Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = unfolded neural networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 54664 KiB  
Article
Lensless Digital Holographic Reconstruction Based on the Deep Unfolding Iterative Shrinkage Thresholding Network
by Duofang Chen, Zijian Guo, Huidi Guan and Xueli Chen
Electronics 2025, 14(9), 1697; https://doi.org/10.3390/electronics14091697 - 22 Apr 2025
Viewed by 175
Abstract
Without using any optical lenses, lensless digital holography (LDH) records the hologram of a sample and numerically retrieves the amplitude and phase of the sample from the hologram. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable, [...] Read more.
Without using any optical lenses, lensless digital holography (LDH) records the hologram of a sample and numerically retrieves the amplitude and phase of the sample from the hologram. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable, and cost-effective devices to potentially address various point-of-care-, global health-, and telemedicine-related challenges. However, in lensless digital holography, the reconstruction results are severely affected by zero-order noise and twin images as only the hologram intensity can be recorded. To mitigate such interference and enhance image quality, extensive efforts have been made. In recent years, deep learning (DL)-based approaches have made significant advancements in the field of LDH reconstruction. It is well known that most deep learning networks are often regarded as black-box models, which poses challenges in terms of interpretability. Here, we present a deep unfolding network, dubbed the ISTAHolo-Net, for LDH reconstruction. The ISTAHolo-Net replaces the traditional iterative update steps with a fixed number of sub-networks and the regularization weights with learnable parameters. Every sub-network consists of two modules, which are the gradient descent module (GDM) and the proximal mapping module (PMM), respectively. The ISTAHolo-Net incorporates the sparsity-constrained inverse problem model into the neural network and hence combines the interpretability of traditional iterative algorithms with the learning capabilities of neural networks. Simulation and real experiments were conducted to verify the effectiveness of the proposed reconstruction method. The performance of the proposed method was compared with the angular spectrum method (ASM), the HRNet, the Y-Net, and the DH-GAN. The results show that the DL-based reconstruction algorithms can effectively reduce the interference of twin images, thereby improving image reconstruction quality, and the proposed ISTAHolo-Net performs best on our dataset. Full article
Show Figures

Figure 1

20 pages, 4978 KiB  
Article
Direction of Arrival (DOA) Estimation Using a Deep Unfolded Learned Iterative Shrinkage Thresholding Algorithm (LISTA) Network in a Non-Uniform Metasurface
by Xinyi Niu, Xiaolong Su, Lida He and Guanchao Chen
Remote Sens. 2025, 17(7), 1253; https://doi.org/10.3390/rs17071253 - 1 Apr 2025
Viewed by 330
Abstract
This paper proposes a novel method for Direction of Arrival (DOA) estimation using a deep unfolded LISTA network in a non-uniform metasurface. Traditional DOA estimation methods often face challenges such as limited accuracy, high computational complexity, and poor adaptability to complex signal environments. [...] Read more.
This paper proposes a novel method for Direction of Arrival (DOA) estimation using a deep unfolded LISTA network in a non-uniform metasurface. Traditional DOA estimation methods often face challenges such as limited accuracy, high computational complexity, and poor adaptability to complex signal environments. To address these issues, we optimize a non-uniform metasurface array to reduce hardware costs and mutual coupling effects while enhancing resolution. Additionally, a deep unfolded Learned Iterative Shrinkage Thresholding Algorithm (LISTA) network is constructed by transforming Iterative Shrinkage Thresholding Algorithm (ISTA) iterative steps into trainable neural network layers, combining model-driven logic with data-driven parameter optimization. Simulation results prove that this method enhances higher precision and reduces computational complexity in comparison with traditional algorithms, especially under low SNR conditions. Furthermore, the method exhibits greater generalization ability, making it a reliable approach for high-precision DOA estimation in practical applications. Full article
(This article belongs to the Special Issue Array and Signal Processing for Radar)
Show Figures

Figure 1

17 pages, 1240 KiB  
Technical Note
MAL-Net: Model-Adaptive Learned Network for Slow-Time Ambiguity Function Shaping
by Jun Wang, Xiangqing Xiao, Jinfeng Hu, Ziwei Zhao, Kai Zhong and Chaohai Li
Remote Sens. 2025, 17(1), 173; https://doi.org/10.3390/rs17010173 - 6 Jan 2025
Cited by 1 | Viewed by 681
Abstract
Designing waveforms with a Constant Modulus Constraint (CMC) to achieve desirable Slow-Time Ambiguity Function (STAF) characteristics is significantly important in radar technology. The problem is NP-hard, due to its non-convex quartic objective function and CMC constraint. Existing methods typically involve model-based approaches with [...] Read more.
Designing waveforms with a Constant Modulus Constraint (CMC) to achieve desirable Slow-Time Ambiguity Function (STAF) characteristics is significantly important in radar technology. The problem is NP-hard, due to its non-convex quartic objective function and CMC constraint. Existing methods typically involve model-based approaches with relaxation and data-driven Deep Neural Networks (DNNs) methods, which face the challenge of dataimitation. We observe that the Complex Circle Manifold (CCM) naturally satisfies the CMC. By projecting onto the CCM, the problem is transformed into an unconstrained minimization problem that can be tackled using the CCM gradient descent model. Furthermore, we observe that the gradient descent model over the CCM can be unfolded as a Deep Learning (DL) network. Therefore, byeveraging the powerfulearning ability of DL and the CCM gradient descent model, we propose a Model-Adaptive Learned Network (MAL-Net) method without relaxation. Initially, we reformulate the problem as an Unconstrained Quartic Problem (UQP) on the CCM. Then, the MAL-Net is developed toearn the step sizes of allayers adaptively. This is accomplished by unrolling the CCM gradient descent model as the networkayer. Our simulation results demonstrate that the proposed MAL-Net achieves superior STAF performance compared to existing methods. Full article
(This article belongs to the Special Issue Advances in Remote Sensing, Radar Techniques, and Their Applications)
Show Figures

Figure 1

22 pages, 638 KiB  
Article
Unfolded Algorithms for Deep Phase Retrieval
by Naveed Naimipour, Shahin Khobahi, Mojtaba Soltanalian, Haleh Safavi and Harry C. Shaw
Algorithms 2024, 17(12), 587; https://doi.org/10.3390/a17120587 - 20 Dec 2024
Viewed by 851
Abstract
Exploring the idea of phase retrieval has been intriguing researchers for decades due to its appearance in a wide range of applications. The task of a phase retrieval algorithm is typically to recover a signal from linear phase-less measurements. In this paper, we [...] Read more.
Exploring the idea of phase retrieval has been intriguing researchers for decades due to its appearance in a wide range of applications. The task of a phase retrieval algorithm is typically to recover a signal from linear phase-less measurements. In this paper, we approach the problem by proposing a hybrid model-based, data-driven deep architecture referred to as Unfolded Phase Retrieval (UPR), which exhibits significant potential in improving the performance of state-of-the-art data-driven and model-based phase retrieval algorithms. The proposed method benefits from the versatility and interpretability of well-established model-based algorithms while simultaneously benefiting from the expressive power of deep neural networks. In particular, our proposed model-based deep architecture is applied to the conventional phase retrieval problem (via the incremental reshaped Wirtinger flow algorithm) and the sparse phase retrieval problem (via the sparse truncated amplitude flow algorithm), showing immense promise in both cases. Furthermore, we consider a joint design of the sensing matrix and the signal processing algorithm and utilize the deep unfolding technique in the process. Our numerical results illustrate the effectiveness of such hybrid model-based and data-driven frameworks and showcase the untapped potential of data-aided methodologies to enhance existing phase retrieval algorithms. Full article
(This article belongs to the Special Issue Machine Learning for Edge Computing)
Show Figures

Figure 1

17 pages, 6702 KiB  
Article
A Variational Neural Network Based on Algorithm Unfolding for Image Blind Deblurring
by Shaoqing Gong, Yeran Wang, Guangyu Yang, Weibo Wei, Junli Zhao and Zhenkuan Pan
Appl. Sci. 2024, 14(24), 11742; https://doi.org/10.3390/app142411742 - 16 Dec 2024
Viewed by 827
Abstract
Image blind deblurring is an ill-posed inverse problem in image processing. While deep learning approaches have demonstrated effectiveness, they often lack interpretability and require extensive data. To address these limitations, we propose a novel variational neural network based on algorithm unfolding. The model [...] Read more.
Image blind deblurring is an ill-posed inverse problem in image processing. While deep learning approaches have demonstrated effectiveness, they often lack interpretability and require extensive data. To address these limitations, we propose a novel variational neural network based on algorithm unfolding. The model is solved using the half quadratic splitting (HQS) method and proximal gradient descent. For blur kernel estimation, we introduce an L0 regularizer to constrain the gradient information and use the fast fourier transform (FFT) to solve the iterative results, thereby improving accuracy. Image restoration is initiated with Gabor filters for the convolution kernel, and the activation function is approximated using a Gaussian radial basis function (RBF). Additionally, two attention mechanisms improve feature selection. The experimental results on various datasets demonstrate that our model outperforms state-of-the-art algorithm unfolding networks and other blind deblurring models. Our approach enhances interpretability and generalization while utilizing fewer data and parameters. Full article
Show Figures

Figure 1

14 pages, 9388 KiB  
Article
Lower Limb Joint Angle Prediction Based on Multistream Signaling and Quantile Regression, Temporal Convolution Network–Bidirectional Long Short-Term Memory Network Neural Network
by Leilei Wang, Yunxue Wang, Fei Guo, Hao Yan and Feifei Zhao
Machines 2024, 12(12), 901; https://doi.org/10.3390/machines12120901 - 8 Dec 2024
Viewed by 1056
Abstract
In recent years, the increasing number of patients with spinal cord injuries, strokes, and lower limb disabilities has led to the gradual development of rehabilitation-assisted exoskeleton robots. A critical aspect of these robots is their ability to accurately sense human movement intentions to [...] Read more.
In recent years, the increasing number of patients with spinal cord injuries, strokes, and lower limb disabilities has led to the gradual development of rehabilitation-assisted exoskeleton robots. A critical aspect of these robots is their ability to accurately sense human movement intentions to achieve smooth and natural control. This paper describes research carried out on predicting the motion angles of human lower limb joints. Based on the design of a signal acquisition system for physiological muscle signals and inertial measurement unit (IMU) data, a hybrid neural network prediction model (QRTCN-BiLSTM) and a single neural network prediction model (QRBiLSTM) were constructed using quantile regression, temporal convolution network (TCN) and bidirectional long short-term memory network (BiLSTM), respectively. At the same time, 7-channel surface electromyographic signals (sEMG) and 12-channel IMU data from hip and knee joints were collected and input into the QRBiLSTM and QRTCN-BiLSTM models to unfold the training and analyze the comparison. The results show that the QRTCN-BiLSTM model can more accurately infer human movement intention and provide a more reliable and accurate prediction tool for human–robot interaction research in rehabilitation robotics. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Graphical abstract

18 pages, 6989 KiB  
Article
A Deep Unfolding Network for Multispectral and Hyperspectral Image Fusion
by Bihui Zhang, Xiangyong Cao and Deyu Meng
Remote Sens. 2024, 16(21), 3979; https://doi.org/10.3390/rs16213979 - 26 Oct 2024
Cited by 1 | Viewed by 1275
Abstract
Multispectral and hyperspectral image fusion (MS/HS fusion) aims to generate a high-resolution hyperspectral (HRHS) image by fusing a high-resolution multispectral (HRMS) and a low-resolution hyperspectral (LRHS) images. The deep unfolding-based MS/HS fusion method is a representative deep learning paradigm due to its excellent [...] Read more.
Multispectral and hyperspectral image fusion (MS/HS fusion) aims to generate a high-resolution hyperspectral (HRHS) image by fusing a high-resolution multispectral (HRMS) and a low-resolution hyperspectral (LRHS) images. The deep unfolding-based MS/HS fusion method is a representative deep learning paradigm due to its excellent performance and sufficient interpretability. However, existing deep unfolding-based MS/HS fusion methods only rely on a fixed linear degradation model, which focuses on modeling the relationships between HRHS and HRMS, as well as HRHS and LRHS. In this paper, we break free from this observation model framework and propose a new observation model. Firstly, the proposed observation model is built based on the convolutional sparse coding (CSC) technique, and then a proximal gradient algorithm is designed to solve this model. Secondly, we unfold the iterative algorithm into a deep network, dubbed as MHF-CSCNet, where the proximal operators are learned using convolutional neural networks. Finally, all trainable parameters can be automatically learned end-to-end from the training pairs. Experimental evaluations conducted on various benchmark datasets demonstrate the superiority of our method both quantitatively and qualitatively compared to other state-of-the-art methods. Full article
Show Figures

Figure 1

16 pages, 6029 KiB  
Article
FusionOpt-Net: A Transformer-Based Compressive Sensing Reconstruction Algorithm
by Honghao Zhang, Bi Chen, Xianwei Gao, Xiang Yao and Linyu Hou
Sensors 2024, 24(18), 5976; https://doi.org/10.3390/s24185976 - 14 Sep 2024
Viewed by 1273
Abstract
Compressive sensing (CS) is a notable technique in signal processing, especially in multimedia, as it allows for simultaneous signal acquisition and dimensionality reduction. Recent advancements in deep learning (DL) have led to the creation of deep unfolding architectures, which overcome the inefficiency and [...] Read more.
Compressive sensing (CS) is a notable technique in signal processing, especially in multimedia, as it allows for simultaneous signal acquisition and dimensionality reduction. Recent advancements in deep learning (DL) have led to the creation of deep unfolding architectures, which overcome the inefficiency and subpar quality of traditional CS reconstruction methods. In this paper, we introduce a novel CS image reconstruction algorithm that leverages the strengths of the fast iterative shrinkage-thresholding algorithm (FISTA) and modern Transformer networks. To enhance computational efficiency, we employ a block-based sampling approach in the sampling module. By mapping FISTA’s iterative process onto neural networks in the reconstruction module, we address the hyperparameter challenges of traditional algorithms, thereby improving reconstruction efficiency. Moreover, the robust feature extraction capabilities of Transformer networks significantly enhance image reconstruction quality. Experimental results show that the FusionOpt-Net model surpasses other advanced methods on various public benchmark datasets. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 5847 KiB  
Article
Intelligent Tracking Method for Aerial Maneuvering Target Based on Unscented Kalman Filter
by Yunlong Dong, Weiqi Li, Dongxue Li, Chao Liu and Wei Xue
Remote Sens. 2024, 16(17), 3301; https://doi.org/10.3390/rs16173301 - 5 Sep 2024
Viewed by 1459
Abstract
This paper constructs a nonlinear iterative filtering framework based on a neural network prediction model. It uses recurrent neural networks (RNNs) to achieve accurate regression of complex maneuvering target dynamic models and integrates them into the nonlinear iterative filtering system via Unscented Transformation [...] Read more.
This paper constructs a nonlinear iterative filtering framework based on a neural network prediction model. It uses recurrent neural networks (RNNs) to achieve accurate regression of complex maneuvering target dynamic models and integrates them into the nonlinear iterative filtering system via Unscented Transformation (UT). In constructing the neural network prediction model, the Temporal Convolutional Network (TCN) modules that capture long-term dependencies and the Long Short-Term Memory (LSTM) modules that selectively forget non-essential information were utilized to achieve accurate regression of the maneuvering models. When embedding the neural network prediction model, this paper proposes a method for extracting Sigma points using the UT transformation by ‘unfolding’ multi-sequence vectors and explores design techniques for the time sliding window length of recurrent neural networks. Ultimately, an intelligent tracking algorithm based on unscented filtering, called TCN-LSTM-UKF, was developed, effectively addressing the difficulties of constructing models and transition delays under high-maneuvering conditions and significantly improving the tracking performance of highly maneuvering targets. Full article
(This article belongs to the Special Issue Technical Developments in Radar—Processing and Application)
Show Figures

Graphical abstract

14 pages, 3250 KiB  
Article
Non-Invasive Diagnostic Approach for Diabetes Using Pulse Wave Analysis and Deep Learning
by Hiruni Gunathilaka, Rumesh Rajapaksha, Thosini Kumarika, Dinusha Perera, Uditha Herath, Charith Jayathilaka, Janitha Liyanage and Sudath Kalingamudali
Informatics 2024, 11(3), 51; https://doi.org/10.3390/informatics11030051 - 19 Jul 2024
Viewed by 2193
Abstract
The surging prevalence of diabetes globally necessitates advancements in non-invasive diagnostics, particularly for the early detection of cardiovascular anomalies associated with the condition. This study explores the efficacy of Pulse Wave Analysis (PWA) for distinguishing diabetic from non-diabetic individuals through morphological examination of [...] Read more.
The surging prevalence of diabetes globally necessitates advancements in non-invasive diagnostics, particularly for the early detection of cardiovascular anomalies associated with the condition. This study explores the efficacy of Pulse Wave Analysis (PWA) for distinguishing diabetic from non-diabetic individuals through morphological examination of pressure pulse waveforms. The research unfolds in four phases: data accrual, preprocessing, Convolutional Neural Network (CNN) model construction, and performance evaluation. Data were procured using a multipara patient monitor, resulting in 2000 pulse waves equally divided between healthy individuals and those with diabetes. These were used to train, validate, and test three distinct CNN architectures: the conventional CNN, Visual Geometry Group (VGG16), and Residual Networks (ResNet18). The accuracy, precision, recall, and F1 score gauged each model’s proficiency. The CNN demonstrated a training accuracy of 82.09% and a testing accuracy of 80.6%. The VGG16, with its deeper structure, surpassed the baseline with training and testing accuracies of 90.2% and 86.57%, respectively. ResNet18 excelled, achieving a training accuracy of 92.50% and a testing accuracy of 92.00%, indicating its robustness in pattern recognition within pulse wave data. Deploying deep learning for diabetes screening marks progress, suggesting clinical use and future studies on bigger datasets for refinement. Full article
(This article belongs to the Section Medical and Clinical Informatics)
Show Figures

Figure 1

23 pages, 8534 KiB  
Article
A Data and Model-Driven Clutter Suppression Method for Airborne Bistatic Radar Based on Deep Unfolding
by Weijun Huang, Tong Wang and Kun Liu
Remote Sens. 2024, 16(14), 2516; https://doi.org/10.3390/rs16142516 - 9 Jul 2024
Cited by 1 | Viewed by 1188
Abstract
Space–time adaptive processing (STAP) based on sparse recovery achieves excellent clutter suppression and target detection performance, even with a limited number of available training samples. However, most of these methods face performance degradation due to grid mismatch, which impedes their application in bistatic [...] Read more.
Space–time adaptive processing (STAP) based on sparse recovery achieves excellent clutter suppression and target detection performance, even with a limited number of available training samples. However, most of these methods face performance degradation due to grid mismatch, which impedes their application in bistatic clutter suppression. Some gridless methods, such as atomic norm minimization (ANM), can effectively address grid mismatch issues, yet they are sensitive to parameter settings and array errors. In this article, the authors propose a data and model-driven algorithm that unfolds the iterative process of atomic norm minimization into a deep network. This approach establishes a concrete and systematic link between iterative algorithms, extensively utilized in signal processing, and deep neural networks. This methodology not only addresses the challenges associated with parameter settings in traditional optimization algorithms, but also mitigates the lack of interpretability issues commonly found in deep neural networks. Moreover, due to more rational parameter settings, the proposed algorithm achieves effective clutter suppression with fewer iterations, thereby reducing computational time. Finally, extensive simulation experiments demonstrate the effectiveness of the proposed algorithm in clutter suppression for airborne bistatic radar. Full article
Show Figures

Figure 1

20 pages, 17791 KiB  
Article
Role of Neurocellular Endoplasmic Reticulum Stress Response in Alzheimer’s Disease and Related Dementias Risk
by Miriam Aceves, Jose Granados, Ana C. Leandro, Juan Peralta, David C. Glahn, Sarah Williams-Blangero, Joanne E. Curran, John Blangero and Satish Kumar
Genes 2024, 15(5), 569; https://doi.org/10.3390/genes15050569 - 28 Apr 2024
Cited by 1 | Viewed by 3250
Abstract
Currently, more than 55 million people around the world suffer from dementia, and Alzheimer’s Disease and Related Dementias (ADRD) accounts for nearly 60–70% of all those cases. The spread of Alzheimer’s Disease (AD) pathology and progressive neurodegeneration in the hippocampus and cerebral cortex [...] Read more.
Currently, more than 55 million people around the world suffer from dementia, and Alzheimer’s Disease and Related Dementias (ADRD) accounts for nearly 60–70% of all those cases. The spread of Alzheimer’s Disease (AD) pathology and progressive neurodegeneration in the hippocampus and cerebral cortex is strongly correlated with cognitive decline in AD patients; however, the molecular underpinning of ADRD’s causality is still unclear. Studies of postmortem AD brains and animal models of AD suggest that elevated endoplasmic reticulum (ER) stress may have a role in ADRD pathology through altered neurocellular homeostasis in brain regions associated with learning and memory. To study the ER stress-associated neurocellular response and its effects on neurocellular homeostasis and neurogenesis, we modeled an ER stress challenge using thapsigargin (TG), a specific inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), in the induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) of two individuals from our Mexican American Family Study (MAFS). High-content screening and transcriptomic analysis of the control and ER stress-challenged NSCs showed that the NSCs’ ER stress response resulted in a significant decline in NSC self-renewal and an increase in apoptosis and cellular oxidative stress. A total of 2300 genes were significantly (moderated t statistics FDR-corrected p-value ≤ 0.05 and fold change absolute ≥ 2.0) differentially expressed (DE). The pathway enrichment and gene network analysis of DE genes suggests that all three unfolded protein response (UPR) pathways, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE1), were significantly activated and cooperatively regulated the NSCs’ transcriptional response to ER stress. Our results show that IRE1/X-box binding protein 1 (XBP1) mediated transcriptional regulation of the E2F transcription factor 1 (E2F1) gene, and its downstream targets have a dominant role in inducing G1/S-phase cell cycle arrest in ER stress-challenged NSCs. The ER stress-challenged NSCs also showed the activation of C/EBP homologous protein (CHOP)-mediated apoptosis and the dysregulation of synaptic plasticity and neurotransmitter homeostasis-associated genes. Overall, our results suggest that the ER stress-associated attenuation of NSC self-renewal, increased apoptosis, and dysregulated synaptic plasticity and neurotransmitter homeostasis plausibly play a role in the causation of ADRD. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 7541 KiB  
Article
Sparse SAR Imaging Algorithm in Marine Environments Based on Memory-Augmented Deep Unfolding Network
by Yao Zhao, Chengwen Ou, He Tian, Bingo Wing-Kuen Ling, Ye Tian and Zhe Zhang
Remote Sens. 2024, 16(7), 1289; https://doi.org/10.3390/rs16071289 - 5 Apr 2024
Cited by 3 | Viewed by 1942
Abstract
Oceanic targets, including ripples, islands, vessels, and coastlines, display distinct sparse characteristics, rendering the ocean a significant arena for sparse Synthetic Aperture Radar (SAR) imaging rooted in sparse signal processing. Deep neural networks (DNNs), a current research emphasis, have, when integrated with sparse [...] Read more.
Oceanic targets, including ripples, islands, vessels, and coastlines, display distinct sparse characteristics, rendering the ocean a significant arena for sparse Synthetic Aperture Radar (SAR) imaging rooted in sparse signal processing. Deep neural networks (DNNs), a current research emphasis, have, when integrated with sparse SAR, attracted notable attention for their exceptional imaging capabilities and high computational efficiency. Yet, the efficiency of traditional unfolding techniques is impeded by their architecturally inefficient design, which curtails their information transmission capacity and consequently detracts from the quality of reconstruction. This paper unveils a novel Memory-Augmented Deep Unfolding Network (MADUN) for SAR imaging in marine environments. Our methodology harnesses the synergies between deep learning and algorithmic unfolding, enhanced with a memory component, to elevate SAR imaging’s computational precision. At the heart of our investigation is the incorporation of High-Throughput Short-Term Memory (HSM) and Cross-Stage Long-Term Memory (CLM) within the MADUN framework, ensuring robust information flow across unfolding stages and solidifying the foundation for deep, long-term informational correlations. Our experimental results demonstrate that our strategy significantly surpasses existing methods in enhancing the reconstruction of sparse marine scenes. Full article
(This article belongs to the Special Issue Radar Signal Processing and Imaging for Ocean Remote Sensing)
Show Figures

Figure 1

21 pages, 9439 KiB  
Article
ADMM-1DNet: Online Monitoring Method for Outdoor Mechanical Equipment Part Signals Based on Deep Learning and Compressed Sensing
by Jingyi Hu, Junfeng Guo, Zhiyuan Rui and Zhiming Wang
Appl. Sci. 2024, 14(6), 2653; https://doi.org/10.3390/app14062653 - 21 Mar 2024
Viewed by 1179
Abstract
To solve the problem that noise seriously affects the online monitoring of parts signals of outdoor machinery, this paper proposes a signal reconstruction method integrating deep neural network and compression sensing, called ADMM-1DNet, and gives a detailed online vibration signal monitoring scheme. The [...] Read more.
To solve the problem that noise seriously affects the online monitoring of parts signals of outdoor machinery, this paper proposes a signal reconstruction method integrating deep neural network and compression sensing, called ADMM-1DNet, and gives a detailed online vibration signal monitoring scheme. The basic approach of the ADMM-1DNet network is to map the update steps of the classical Alternating Direction Method of Multipliers (ADMM) into the deep network architecture with a fixed number of layers, and each phase corresponds to an iteration in the traditional ADMM. At the same time, what differs from other unfolded networks is that ADMM-1DNet learns a redundant analysis operator, which can reduce the impact of outdoor high noise on reconstruction error by improving the signal sparse level. The implementation scheme includes the field operation of mechanical equipment and the operation of the data center. The empirical network trained by the local data center conducts an online reconstruction of the received outdoor vibration signal data. Experiments are conducted on two open-source bearing datasets, which verify that the proposed method outperforms the baseline method in terms of reconstruction accuracy and feature preservation, and the proposed implementation scheme can be adapted to the needs of different types of vibration signal reconstruction tasks. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

23 pages, 21681 KiB  
Article
LDnADMM-Net: A Denoising Unfolded Deep Neural Network for Direction-of-Arrival Estimations in A Low Signal-to-Noise Ratio
by Can Liang, Mingxuan Liu, Yang Li, Yanhua Wang and Xueyao Hu
Remote Sens. 2024, 16(3), 554; https://doi.org/10.3390/rs16030554 - 31 Jan 2024
Cited by 3 | Viewed by 1819
Abstract
In this paper, we explore the problem of direction-of-arrival (DOA) estimation for a non-uniform linear array (NULA) under strong noise. The compressed sensing (CS)-based methods are widely used in NULA DOA estimations. However, these methods commonly rely on the tuning of parameters, which [...] Read more.
In this paper, we explore the problem of direction-of-arrival (DOA) estimation for a non-uniform linear array (NULA) under strong noise. The compressed sensing (CS)-based methods are widely used in NULA DOA estimations. However, these methods commonly rely on the tuning of parameters, which are hard to fine-tune. Additionally, these methods lack robustness under strong noise. To address these issues, this paper proposes a novel DOA estimation approach using a deep neural network (DNN) for a NULA in a low SNR. The proposed network is designed based on the denoising convolutional neural network (DnCNN) and the alternating direction method of multipliers (ADMM), which is dubbed as LDnADMM-Net. First, we construct an unfolded DNN architecture that mimics the behavior of the iterative processing of an ADMM. In this way, the parameters of an ADMM can be transformed into the network weights, and thus we can adaptively optimize these parameters through network training. Then, we employ the DnCNN to develop a denoising module (DnM) and integrate it into the unfolded DNN. Using this DnM, we can enhance the anti-noise ability of the proposed network and obtain a robust DOA estimation in a low SNR. The simulation and experimental results show that the proposed LDnADMM-Net can obtain high-accuracy and super-resolution DOA estimations for a NULA with strong robustness in a low signal-to-noise ratio (SNR). Full article
(This article belongs to the Special Issue State-of-the-Art and Future Developments: Short-Range Radar)
Show Figures

Figure 1

Back to TopTop