Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = two-dimensional MoS2 nanosheets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2468 KB  
Article
Multi-Bit Resistive Random-Access Memory Based on Two-Dimensional MoO3 Layers
by Kai Liu, Wengui Jiang, Liang Zhou, Yinkang Zhou, Minghui Hu, Yuchen Geng, Yiyuan Zhang, Yi Qiao, Rongming Wang and Yinghui Sun
Nanomaterials 2025, 15(13), 1033; https://doi.org/10.3390/nano15131033 - 3 Jul 2025
Viewed by 712
Abstract
Two-dimensional (2D) material-based resistive random-access memory (RRAM) has emerged as a promising solution for neuromorphic computing and computing-in-memory architectures. Compared to conventional metal-oxide-based RRAM, the novel 2D material-based RRAM devices demonstrate lower power consumption, higher integration density, and reduced performance variability, benefiting from [...] Read more.
Two-dimensional (2D) material-based resistive random-access memory (RRAM) has emerged as a promising solution for neuromorphic computing and computing-in-memory architectures. Compared to conventional metal-oxide-based RRAM, the novel 2D material-based RRAM devices demonstrate lower power consumption, higher integration density, and reduced performance variability, benefiting from their atomic-scale thickness and ultra-flat surfaces. Remarkably, 2D layered metal oxides retain these advantages while preserving the merits of traditional metal oxides, including their low cost and high environmental stability. Through a multi-step dry transfer process, we fabricated a Pd-MoO3-Ag RRAM device featuring 2D α-MoO3 as the resistive switching layer, with Pd and Ag serving as inert and active electrodes, respectively. Resistive switching tests revealed an excellent operational stability, low write voltage (~0.5 V), high switching ratio (>106), and multi-bit storage capability (≥3 bits). Nevertheless, the device exhibited a limited retention time (~2000 s). To overcome this limitation, we developed a Gr-MoO3-Ag heterostructure by substituting the Pd electrode with graphene (Gr). This modification achieved a fivefold improvement in the retention time (>104 s). These findings demonstrate that by controlling the type and thickness of 2D materials and resistive switching layers, RRAM devices with both high On/Off ratios and long-term data retention may be developed. Full article
Show Figures

Figure 1

14 pages, 3792 KB  
Article
Photoelectric Performance of Two-Dimensional n-MoS2 Nanosheets/p-Heavily Boron-Doped Diamond Heterojunction at High Temperature
by Deyu Shen, Changxing Li, Dandan Sang, Shunhao Ge, Qinglin Wang and Dao Xiao
Int. J. Mol. Sci. 2025, 26(10), 4551; https://doi.org/10.3390/ijms26104551 - 9 May 2025
Viewed by 687
Abstract
Two-dimensional (2D) n-MoS2 nanosheets (NSs) synthesized via the sol–gel method were deposited onto p-type heavily boron-doped diamond (BDD) film to form a n-MoS2/p-degenerated BDD (DBDD) heterojunction device. The PL emission results for the heterojunction suggest strong potential for applications using [...] Read more.
Two-dimensional (2D) n-MoS2 nanosheets (NSs) synthesized via the sol–gel method were deposited onto p-type heavily boron-doped diamond (BDD) film to form a n-MoS2/p-degenerated BDD (DBDD) heterojunction device. The PL emission results for the heterojunction suggest strong potential for applications using yellow-light-emitting optoelectronic devices. From room temperature (RT) to 180 °C, the heterojunction exhibits typical rectification characteristics with good results for thermal stability, rectification ratio, forward current decrease, and reverse current increase. Compared with the n-MoS2/p-lightly B-doped (non-degenerate) diamond heterojunction, the heterojunction demonstrates a significant improvement in both its rectification ratio and ideal factor. At 100 °C, the rectification ratio reaches the maximum value and is considered an ideal high temperature for achieving optimal heterojunction performance. When the temperature exceeds 140 °C, the heterojunction transforms into the Zener diode. The heterojunction’s electrical temperature dependence is due to the Fermi level shifting resulting in the weakening of the carrier interband tunneling injection. The n-MoS2 NSs/p-DBDD heterojunction will broaden future research application prospects in the field of high-temperature consumption in future optoelectronic devices. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2024)
Show Figures

Figure 1

17 pages, 16550 KB  
Article
Construction of S-Type PDI/BiOBr Heterojunctions and Their Photocatalytic Activity
by Xin-Qing Wang, Yu Sun, Rui-Hong Liu and Fa-Tang Li
Catalysts 2025, 15(1), 85; https://doi.org/10.3390/catal15010085 - 17 Jan 2025
Viewed by 970
Abstract
Constructing an S-type heterojunction to promote photogenerated carrier separation is a valid method to ameliorate this problem. In this work, self-assembled perylenetetracarboxylic diimide (PDI) was modified on the surface of two-dimensional (2D) BiOBr nanosheets using a continuous ion layer adsorption method. To explore [...] Read more.
Constructing an S-type heterojunction to promote photogenerated carrier separation is a valid method to ameliorate this problem. In this work, self-assembled perylenetetracarboxylic diimide (PDI) was modified on the surface of two-dimensional (2D) BiOBr nanosheets using a continuous ion layer adsorption method. To explore its microstructure, photoelectric properties, and other characteristics, the electron transport channel constructed between self-assembled PDI and BiOBr hinders photogenerated electron-hole recombination. Under visible light irradiation, when the rhodamine B (RhB) was 50 mg/L, the removal rate over 1/3 PDI/BiOBr reached 98% in 60 min, and the rate constant was 15.9 times that over self-assembled PDI and 13 times that over BiOBr. In degrading methyl orange (MO), the removal rate over 1/3 PDI/BiOBr was 65.8% in 60 min, and the rate constant was 5.7 times that over self-assembled PDI and 3.4 times over BiOBr. After the ESR test, O2 is proved to be the main active species in the reaction. Full article
(This article belongs to the Special Issue Two-Dimensional Materials in Photo(electro)catalysis)
Show Figures

Graphical abstract

13 pages, 5425 KB  
Article
Highly Sensitive SnS2/rGO-Based Gas Sensor for Detecting Chemical Warfare Agents at Room Temperature: A Theoretical Study Based on First-Principles Calculations
by Ting Liang, Huaizhang Wang, Huaning Jiang, Yelin Qi, Rui Yan, Jiangcun Li and Yanlei Shangguan
Crystals 2024, 14(12), 1008; https://doi.org/10.3390/cryst14121008 - 21 Nov 2024
Cited by 3 | Viewed by 3101
Abstract
Chemical warfare agents (CWAs) are known as poor man’s bombs because of their small lethal dose, cheapness, and ease of production. Therefore, the highly sensitive and rapid detection of CWAs at room temperature (RT = 25 °C) is essential. In this paper, we [...] Read more.
Chemical warfare agents (CWAs) are known as poor man’s bombs because of their small lethal dose, cheapness, and ease of production. Therefore, the highly sensitive and rapid detection of CWAs at room temperature (RT = 25 °C) is essential. In this paper, we have developed a resistive semiconductor sensor for the highly sensitive detection of CWAs at RT. The gas-sensing material is SnS2/rGO nanosheets (NSs) prepared by hydrothermal synthesis. The lower detection limits of the SnS2/rGO NSs-based gas sensor were 0.05 mg/m3 and 0.1 mg/m3 for the typical chemical weapons sarin (GB) and sulfur mustard (HD), respectively. The responsivity can reach −3.54% and −10.2% in 95 s for 1.0 mg/m3 GB, and in 47 s for 1.0 mg/m3 HD. They are 1.17 and 2.71 times higher than the previously reported Nb-MoS2 NSs-based gas sensors, respectively. In addition, it has better repeatability (RSD = 6.77%) and stability for up to 10 weeks (RSD = 20.99%). Furthermore, to simplify the work of later researchers based on the detection of CWAs by two-dimensional transition metal sulfur compounds (2D-TMDCs), we carried out calculations of the SnS2 NSs-based and SnS2/rGO NSs-based gas sensor-adsorbing CWAs. Detailed comparisons are made in conjunction with experimental results. For different materials, it was found that the SnS2/rGO NSs-based gas sensor performed better in all aspects of adsorbing CWAs in the experimental results. Adsorbed CWAs at a distance smaller than that of the SnS2 NSs-based gas sensor in the theoretical calculations, as well as its adsorption energy and transferred charge, were larger than those of the SnS2 NSs-based gas sensor. For different CWAs, the experimental results show that the sensitivity of the SnS2/rGO NSs-based gas sensor for the adsorption of GB is higher than that of HD, and accordingly, the theoretical calculations show that the adsorption distance of the SnS2/rGO NSs-based gas sensor for the adsorption of GB is smaller than that of HD, and the adsorption energy and the amount of transferred charge are larger than that of HD. This regularity conclusion proves the feasibility of adsorption of CWAs by gas sensors based on SnS2 NSs, as well as the feasibility and reliability of theoretical prediction experiments. This work lays a good theoretical foundation for subsequent rapid screenings of gas sensors with gas-sensitive materials for detecting CWAs. Full article
(This article belongs to the Special Issue Organic Photonics: Organic Optical Functional Materials and Devices)
Show Figures

Figure 1

15 pages, 7583 KB  
Article
Fabrication of Two-Dimensional B-Doped C3N4 Nanosheet-Encapsulated One-Dimensional Rod-like Mo-MOF-Derived MoS2 Heterojunctions for Enhanced Photocatalytic Ethanol Conversion and Synergistic Hydrogen Production
by Caili Zhang, Jian Wang and Li Wang
Catalysts 2024, 14(11), 833; https://doi.org/10.3390/catal14110833 - 19 Nov 2024
Cited by 1 | Viewed by 987
Abstract
The photocatalytic conversion of ethanol and the simultaneous development of hydrogen technology play a role in solving the energy crisis and reducing environmental pollution. In this research, rod-like M-MoS2 serves as a channel for charge transfer, leading to superior photocatalytic activity compared [...] Read more.
The photocatalytic conversion of ethanol and the simultaneous development of hydrogen technology play a role in solving the energy crisis and reducing environmental pollution. In this research, rod-like M-MoS2 serves as a channel for charge transfer, leading to superior photocatalytic activity compared to H-MoS2. Further, two-dimensional (2D) B-doped C3N4 (BCN) nanosheets were anchored on the one-dimensional (1D) rod-like M-MoS2 surface to form a 1D/2D heterojunction, with M-MoS2/BCN-0.08 (mass ratio of M-MoS2:BCN of 0.08:1) exhibiting the highest photocatalytic performance. Under visible light irradiation, the ethanol conversion rate reached 1.79% after 5 h of photocatalytic reaction per gram of catalyst, while generating 421 μmol of 2,3-butanediol (2,3-BDO), 5460 μmol of acetaldehyde (AA), and 5410 μmol of hydrogen gas (H2). This different characterization provides evidence that a significant amount of photoinduced electrons generated in BCN under illumination conditions rapidly transfer to the conduction band (CB) of M-MoS2 through the rod-like structure of M-MoS2, and finally transfer to Pt to promote the production of hydrogen gas. The photoinduced holes in the valence band (VB) of M-MoS2 are rapidly consumed by ethanol upon transferring to BCN, effectively separating the photoinduced electron–hole pairs and resulting in superior photocatalytic performance. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

14 pages, 4411 KB  
Article
Fabrication of Two-Dimensional Bi2MoO6 Nanosheet-Decorated Bi2MoO6/Bi4O5Br2 Type II Heterojunction and the Enhanced Photocatalytic Degradation of Antibiotics
by Fengshu Kang, Gaidong Sheng, Xiaolong Yang and Yan Zhang
Inorganics 2024, 12(11), 289; https://doi.org/10.3390/inorganics12110289 - 4 Nov 2024
Cited by 5 | Viewed by 1622
Abstract
This article successfully synthesized a series of Bi2MoO6/Bi4O5Br2 heterojunctions using a two-step solvothermal method followed by calcination, and the photocatalytic activity by degradation of tetracycline hydrochloride (TC) was investigated. Compared with pure Bi4 [...] Read more.
This article successfully synthesized a series of Bi2MoO6/Bi4O5Br2 heterojunctions using a two-step solvothermal method followed by calcination, and the photocatalytic activity by degradation of tetracycline hydrochloride (TC) was investigated. Compared with pure Bi4O5Br2 and Bi2MoO6, a series of Bi2MoO6/Bi4O5Br2 heterojunctions exhibit higher photocatalytic activity, which can be attributed to the heterostructures with strong interfacial interaction, improving the charge separation. The 2% Bi2MoO6/Bi4O5Br2 heterojunction shows the best photocatalytic activity under visible light irradiation, which is 1.9 times and 1.8 times that of Bi2MoO6 and Bi4O5Br2, respectively. In addition, cyclic experiments have shown that 2% Bi2MoO6/Bi4O5Br2 heterojunction has high stability, with a degradation efficiency only decreasing by 3% after 5 cycles. From the capture agent experiment and ESR test, it can be seen that ·O2 and h+ are the main active species. A possible photocatalytic mechanism of 2% Bi2MoO6/Bi4O5Br2 heterojunction under visible light irradiation was proposed. Full article
Show Figures

Figure 1

14 pages, 3070 KB  
Article
One-Step Synthesis of Heterostructured Mo@MoO2 Nanosheets for High-Performance Supercapacitors with Long Cycling Life and High Rate Capability
by Ao Cheng, Yan Shen, Tao Cui, Zhe Liu, Yu Lin, Runze Zhan, Shuai Tang, Yu Zhang, Huanjun Chen and Shaozhi Deng
Nanomaterials 2024, 14(17), 1404; https://doi.org/10.3390/nano14171404 - 28 Aug 2024
Cited by 3 | Viewed by 1938
Abstract
Supercapacitors have gained increased attention in recent years due to their significant role in energy storage devices; their impact largely depends on the electrode material. The diversity of energy storage mechanisms means that various electrode materials can provide unique benefits for specific applications, [...] Read more.
Supercapacitors have gained increased attention in recent years due to their significant role in energy storage devices; their impact largely depends on the electrode material. The diversity of energy storage mechanisms means that various electrode materials can provide unique benefits for specific applications, highlighting the growing trend towards nanocomposite electrodes. Typically, these nanocomposite electrodes combine pseudocapacitive materials with carbon-based materials to form heterogeneous structural composites, often requiring complex multi-step preparation processes. This study introduces a straightforward approach to fabricate a non-carbon-based Mo@MoO2 nanosheet composite electrode using a one-step thermal evaporating vapor deposition (TEVD) method. This novel electrode features Mo at the core and MoO2 as the shell and demonstrates exceptional electrochemical performance. Specifically, at a current density of 1 A g−1, it achieves a storage capacity of 205.1 F g−1, maintaining virtually unchanged capacity after 10,000 charge–discharge cycles at 2 A g−1. The outstanding long-cycle stability is ascribed to the vertical two-dimensional geometry, the superior conductivity, and pseudocapacitance of the Mo@MoO2 core-shell nanosheets. These attributes significantly improve the electrode’s charge storage capacity, charge transfer speed, and structural integrity during the cycling process. The development of the one-step grown Mo@MoO2 nanosheets offers a promising way for the advancement of high-performance, non-carbon-based supercapacitor nanocomposite electrodes. Full article
Show Figures

Figure 1

13 pages, 2173 KB  
Article
Abundant Catalytic Edge Sites in Few-Layer Horizontally Aligned MoS2 Nanosheets Grown by Space-Confined Chemical Vapor Deposition
by Alin Velea, Angel-Theodor Buruiana, Claudia Mihai, Elena Matei, Teddy Tite and Florinel Sava
Crystals 2024, 14(6), 551; https://doi.org/10.3390/cryst14060551 - 14 Jun 2024
Cited by 3 | Viewed by 1683
Abstract
Recently, a smart strategy for two-dimensional (2D) materials synthesis has emerged, namely space-confined chemical vapor deposition (CVD). Its extreme case is the microreactor method, in which the growth substrate is face-to-face stacked on the source substrate. In order to grow 2D transition metal [...] Read more.
Recently, a smart strategy for two-dimensional (2D) materials synthesis has emerged, namely space-confined chemical vapor deposition (CVD). Its extreme case is the microreactor method, in which the growth substrate is face-to-face stacked on the source substrate. In order to grow 2D transition metal dichalcogenides by this method, transition metal oxides, dispersed in very small amounts on the source substrate, are used as source materials in most of the published reports. In this paper, a colloidal dispersion of MoS2 in saline solution is used and MoS2 nanosheets with various shapes, sizes (between 5 and 60 μm) and thicknesses (2–4 layers) have been synthesized. Small MoS2 flakes (regular or defective) are present on the surface of the nanosheets. Catalytic sites, undercoordinated atoms located at the edges of MoS2 flakes and nanosheets, are produced in a high number by a layer-plus-island (Stranski–Krastanov) growth mechanism. Several double-resonance Raman bands (at 147, 177, 187, 225, 247, 375 cm−1) are assignable to single phonon processes in which the excited electron is elastically scattered on a defect. The narrow 247 cm−1 peak is identified as a topological defect-activated peak. These findings highlight the potential of defect engineering in material property optimization, particularly for solar water splitting applications. Full article
(This article belongs to the Special Issue Advanced Materials for Applications in Water Splitting)
Show Figures

Figure 1

15 pages, 4600 KB  
Article
Rhodamine 6G/Transition Metal Dichalcogenide Hybrid Nanoscrolls for Enhanced Optoelectronic Performance
by Huihui Ye, Hailun Tang, Shilong Yu, Yang Yang and Hai Li
Molecules 2024, 29(12), 2799; https://doi.org/10.3390/molecules29122799 - 12 Jun 2024
Cited by 2 | Viewed by 1561
Abstract
The low light absorption efficiency has seriously hindered the application of two-dimensional transition metal dichalcogenide (TMDC) nanosheets in the field of optoelectronic devices. Various approaches have been used to improve the performance of TMDC nanosheets. Preparation of one-dimensional TMDC nanoscrolls in combination with [...] Read more.
The low light absorption efficiency has seriously hindered the application of two-dimensional transition metal dichalcogenide (TMDC) nanosheets in the field of optoelectronic devices. Various approaches have been used to improve the performance of TMDC nanosheets. Preparation of one-dimensional TMDC nanoscrolls in combination with photoactive materials has been a promising method to improve their properties recently. In this work, we report a facile method to enhance the optoelectronic performance of TMDC nanoscrolls by wrapping the photoactive organic dye rhodamine (R6G) into them. After R6G molecules were deposited on monolayer TMDC nanosheets by the solution method, the R6G/MoS2 nanoscrolls with lengths up to hundreds of microns were prepared in a short time by dropping a mixture of ammonia and ethanol solution on the R6G/MoS2 nanosheets. The as-obtained R6G/MoS2 nanoscrolls were well characterized by optical microscopy, atomic force microscopy, Raman spectroscopy, and transmission electron microscopy to prove the encapsulation of R6G. There are multiple type II heterojunction interfaces in the R6G/MoS2 nanoscrolls, which can promote the generation of photo-induced carriers and the following electron–hole separation. The separated electrons were transported rapidly along the axial direction of the R6G/MoS2 nanoscrolls, which greatly improves the efficiency of light absorption and photoresponse. Under the irradiation of an incident 405 nm laser, the photoresponsivity, carrier mobility, external quantum efficiency, and detectivity of R6G/MoS2 nanoscrolls were enhanced to 66.07 A/W, 132.93 cm2V−1s−1, 20,261%, and 1.25 × 1012 cm·Hz1/2W−1, which are four orders of magnitude higher than those of monolayer MoS2 nanosheets. Our work indicates that the R6G/TMDC hybrid nanoscrolls could be promising materials for high-performance optoelectronic devices. Full article
(This article belongs to the Special Issue 2D Nanosheets and Their Nanohybrids)
Show Figures

Figure 1

25 pages, 6668 KB  
Article
Two-Dimensional MoS2 Nanosheets Derived from Cathodic Exfoliation for Lithium Storage Applications
by Alberto Martínez-Jódar, Silvia Villar-Rodil, José M. Munuera, Alberto Castro-Muñiz, Jonathan N. Coleman, Encarnación Raymundo-Piñero and Juan I. Paredes
Nanomaterials 2024, 14(11), 932; https://doi.org/10.3390/nano14110932 - 25 May 2024
Cited by 2 | Viewed by 2823
Abstract
The preparation of 2H-phase MoS2 thin nanosheets by electrochemical delamination remains a challenge, despite numerous efforts in this direction. In this work, by choosing appropriate intercalating cations for cathodic delamination, the insertion process was facilitated, leading to a higher degree of exfoliation [...] Read more.
The preparation of 2H-phase MoS2 thin nanosheets by electrochemical delamination remains a challenge, despite numerous efforts in this direction. In this work, by choosing appropriate intercalating cations for cathodic delamination, the insertion process was facilitated, leading to a higher degree of exfoliation while maintaining the original 2H-phase of the starting bulk MoS2 material. Specifically, trimethylalkylammonium cations were tested as electrolytes, outperforming their bulkier tetraalkylammonium counterparts, which have been the focus of past studies. The performance of novel electrochemically derived 2H-phase MoS2 nanosheets as electrode material for electrochemical energy storage in lithium-ion batteries was investigated. The lower thickness and thus higher flexibility of cathodically exfoliated MoS2 promoted better electrochemical performance compared to liquid-phase and ultrasonically assisted exfoliated MoS2, both in terms of capacity (447 vs. 371 mA·h·g−1 at 0.2 A·g−1) and rate capability (30% vs. 8% capacity retained when the current density was increased from 0.2 A·g−1 to 5 A·g−1), as well as cycle life (44% vs. 17% capacity retention at 0.2 A·g−1 after 580 cycles). Overall, the present work provides a convenient route for obtaining MoS2 thin nanosheets for their advantageous use as anode material for lithium storage. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

15 pages, 5775 KB  
Article
A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction
by Shiteng Ma, Jingyu Guo, Hao Zhang, Xingyan Shao and Dongzhi Zhang
Nanomaterials 2024, 14(6), 537; https://doi.org/10.3390/nano14060537 - 18 Mar 2024
Cited by 18 | Viewed by 3333
Abstract
The combination of two-dimensional material MXene and one-dimensional metal oxide semiconductor can improve the carrier transmission rate, which can effectively improve sensing performance. We prepared a trimethylamine gas sensor based on MoO3 nanofibers and layered Ti3C2Tx MXene. [...] Read more.
The combination of two-dimensional material MXene and one-dimensional metal oxide semiconductor can improve the carrier transmission rate, which can effectively improve sensing performance. We prepared a trimethylamine gas sensor based on MoO3 nanofibers and layered Ti3C2Tx MXene. Using electrospinning and chemical etching methods, one-dimensional MoO3 nanofibers and two-dimensional Ti3C2Tx MXene nanosheets were prepared, respectively, and the composites were characterized via XPS, SEM, and TEM. The Ti3C2Tx MXene–MoO3 composite material exhibits excellent room-temperature response characteristics to trimethylamine gas, showing high response (up to four for 2 ppm trimethylamine gas) and rapid response–recovery time (10 s/7 s). Further, we have studied the possible sensitivity mechanism of the sensor. The Ti3C2Tx MXene–MoO3 composite material has a larger specific surface area and more abundant active sites, combined with p–n heterojunction, which effectively improves the sensitivity of the sensor. Because of its low detection limit and high stability, it has the potential to be applied in the detection system of trimethylamine as a biomarker in exhaled air. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Gas and Humidity Sensors)
Show Figures

Figure 1

34 pages, 15412 KB  
Review
Progress in Electronic, Energy, Biomedical and Environmental Applications of Boron Nitride and MoS2 Nanostructures
by Join Uddin, Raksha Dubey, Vinaayak Sivam Balasubramaniam, Jeff Kabel, Vedika Khare, Zohreh Salimi, Sambhawana Sharma, Dongyan Zhang and Yoke Khin Yap
Micromachines 2024, 15(3), 349; https://doi.org/10.3390/mi15030349 - 29 Feb 2024
Cited by 15 | Viewed by 4432
Abstract
In this review, we examine recent progress using boron nitride (BN) and molybdenum disulfide (MoS2) nanostructures for electronic, energy, biomedical, and environmental applications. The scope of coverage includes zero-, one-, and two-dimensional nanostructures such as BN nanosheets, BN nanotubes, BN quantum [...] Read more.
In this review, we examine recent progress using boron nitride (BN) and molybdenum disulfide (MoS2) nanostructures for electronic, energy, biomedical, and environmental applications. The scope of coverage includes zero-, one-, and two-dimensional nanostructures such as BN nanosheets, BN nanotubes, BN quantum dots, MoS2 nanosheets, and MoS2 quantum dots. These materials have sizable bandgaps, differentiating them from other metallic nanostructures or small-bandgap materials. We observed two interesting trends: (1) an increase in applications that use heterogeneous materials by combining BN and MoS2 nanostructures with other nanomaterials, and (2) strong research interest in environmental applications. Last, we encourage researchers to study how to remove nanomaterials from air, soil, and water contaminated with nanomaterials. As nanotechnology proceeds into various applications, environmental contamination is inevitable and must be addressed. Otherwise, nanomaterials will go into our food chain much like microplastics. Full article
Show Figures

Figure 1

13 pages, 4076 KB  
Article
Preparation of MoS2@PDA-Modified Polyimide Films with High Mechanical Performance and Improved Electrical Insulation
by Xian Cheng, Chenxi Wang, Shuo Chen, Leyuan Zhang, Zihao Liu and Wenhao Zhang
Polymers 2024, 16(4), 546; https://doi.org/10.3390/polym16040546 - 17 Feb 2024
Cited by 6 | Viewed by 2303
Abstract
Polyimide (PI) has been widely used in cable insulation, thermal insulation, wind power protection, and other fields due to its high chemical stability and excellent electrical insulation and mechanical properties. In this research, a modified PI composite film (MoS2@PDA/PI) was obtained [...] Read more.
Polyimide (PI) has been widely used in cable insulation, thermal insulation, wind power protection, and other fields due to its high chemical stability and excellent electrical insulation and mechanical properties. In this research, a modified PI composite film (MoS2@PDA/PI) was obtained by using polydopamine (PDA)-coated molybdenum disulfide (MoS2) as a filler. The low interlayer friction characteristics and high elastic modulus of MoS2 provide a theoretical basis for enhancing the flexible mechanical properties of the PI matrix. The formation of a cross-linking structure between a large number of active sites on the surface of the PDA and the PI molecular chain can effectively enhance the breakdown field strength of the film. Consequently, the tensile strength of the final sample MoS2@PDA/PI film increased by 44.7% in comparison with pure PI film, and the breakdown voltage strength reached 1.23 times that of the original film. It can be seen that the strategy of utilizing two-dimensional (2D) MoS2@PDA nanosheets filled with PI provides a new modification idea to enhance the mechanical and electrical insulation properties of PI films. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 6597 KB  
Article
Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy
by Chengjie Pei, Jindong Zhang and Hai Li
Nanomaterials 2024, 14(4), 339; https://doi.org/10.3390/nano14040339 - 9 Feb 2024
Cited by 3 | Viewed by 2114
Abstract
As one of the key features of two-dimensional (2D) layered materials, stacking order has been found to play an important role in modulating the interlayer interactions of 2D materials, potentially affecting their electronic and other properties as a consequence. In this work, ultralow-frequency [...] Read more.
As one of the key features of two-dimensional (2D) layered materials, stacking order has been found to play an important role in modulating the interlayer interactions of 2D materials, potentially affecting their electronic and other properties as a consequence. In this work, ultralow-frequency (ULF) Raman spectroscopy, electrostatic force microscopy (EFM), and high-resolution atomic force microscopy (HR-AFM) were used to systematically study the effect of stacking order on the interlayer interactions as well as electrostatic screening of few-layer polymorphic molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) nanosheets. The stacking order difference was first confirmed by measuring the ULF Raman spectrum of the nanosheets with polymorphic stacking domains. The atomic lattice arrangement revealed using HR-AFM also clearly showed a stacking order difference. In addition, EFM phase imaging clearly presented the distribution of the stacking domains in the mechanically exfoliated nanosheets, which could have arisen from electrostatic screening. The results indicate that EFM in combination with ULF Raman spectroscopy could be a simple, fast, and high-resolution method for probing the distribution of polymorphic stacking domains in 2D transition metal dichalcogenide materials. Our work might be promising for correlating the interlayer interactions of TMDC nanosheets with stacking order, a topic of great interest with regard to modulating their optoelectronic properties. Full article
(This article belongs to the Special Issue Mechanics of Micro/Nano Structures and Materials, Volume II)
Show Figures

Figure 1

12 pages, 1913 KB  
Article
ZIF-67 Anchored on MoS2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing
by Qiaolin Fan, Xiao Li, Hui Dong, Zhonghua Ni and Tao Hu
Biosensors 2024, 14(1), 38; https://doi.org/10.3390/bios14010038 - 12 Jan 2024
Cited by 9 | Viewed by 3067
Abstract
Graphene and graphene-like two-dimensional layered nanomaterials-based photoelectrochemical (PEC) biosensors have recently grown rapidly in popularity thanks to their advantages of high sensitivity and low background signal, which have attracted tremendous attention in ultrahigh sensitive small molecule detection. This work proposes a non-enzymatic and [...] Read more.
Graphene and graphene-like two-dimensional layered nanomaterials-based photoelectrochemical (PEC) biosensors have recently grown rapidly in popularity thanks to their advantages of high sensitivity and low background signal, which have attracted tremendous attention in ultrahigh sensitive small molecule detection. This work proposes a non-enzymatic and visible-light-sensitive PEC biosensing platform based on ZIF-67@MoS2/rGO composite which is synthesized through a facile and one-step microwave-assisted hydrothermal method. The combination of MoS2 and rGO could construct van der Waals heterostructures, which not only act as visible-light-active nanomaterials, but facilitate charge carriers transfer between the photoelectrode and glassy carbon electrode (GCE). ZIF-67 anchored on MoS2/rGO heterostructures provides large specific surface areas and a high proportion of catalytic sites, which cooperate with MoS2 nanosheets, realizing rapid and efficient enzyme-free electrocatalytic oxidation of glucose. The ZIF-67@MoS2/rGO-modified GCE can realize the rapid and sensitive detection of glucose at low detection voltage, which exhibits a high sensitivity of 12.62 μAmM−1cm−2. Finally, the ZIF-67@MoS2/rGO PEC biosensor is developed by integrating the ZIF-67@MoS2/rGO with a screen-printed electrode (SPE), which exhibits a high sensitivity of 3.479 μAmM−1cm−2 and a low detection limit of 1.39 μM. The biosensor’s selectivity, stability, and repeatability are systematically investigated, and its practicability is evaluated by detecting clinical serum samples. Full article
Show Figures

Figure 1

Back to TopTop