mountains of Lantau Island to its south, it is not certain if terrain-induced windshear could still happen over the corridors of this runway, particularly the usual landing runway corridor (07LA) for aircraft from the west. With the rebound of air traffic in 2024 in Hong Kong, it is now possible to find out the impact of the Lantau terrain on the winds over 07LA, at least based on case studies. It is found that, though 07LA is located at least 4 km from the foothills of Lantau Island, which has peaks rising to about 1 km above mean sea level, the terrain-induced airflow disturbances could, at times, extend to 7–8 km away from the mountains to bring about low-level windshear and turbulence to this runway corridor. This conclusion is drawn based on actual pilot windshear reports and observations from Doppler light detection and ranging (LIDAR) systems and confirmed by simulations using a mesoscale to microscale numerical weather-prediction model. It is consistent with the definition of open terrain for a height-over-distance ratio of 1:10. Based on the experience in Hong Kong, it is found that, for runway corridors located at distances within 10 times the height of the nearby terrain, it is still necessary to set up windshear detection equipment, such as Doppler LIDAR, to safeguard aircraft operation. Full article
Show Figures

Figure 1

26 pages, 15330 KiB  
Article
A Passive Flow Control Technique of a Small-Scale HAWT and TED Analysis Under Yaw Condition Based on Airfoil Concavity
by Jianlong Ma, Qiuyan Li, Ming Zhao, Yanan Chen and Xiaohui Chai
Energies 2024, 17(24), 6448; https://doi.org/10.3390/en17246448 - 21 Dec 2024
Viewed by 795
Abstract
To mitigate the energy loss caused by flow separation of a 300 W small wind turbine, a passive flow control technique based on the airfoil concavity was proposed. The suction surface of the blade was modified with eight different types of concavity, the [...] Read more.
To mitigate the energy loss caused by flow separation of a 300 W small wind turbine, a passive flow control technique based on the airfoil concavity was proposed. The suction surface of the blade was modified with eight different types of concavity, the results showed that the b1 elliptical concavity, with B-spline curves front-and-rear transition, significantly affected the airflow of the airfoil’s suction surface, improving the wind turbine’s aerodynamic performance by 3.26% at maximum. Then, the flow field characteristics of b1, c1, and c4 concave airfoils with typical geometric features under axial flow conditions demonstrated that the b1 airfoil concavity had the greatest impact on flow separation. Moreover, yaw angle was induced, and the wind turbine’s turbulent kinetic energy (TKE) and turbulent energy dissipation (TED) were investigated from the aspects of energy loss. The variation rule of the TED difference between the concave bottom and edge with yaw angle was summarized into an equation that quantitatively explained why the 10° yaw angle was the turning point of the power output, as well as the potential mechanism of concave airfoil-induced power enhancement. These findings provide a foundation for enhancing the aerodynamic performance of large megawatt-class wind turbines. Full article
Show Figures

Figure 1

10 pages, 255 KiB  
Article
Splash Basins in the Operating Room: Clean or Contaminated? A Study on Bacterial Contamination in Splash Basins Used to Rinse Surgical Instruments During Surgery
by Karoline Stavang Michalsen, Linda Helen Helgeland, Grethe Myklestul Dåvøy, Marit Hegg Reime and Fred-Ivan Kvam
Nurs. Rep. 2024, 14(4), 4060-4069; https://doi.org/10.3390/nursrep14040296 - 17 Dec 2024
Viewed by 2426
Abstract
Background: Preventing postoperative infection and promoting patient safety are essential responsibilities of the operating room nurse. In some hospitals, splash basins are used to rinse instruments during surgery, although previous studies emphasise the risk of bacterial contamination. A recent systematic review calls [...] Read more.
Background: Preventing postoperative infection and promoting patient safety are essential responsibilities of the operating room nurse. In some hospitals, splash basins are used to rinse instruments during surgery, although previous studies emphasise the risk of bacterial contamination. A recent systematic review calls for further investigation into surgical teams’ use of splash basins. Objectives: Our objective was to investigate bacterial contamination in splash basins and to identify the variables that may have an influence on this contamination. Methods: This prospective observational pilot study involved collecting, cultivating, and analysing water samples obtained from splash basins during operations performed in the thoracic and neurosurgical departments. The ventilation systems, length of surgery, number of instruments in the splash basin, number of persons present in the operating room, frequency of door openings during surgery, and type of bacteria were observed. Results: Bacterial growth was found in 44% of the final water samples: 41% from the thoracic surgical department, which had laminar airflow ventilation systems/unidirectional airflow ventilation, and 47% from the neurosurgical department, which had conventional ventilation systems/turbulent mixing ventilation. However, the binary logistic regression analysis revealed no significant correlation between bacterial growth and the ventilation systems, length of surgery, number of instruments in the splash basin, number of people in the operating room, or frequency of door openings. The most common types of bacteria found were coagulase-negative staphylococci and Micrococcus luteus. Conclusions: Splash basins become contaminated with bacteria during surgery. Therefore, using splash basins with sterile water is not recommended. Further research is needed to determine the best evidence-based practice for rinsing instruments perioperatively. Full article
19 pages, 5697 KiB  
Article
PIV Experimental Study of Airflow Structures in a Multi-Slot Ventilation Enclosure with Opposed Jets
by Congcong Wang, Pengchao Ding, Yongjie Xing and Hongbing Chen
Buildings 2024, 14(12), 3845; https://doi.org/10.3390/buildings14123845 - 30 Nov 2024
Viewed by 842
Abstract
The airflow structure of enclosures directly affects the spread of COVID-19 and is also closely related to indoor air quality, the thermal comfort of personnel, and buildings’ energy consumption. A large number of studies on airflow field under mixing and displacement ventilation with [...] Read more.
The airflow structure of enclosures directly affects the spread of COVID-19 and is also closely related to indoor air quality, the thermal comfort of personnel, and buildings’ energy consumption. A large number of studies on airflow field under mixing and displacement ventilation with a single air inlet in rectangular rooms have been conducted; however, to the best of the authors’ knowledge, only a limited number of studies have dealt with airflow structures in a multi-slot ventilation enclosure with opposed jets. Therefore, this paper uses PIV to study the velocity, turbulence information, and entropy of an unstable airflow field in a multi-slot ventilation enclosure with opposed jets under isothermal and non-isothermal conditions. This paper also presents, due to the collision of the jets to form two large-scale eddies, the airflow field structure being unstable. In the region without air supply inlets and exhaust outlets, a large-scale vortex is formed in the airflow field, resulting in the high information entropy of the flow field. The thermal plume suppresses the large-scale flow field structure and increases the small-scale flow field structure. Full article
Show Figures

Figure 1

Back to TopTop