Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = ultrasonic injection molding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7359 KB  
Article
Characterization and Comparison of Polymer Melt Fluidity Across Three Ultrasonic Plasticization Molding Technologies
by Shiyun Wu, Jianjun Du, Junfeng Liang, Likuan Zhu and Jianguo Lei
Polymers 2025, 17(19), 2576; https://doi.org/10.3390/polym17192576 - 24 Sep 2025
Viewed by 292
Abstract
The influence of axial ultrasonic vibration (the dominant vibration mode) on the filling behavior of polymer melt in microcavities and its effect on microstructure formation remains inadequately understood. Based on the plasticization location and the extent to which the microcavity is covered by [...] Read more.
The influence of axial ultrasonic vibration (the dominant vibration mode) on the filling behavior of polymer melt in microcavities and its effect on microstructure formation remains inadequately understood. Based on the plasticization location and the extent to which the microcavity is covered by the ultrasonic sonotrode action surface, existing ultrasonic plasticization molding technologies were classified into three types—ultrasonic pressing (UP), ultrasonic plasticizing and pressing (UPP), and ultrasonic plasticization injection molding (UPIM). The effects of these configurations on melt fluidity and filling performance were evaluated and compared through slit flow tests. The interaction mechanisms between polymer melts and templates were elucidated based on melt pressure measurements and morphological changes in nickel micropillar arrays and silicon templates after molding. The results indicated that polymer melt exhibits improved flow behavior within microcavities when under the coverage area of the ultrasonic sonotrode action surface and subjected to the axial ultrasonic vibration. Continuous ultrasonic vibration contributed to sustaining melt fluidity during micropore filling. Among the three technologies, the most complex and intense mechanical interactions on the template microstructure were observed in UP, followed by UPP and then UPIM. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

19 pages, 5302 KB  
Article
Localized Ultrasonic Cleaning for Injection Mold Cavities: A Scalable In Situ Process with Surface Quality Monitoring
by Deviprasad Chalicheemalapalli Jayasankar, Thomas Tröster and Thorsten Marten
Technologies 2025, 13(8), 354; https://doi.org/10.3390/technologies13080354 - 11 Aug 2025
Viewed by 646
Abstract
As global industries seek to reduce energy consumption and lower CO2 emissions, the need for sustainable, efficient maintenance processes in manufacturing has become increasingly important. Traditional mold cleaning methods often require complete tool disassembly, extended downtime, and heavy use of solvents, resulting [...] Read more.
As global industries seek to reduce energy consumption and lower CO2 emissions, the need for sustainable, efficient maintenance processes in manufacturing has become increasingly important. Traditional mold cleaning methods often require complete tool disassembly, extended downtime, and heavy use of solvents, resulting in high energy costs and environmental impact. This study presents a novel localized ultrasonic cleaning process for injection molding tools that enables targeted, in situ cleaning of mold cavities without removing the tool from the press. A precisely positioned ultrasonic transducer delivers cleaning energy directly to contaminated areas, eliminating the need for complete mold removal. Multiple cleaning agents, including alkaline and organic acid solutions, were evaluated for their effectiveness in combination with ultrasonic excitation. Surface roughness measurements were used to assess cleaning performance over repeated contamination and cleaning cycles. Although initial tests were performed manually in the lab, results indicate that the method can be scaled up and automated effectively. This process offers a promising path toward energy-efficient, low-emission tool maintenance across a wide range of injection molding applications. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

27 pages, 3540 KB  
Article
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements
by Hanjui Chang, Yue Sun, Fei Long and Jiaquan Li
Polymers 2025, 17(15), 2018; https://doi.org/10.3390/polym17152018 - 24 Jul 2025
Viewed by 450
Abstract
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded [...] Read more.
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded electronics (IMEs) technology to fabricate piezoelectric micro-ultrasonic transducers with micron-scale precision, addressing the critical issue of acoustic node displacement caused by thermal–mechanical coupling in injection molding—a problem that impairs wave transmission efficiency and operational stability. To optimize the IME process parameters, a hybrid multi-objective optimization framework integrating NSGA-II and MOPSO is developed, aiming to simultaneously minimize acoustic node displacement, volumetric shrinkage, and residual stress distribution. Key process variables—packing pressure (80–120 MPa), melt temperature (230–280 °C), and packing time (15–30 s)—are analyzed via finite element modeling (FEM) and validated through in situ tie bar elongation measurements. The results show a 27.3% reduction in node displacement amplitude and a 19.6% improvement in wave transmission uniformity compared to conventional methods. This methodology enhances acoustic tweezers’ operational stability and provides a generalizable framework for multi-physics optimization in MEMS manufacturing, laying a foundation for next-generation applications in single-cell manipulation, lab-on-a-chip systems, and nanomaterial assembly. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

24 pages, 5146 KB  
Review
From Manual to Automated: Exploring the Evolution of Switchover Methods in Injection Molding Processes—A Review
by Christian Bielenberg, Markus Stommel and Peter Karlinger
Polymers 2025, 17(8), 1096; https://doi.org/10.3390/polym17081096 - 18 Apr 2025
Cited by 1 | Viewed by 1295
Abstract
Thermoplastic injection molding is a widely used process for producing complex three-dimensional plastic parts with tight dimensional tolerances. A key determinant of part quality is the switchover point—the transition from velocity-controlled filling to pressure-controlled packing. This transition affects critical product attributes, such as [...] Read more.
Thermoplastic injection molding is a widely used process for producing complex three-dimensional plastic parts with tight dimensional tolerances. A key determinant of part quality is the switchover point—the transition from velocity-controlled filling to pressure-controlled packing. This transition affects critical product attributes, such as d imensional accuracy, weight consistency, and surface finish. Precise control of the switchover point enhances process stability, robustness, and adaptability. This review consolidates recent advancements in switchover methods and adaptive control techniques. Improvements in traditional methods include the use of pressure gradient detection to mitigate viscosity variations and adaptive control to refine stroke- and time-dependent switchovers. In addition, deformation-based strategies detect the mold-opening force associated with cavity pressure through clamping force, mold separation, or tie-bar elongation. The integration of machine learning and feature extraction techniques enables the real-time adjustment of the switchover point by mapping relationships between process parameters and quality criteria. In addition, ultrasonic sensors provide non-invasive melt front detection, reducing the risk of mold damage. Real-time simulations, updated through nozzle pressure feedback, complement these methods to achieve precise switchover timing. This review also identifies persistent challenges, such as sensitivity to material properties, machine wear, and environmental conditions, and it explores future directions for improving the accuracy and adaptability of switchover control in modern injection molding processes. Full article
Show Figures

Figure 1

19 pages, 4801 KB  
Article
Modeling the Ultrasonic Micro-Injection Molding Process Using the Buckingham Pi Theorem
by Marco Salazar-Meza, Oscar Martínez-Romero, José Emiliano Reséndiz-Hernández, Daniel Olvera-Trejo, Jorge Alfredo Estrada-Díaz, Claudia Angélica Ramírez-Herrera and Alex Elías-Zúñiga
Polymers 2023, 15(18), 3779; https://doi.org/10.3390/polym15183779 - 15 Sep 2023
Cited by 1 | Viewed by 2266
Abstract
Dimensional analysis through the Buckingham Pi theorem was confirmed as an efficient mathematical tool to model the otherwise non-linear high order ultrasonic micro-injection molding process (UMIM). Several combinations of processing conditions were evaluated to obtain experimental measurements and validate the derived equations. UMIM [...] Read more.
Dimensional analysis through the Buckingham Pi theorem was confirmed as an efficient mathematical tool to model the otherwise non-linear high order ultrasonic micro-injection molding process (UMIM). Several combinations of processing conditions were evaluated to obtain experimental measurements and validate the derived equations. UMIM processing parameters, output variable energy consumption, and final specimen’s Young modulus were arranged in dimensionless groups and formulated as functional relationships, which lead to dimensionless equations that predict output variables as a function of the user-specified processing parameters and known material properties. Full article
(This article belongs to the Special Issue Advances in Rheology and Polymer Processing)
Show Figures

Figure 1

14 pages, 7542 KB  
Article
Preparation and Validation of a Longitudinally and Transversely Stiffened Panel Based on Hybrid RTM Composite Materials
by Weidong Li, Zhengzheng Ma, Pengfei Shen, Chuyang Luo, Xiangyu Zhong, Shicai Jiang, Weihua Bai, Luping Xie, Xiaolan Hu and Jianwen Bao
Materials 2023, 16(14), 5156; https://doi.org/10.3390/ma16145156 - 21 Jul 2023
Cited by 2 | Viewed by 4298
Abstract
In the face of the difficulty in achieving high-quality integrated molding of longitudinally and transversely stiffened panels for helicopters by resin-matrix composite materials, we combine the prepreg process and the resin transfer molding (RTM) process to propose a hybrid resin transfer molding (HRTM) [...] Read more.
In the face of the difficulty in achieving high-quality integrated molding of longitudinally and transversely stiffened panels for helicopters by resin-matrix composite materials, we combine the prepreg process and the resin transfer molding (RTM) process to propose a hybrid resin transfer molding (HRTM) for composite stiffened panel structures. The HRTM process uses a mixture of prepreg and dry fabric to lay up a hybrid fiber preform, and involves injecting liquid resin technology. Using this process, a longitudinally and transversely stiffened panel structure is prepared, and the failure modes under compressive load are explored. The results show that at the injection temperature of the RTM resin, the prepreg resin dissolves slightly and has little effect on the viscosity of the RTM resin. Both resins have good miscibility at the curing temperature, which allows for the overall curing of the resin. A removable box core mold for the HRTM molding is designed, which makes it convenient for the mold to be removed after molding and is suitable for the overall molding of the composite stiffened panel. Ultrasonic C-scan results show that the internal quality of the composite laminates prepared using the HRTM process is good. A compression test proves that the composite stiffened panel undergoes sequential buckling deformation in different areas under compressive load, followed by localized debonding and delamination of the skin, and finally failure due to the fracture of the longitudinal reinforcement ribs on both sides. The compressive performance of the test specimen is in good agreement with the finite element simulation results. The verification results show that the HRTM process can achieve high-quality integrated molding of the composite longitudinally and transversely stiffened panel structure. Full article
Show Figures

Figure 1

13 pages, 5086 KB  
Article
Polypropylene-Based Polymer Locking Ligation System Manufacturing by the Ultrasonic Micromolding Process
by Alex Elías-Grajeda, Elisa Vázquez-Lepe, Héctor R. Siller, Imperio Anel Perales-Martínez, Emiliano Reséndiz-Hernández, Claudia Angélica Ramírez-Herrera, Daniel Olvera-Trejo and Oscar Martínez-Romero
Polymers 2023, 15(14), 3049; https://doi.org/10.3390/polym15143049 - 15 Jul 2023
Cited by 3 | Viewed by 1781
Abstract
In recent years, there has been a growing demand for biocompatible medical devices on the microscale. However, the manufacturing of certain microfeatures has posed a significant challenge. To address this limitation, a new process called ultrasonic injection molding or ultrasonic molding (USM) has [...] Read more.
In recent years, there has been a growing demand for biocompatible medical devices on the microscale. However, the manufacturing of certain microfeatures has posed a significant challenge. To address this limitation, a new process called ultrasonic injection molding or ultrasonic molding (USM) has emerged as a potential solution. In this study, we focused on the production of a specific microdevice known as Hem-O-Lok, which is designed for ligation and tissue repair during laparoscopic surgery. Utilizing USM technology, we successfully manufactured the microdevice using a nonabsorbable biopolymer that offers the necessary flexibility for easy handling and use. To ensure high-quality microdevices, we extensively investigated various processing parameters such as vibration amplitude, temperature, and injection velocity. Through careful experimentation, we determined that the microdevice achieved optimal quality when manufactured under conditions of maximum vibrational amplitude and temperatures of 50 and 60 °C. This conclusion was supported by measurements of critical microfeatures. Additionally, our materials characterization efforts revealed the presence of a carbonyl (C=O) group resulting from the thermo-oxidation of air in the plasticizing chamber. This finding contributes to the enhanced thermal stability of the microdevices within a temperature range of 429–437 °C. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 7820 KB  
Article
High-Frequency Ultrasonic Spectroscopy of Structure Gradients in Injection-Molded PEEK Using a Focusing Transducer
by Jannik Summa, Moritz Kurkowski, Christian Jungmann, Ute Rabe, Yvonne Spoerer, Markus Stommel and Hans-Georg Herrmann
Sensors 2023, 23(14), 6370; https://doi.org/10.3390/s23146370 - 13 Jul 2023
Cited by 1 | Viewed by 1931
Abstract
For high-performance thermoplastic materials, material behavior results from the degree of crystallization and the distribution of crystalline phases. Due to the less stiff amorphous and the stiffer and anisotropic crystalline phases, the microstructural properties are inhomogeneous. Thus, imaging of the microstructure is an [...] Read more.
For high-performance thermoplastic materials, material behavior results from the degree of crystallization and the distribution of crystalline phases. Due to the less stiff amorphous and the stiffer and anisotropic crystalline phases, the microstructural properties are inhomogeneous. Thus, imaging of the microstructure is an important tool to characterize the process-induced morphology and the resulting properties. Using focusing ultrasonic transducers with high frequency (25 MHz nominal center frequency) enables the imaging of specimens with high lateral resolution, while wave propagation is related to the elastic modulus, density and damping of the medium. The present work shows experimental results of high-frequency ultrasonic spectroscopy (HF-US) applied to injection-molded polyether-ether-ketone (PEEK) tensile specimens with different process-related morphologies. This work presents different analysis procedures, e.g., backwall echo, time of flight and Fourier-transformed time signals, facilitating the mapping of gradual mechanical properties and assigning them to different crystalline content and morphological zones. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 3551 KB  
Article
A Rapid Prototyping Method for Sub-MHz Single-Element Piezoelectric Transducers by Using 3D-Printed Components
by Jinwook Kim, Bryce Menichella, Hanjoo Lee, Paul A. Dayton and Gianmarco F. Pinton
Sensors 2023, 23(1), 313; https://doi.org/10.3390/s23010313 - 28 Dec 2022
Cited by 5 | Viewed by 3548
Abstract
We present a rapid prototyping method for sub-megahertz single-element piezoelectric transducers by using 3D-printed components. In most of the early research phases of applying new sonication ideas, the prototyping quickness is prioritized over the final packaging quality, since the quickness of preliminary demonstration [...] Read more.
We present a rapid prototyping method for sub-megahertz single-element piezoelectric transducers by using 3D-printed components. In most of the early research phases of applying new sonication ideas, the prototyping quickness is prioritized over the final packaging quality, since the quickness of preliminary demonstration is crucial for promptly determining specific aims and feasible research approaches. We aim to develop a rapid prototyping method for functional ultrasonic transducers to overcome the current long lead time (>a few weeks). Here, we used 3D-printed external housing parts considering a single matching layer and either air backing or epoxy-composite backing (acoustic impedance > 5 MRayl). By molding a single matching layer on the top surface of a piezoceramic in a 3D-printed housing, an entire packaging time was significantly reduced (<26 h) compared to the conventional methods with grinding, stacking, and bonding. We demonstrated this prototyping method for 590-kHz single-element, rectangular-aperture transducers for moderate pressure amplitudes (mechanical index > 1) at focus with temporal pulse controllability (maximum amplitude by <5-cycle burst). We adopted an air-backing design (Type A) for efficient pressure outputs, and bandwidth improvement was tested by a tungsten-composite-backing (Type B) design. The acoustic characterization results showed that the type A prototype provided 3.3 kPa/Vpp far-field transmitting sensitivity with 25.3% fractional bandwidth whereas the type B transducer showed 2.1 kPa/Vpp transmitting sensitivity with 43.3% fractional bandwidth. As this method provided discernable quickness and cost efficiency, this detailed rapid prototyping guideline can be useful for early-phase sonication projects, such as multi-element therapeutic ultrasound array and micro/nanomedicine testing benchtop device prototyping. Full article
(This article belongs to the Special Issue The Development of Piezoelectric Sensors and Actuators)
Show Figures

Figure 1

11 pages, 3115 KB  
Article
Experimental Study of Injection Molding Replicability for the Micro Embossment of the Ultrasonic Vibrator
by Tieli Zhu, Ying Liu, Tongmin Yu, Yifei Jin and Danyang Zhao
Polymers 2022, 14(22), 4798; https://doi.org/10.3390/polym14224798 - 8 Nov 2022
Cited by 4 | Viewed by 1962
Abstract
It is challenging to fabricate micro features on an injection-molded polymer product. Ultrasonic vibration induced into micro-injection molding is helpful for flow of polymer melt. In this paper, a micro-injection mold integrated with ultrasonic vibration was designed and fabricated, and micro embossment was [...] Read more.
It is challenging to fabricate micro features on an injection-molded polymer product. Ultrasonic vibration induced into micro-injection molding is helpful for flow of polymer melt. In this paper, a micro-injection mold integrated with ultrasonic vibration was designed and fabricated, and micro embossment was machined on the surface of the ultrasonic vibrator. Poly(methacrylic acid methyl ester) (PMMA) was used for injection molding experiments, with four ultrasonic power levels (0, 300, 600, and 900 W), three injection speed levels (60, 80, and 100 cm3/s), two injection pressure levels (60 and 90 MPa) and a mold temperature of 60 °C. It was found that ultrasonic vibration perpendicular to the middle surface of the cavity is beneficial in forming transverse microstructure, but is not conducive to generating longitudinal microstructure. Increase in injection pressure can improve molding qualities for both the longitudinal micro groove and the transverse micro groove. Increase in injection speed is not conducive to forming the longitudinal micro groove but benefits formation of the transverse micro groove. When ultrasonic vibration is applied at the injection and packing stages, molding quality of the longitudinal micro groove becomes worse, while that of the transverse micro groove becomes better. Full article
(This article belongs to the Special Issue Polymer Micro/Nanofabrication and Manufacturing II)
Show Figures

Figure 1

13 pages, 3532 KB  
Article
Experimental Characterization and Numerical Simulation of Voids in CFRP Components Processed by HP-RTM
by Zhewu Chen, Liansheng Peng and Zhi Xiao
Materials 2022, 15(15), 5249; https://doi.org/10.3390/ma15155249 - 29 Jul 2022
Cited by 6 | Viewed by 2505
Abstract
The long cycle of manufacturing continuous carbon fiber-reinforced composite has significantly limited its application in mass vehicle production. High-pressure resin transfer molding (HP-RTM) is the process with the ability to manufacture composites in a relatively short forming cycle (<5 min) using fast reactive [...] Read more.
The long cycle of manufacturing continuous carbon fiber-reinforced composite has significantly limited its application in mass vehicle production. High-pressure resin transfer molding (HP-RTM) is the process with the ability to manufacture composites in a relatively short forming cycle (<5 min) using fast reactive resin. The present study aims to investigate the influence of HP-RTM process variables including fiber volume fraction and resin injection flow rate on void characteristics, and flexural properties of manufactured CFRP components based on experiments and numerical simulations. An ultrasonic scanning system and optical microscope were selected to analyze defects, especially void characteristics. Quasi-static bending experiments were implemented for the CFRP specimens with different void contents to find their correlation with material’s flexural properties. The results showed that there was also a close correlation between void content and the flexural strength of manufactured laminates, as the flexural strength decreased by around 8% when the void content increased by ~0.5%. In most cases, the void size was smaller than 50 μm. The number of voids substantially increased with the increase in resin injection flow rate, while the potential effect of resin injection flow rate was far greater than the effect of fiber volume fraction on void contents. To form complicated CFRP components with better mechanical performance, resin injection flow rate should be carefully decided through simulations or preliminary experiments. Full article
Show Figures

Figure 1

34 pages, 10872 KB  
Article
Modeling of Multiphase Flow, Superheat Dissipation, Particle Transport, and Capture in a Vertical and Bending Continuous Caster
by Mingyi Liang, Seong-Mook Cho, Xiaoming Ruan and Brian G. Thomas
Processes 2022, 10(7), 1429; https://doi.org/10.3390/pr10071429 - 21 Jul 2022
Cited by 8 | Viewed by 3423
Abstract
A new model of particle entrapment during continuous casting of steel is presented, which includes the effects of multiphase flow from argon gas injection and thermal buoyancy from superheat in the strand. The model simulates three different capture mechanisms, including capture by solidified [...] Read more.
A new model of particle entrapment during continuous casting of steel is presented, which includes the effects of multiphase flow from argon gas injection and thermal buoyancy from superheat in the strand. The model simulates three different capture mechanisms, including capture by solidified hooks at the meniscus, entrapment between dendrites, and engulfment by the surrounding of large particles. The fluid flow and bubble capture results are validated with plant measurements, including nail board dipping tests and ultrasonic tests, respectively, and good agreement is seen. Results suggest that the superheat has a negligible effect on the flow in the mold region. However, higher (30 K) superheat causes a more complex flow in the lower strand by creating multiple recirculation zones due to the thermal buoyancy effects. This causes less penetration deep into the strand, which leads to fewer and shallower particle captures. Lower (10 K) superheat may enable significant top surface freezing, leading to very large internal defect clusters. Lower superheat also leads to deeper meniscus hooks, which sometimes (0.003%) capture large (1 mm) bubbles. Capture bands occur near the transition line from vertical to curved, due to the downward fluid velocity balancing the particle terminal velocity, enabling capture in the relative stagnation region beneath the longitudinal recirculation zone. These findings agree with plant observations. Full article
(This article belongs to the Special Issue High-Efficiency and High-Quality Continuous Casting Processes)
Show Figures

Figure 1

14 pages, 4877 KB  
Article
Preparation of a Heterogeneous Catalyst CuO-Fe2O3/CTS-ATP and Degradation of Methylene Blue and Ciprofloxacin
by Ting Zhang, Wenhui Li, Qiyang Guo, Yi Wang and Chunlei Li
Coatings 2022, 12(5), 559; https://doi.org/10.3390/coatings12050559 - 20 Apr 2022
Cited by 11 | Viewed by 2863
Abstract
A heterogeneous particle catalyst (CuO-Fe2O3/CTS-ATP) was synthesized via injection molding and ultrasonic immersion method, which is fast and effective. The particle catalyst applied attapulgite (ATP) wrapped by chitosan (CTS) as support, which was loaded dual metal oxides CuO and [...] Read more.
A heterogeneous particle catalyst (CuO-Fe2O3/CTS-ATP) was synthesized via injection molding and ultrasonic immersion method, which is fast and effective. The particle catalyst applied attapulgite (ATP) wrapped by chitosan (CTS) as support, which was loaded dual metal oxides CuO and Fe2O3 as active components. After a series of characterizations of catalysts, it was found that CuO and Fe2O3 were successfully and evenly loaded on the surface of the CTS-ATP support. The catalyst was used to degrade methylene blue (MB) and ciprofloxacin (CIP), and the experimental results showed that the degradation ratios of MB and CIP can reach 99.29% and 86.2%, respectively, in the optimal conditions. The degradation mechanism of as-prepared catalyst was analyzed according to its synthesis process and ∙OH production, and the double-cycle catalytic mechanism was proposed. The intermediate products of MB and CIP degradation were also identified by HPLC-MS, and the possible degradation pathways were put forward. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Graphical abstract

12 pages, 5659 KB  
Article
Numerical Simulation on the Acoustic Streaming Driven Mixing in Ultrasonic Plasticizing of Thermoplastic Polymers
by Wangqing Wu, Yang Zou, Guomeng Wei and Bingyan Jiang
Polymers 2022, 14(6), 1073; https://doi.org/10.3390/polym14061073 - 8 Mar 2022
Cited by 5 | Viewed by 2048
Abstract
The acoustic melt stream velocity field, total force, and trajectory of fluorescent particles in the plasticizing chamber were analyzed using finite element simulation to investigate the acoustic streaming and mixing characteristics in ultrasonic plasticization micro-injection molding (UPMIM). The fluorescence intensity of ultrasonic plasticized [...] Read more.
The acoustic melt stream velocity field, total force, and trajectory of fluorescent particles in the plasticizing chamber were analyzed using finite element simulation to investigate the acoustic streaming and mixing characteristics in ultrasonic plasticization micro-injection molding (UPMIM). The fluorescence intensity of ultrasonic plasticized samples containing thermoplastic polymer powders and fluorescent particles was used to determine the correlation between UPMIM process parameters and melt mixing characteristics. The results confirm that the acoustic streaming driven mixing occurs in ultrasonic plasticization and could provide similar shear stirring performance as the screw in traditional extrusion/injection molding. It was found that ultrasonic vibrations can cause several melt vortices to develop in the plasticizing chamber, with the melt rotating around the center of the vortex. With increasing ultrasonic amplitude, the melt stream velocity was shown to increase while retaining the trace, which could be altered by modulating other parameters. The fluorescent particles are subjected to a two-order-of-magnitude stronger Stokes drag force than the acoustic radiation force. The average fluorescence intensity was found to be adversely related to the distance from the sonotrodes’ end surface, and fluorescence particles were more equally distributed at higher parameter levels. Full article
(This article belongs to the Special Issue Polymer Micro/Nanofabrication and Manufacturing)
Show Figures

Figure 1

18 pages, 4979 KB  
Article
Insights on the Molecular Behavior of Polypropylene in the Process of Ultrasonic Injection Molding
by Jackeline Iturbe-Ek, Alan O. Sustaita, Diego Aguilar-Viches, José Manuel Mata-Padilla, Carlos A. Ávila-Orta, Luis E. Elizalde, Alex Elías-Zúñiga and Luis Marcelo Lozano
Polymers 2021, 13(22), 4010; https://doi.org/10.3390/polym13224010 - 19 Nov 2021
Cited by 9 | Viewed by 2899
Abstract
Product miniaturization is a constant trend in industries that demand ever-smaller products that can be mass produced while maintaining high precision dimensions in the final pieces. Ultrasonic micro injection molding (UMIM) technology has emerged as a polymer processing technique capable of achieving the [...] Read more.
Product miniaturization is a constant trend in industries that demand ever-smaller products that can be mass produced while maintaining high precision dimensions in the final pieces. Ultrasonic micro injection molding (UMIM) technology has emerged as a polymer processing technique capable of achieving the mass production of polymeric parts with micro-features, while still assuring replicability, repeatability, and high precision, contrary to the capabilities of conventional processing technologies of polymers. In this study, it is shown that the variation of parameters during the UMIM process, such as the amplitude of the ultrasound waves and the processing time, lead to significant modification on the molecular structure of the polymer. The variation of both the amplitude and processing time contribute to chain scission; however, the processing time is a more relevant factor for this effect as it is capable of achieving a greater chain scission in different areas of the same specimen. Further, the presence of polymorphism within the samples produced by UMIM is demonstrated. Similarly to conventional processes, the UMIM technique leads to some degree of chain orientation, despite the fact that it is carried out in a relatively small time and space. The results presented here aim to contribute to the optimization of the use of the UMIM process for the manufacture of polymeric micro parts. Full article
(This article belongs to the Special Issue Precise Polymer Processing Technology)
Show Figures

Figure 1

Back to TopTop