Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,607)

Search Parameters:
Keywords = use-dependent plasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1206 KB  
Review
LRP5: A Multifaceted Co-receptor in Development, Disease, and Therapeutic Target
by Abdulmajeed F. Alrefaei
Cells 2025, 14(17), 1391; https://doi.org/10.3390/cells14171391 - 5 Sep 2025
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5) is a multifunctional transmembrane coreceptor that plays a pivotal role in development and disease. Wnt/β-catenin signaling is the primary downstream signaling pathway activated by LRP5. Furthermore, some LRP5 functions are mediated by noncanonical pathways, such as AKT/P21 [...] Read more.
Low-density lipoprotein receptor-related protein 5 (LRP5) is a multifunctional transmembrane coreceptor that plays a pivotal role in development and disease. Wnt/β-catenin signaling is the primary downstream signaling pathway activated by LRP5. Furthermore, some LRP5 functions are mediated by noncanonical pathways, such as AKT/P21 and TGF-β/Smad signaling. Pathologically, both loss-of-function and gain-of-function mutations in LRP5 produce distinct phenotypes, ranging from osteoporosis-pseudoglioma syndrome to high bone mass disorders. Beyond the skeletal system, LRP5 has emerged as a key regulator of retinal angiogenesis, vascular integrity, renal tubular function, neurodevelopment, and lipid metabolism. Its physiological functions are highlighted by its ability to influence adipocyte differentiation, insulin sensitivity, and neuronal synaptic plasticity. Moreover, LRP5 displays a dual role in development and disease progression. Although it plays a protective role in acute injuries such as myocardial infarction and acute kidney injury, LRP5 also contributes to chronic pathologies such as tubulointerstitial fibrosis, polycystic kidney disease, and atherosclerosis through fibrotic and inflammatory pathways. Recent therapeutic interest has focused on modulating LRP5 activity using agents such as anti-Dickkopf-related protein 1 antibody, sclerostin inhibitors, polyclonal antibodies, CRISPR/Cas9 knockout, and some natural products. This review discusses the current understanding of LRP5's physiological and pathological roles across organ systems and highlights its therapeutic potential, emphasizing the need for targeted approaches considering its context-dependent effects. Full article
(This article belongs to the Section Tissues and Organs)
19 pages, 1169 KB  
Review
Polyethylene Microplastics and Human Cells: A Critical Review
by Sharin Valdivia, Camila Riquelme, María Constanza Carrasco, Paulina Weisser, Carolina Añazco, Andrés Alarcón and Sebastián Alarcón
Toxics 2025, 13(9), 756; https://doi.org/10.3390/toxics13090756 - 5 Sep 2025
Abstract
The widespread production and poor management of plastic waste have led to the pervasive presence of microplastics (MPs) in environmental and biological systems. Among various polymers, polyethylene (PE) is the most widely produced plastic globally, primarily due to its use in single-use packaging. [...] Read more.
The widespread production and poor management of plastic waste have led to the pervasive presence of microplastics (MPs) in environmental and biological systems. Among various polymers, polyethylene (PE) is the most widely produced plastic globally, primarily due to its use in single-use packaging. Its persistence in ecosystems and resistance to degradation processes result in the continuous formation of PE-derived MPs. These particles have been detected in human biological matrices, including blood, lungs, placenta, and even the brain, raising increasing concerns about their bioavailability and potential health effects. Once internalized, PE MPs can interact with cellular membranes, induce oxidative stress, inflammation, and apoptosis, and interfere with epigenetic regulatory pathways. In vitro studies on epithelial, immune, and neuronal cells reveal concentration-dependent cytotoxicity, mitochondrial dysfunction, membrane disruption, and activation of pro-inflammatory cytokines. Moreover, recent findings suggest that PE MPs can induce epithelial-to-mesenchymal transition (EMT), senescence, and epigenetic dysregulation, including altered expression of miRNAs and DNA methyltransferases. These cellular changes highlight the potential role of MPs in disease development, especially in cardiovascular, metabolic, and possibly cancer-related conditions. Despite growing evidence, no standardized method currently exists for quantifying MPs in human samples, complicating comparisons across studies. Further, MPs can carry harmful additives and environmental contaminants such as bisphenols, phthalates, dioxins, and heavy metals, which enhance their toxicity. Global estimates indicate that humans ingest and inhale tens of thousands of MPs particles each year, yet long-term human research remains limited. Given these findings, it is crucial to expand research on PE MP toxicodynamics and to establish regulatory policies to reduce their release. Promoting alternative biodegradable materials and improved waste management practices will be vital in decreasing human exposure to MPs and minimizing potential health risks. Full article
Show Figures

Graphical abstract

8 pages, 4212 KB  
Communication
Optimizing Thermomechanical Processing for Producing Bulk Fine-Grained Aluminum Alloy with Thermal Stability
by Jesada Punyafu, Chonlada Domrong, Ussadawut Patakham, Mitsuhiro Murayama and Chaiyasit Banjongprasert
Materials 2025, 18(17), 4180; https://doi.org/10.3390/ma18174180 - 5 Sep 2025
Abstract
This study investigates the thermal stability of fine-grained structures achieved through different severe plastic deformation (SPD) and heat treatment paths. Bulk fine-grained Al-0.1Sc-0.1Zr (wt%) alloy was produced via equal channel angular pressing (ECAP) using routes Bc or C, with aging before or after [...] Read more.
This study investigates the thermal stability of fine-grained structures achieved through different severe plastic deformation (SPD) and heat treatment paths. Bulk fine-grained Al-0.1Sc-0.1Zr (wt%) alloy was produced via equal channel angular pressing (ECAP) using routes Bc or C, with aging before or after the ECAP. Electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM) analyses demonstrate excellent thermal stability of all four specimens. They maintain mean grain sizes below 5 μm after a 10 h thermal test at 450 °C, attributed to the presence of nano Al3(Sc,Zr) precipitates within the microstructures. Route Bc in the ECAP method forms more stable high-angle grain boundaries (HAGBs) than route C. Whether aging occurs before or after the ECAP, similar microstructural changes are observed after thermal testing, allowing fine-tuning of the microstructure depending on the application or subsequent processes. Full article
20 pages, 10615 KB  
Article
Blast-Resistant Performance Evaluation of Steel Box Girder of Suspension Bridge
by Qi Peng, Qizhen Wang and Liangliang Ma
Buildings 2025, 15(17), 3210; https://doi.org/10.3390/buildings15173210 - 5 Sep 2025
Abstract
Explosions pose significant risks to large-span steel bridges, which are integral to modern transportation networks and construction projects. This study evaluates the blast resistance of the orthotropic bridge deck of the Taizhou Yangtze River Bridge using numerical simulations validated by explosion tests. Five [...] Read more.
Explosions pose significant risks to large-span steel bridges, which are integral to modern transportation networks and construction projects. This study evaluates the blast resistance of the orthotropic bridge deck of the Taizhou Yangtze River Bridge using numerical simulations validated by explosion tests. Five vehicular bomb scenarios, as specified by the Federal Emergency Management Agency, were analyzed to understand the damage mechanisms under above-deck explosions. Results show that all scenarios cause petal-shaped openings in the top plate, fractures in U-stiffeners, and plastic deformation in diaphragms. Larger TNT masses lead to additional failures, such as outward bending and bottom plate openings. Energy dissipation primarily occurs through plastic deformation and failure of various deck components, with the extent depending on the TNT mass. The vehicle shell significantly reduces damage for smaller charges (454 kg TNT) but has a minor effect for larger charges (>4536 kg TNT). This research enhances the understanding of blast resistance in orthotropic steel decks, a key component in modern bridge construction, and informs practices for designing resilient structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 9993 KB  
Article
Morphological Characterization of Aspergillus flavus in Culture Media Using Digital Image Processing and Radiomic Analysis Under UV Radiation
by Oscar J. Suarez, Daniel C. Ruiz-Ayala, Liliana Rojas Contreras, Manuel G. Forero, Jesús A. Medrano-Hermosillo and Abraham Efraim Rodriguez-Mata
Agriculture 2025, 15(17), 1888; https://doi.org/10.3390/agriculture15171888 - 5 Sep 2025
Abstract
The identification of Aspergillus flavus (A. flavus), a fungus known for producing aflatoxins, poses a taxonomic challenge due to its morphological plasticity and similarity to closely related species. This article proposes a computational approach for its characterization across four culture media, [...] Read more.
The identification of Aspergillus flavus (A. flavus), a fungus known for producing aflatoxins, poses a taxonomic challenge due to its morphological plasticity and similarity to closely related species. This article proposes a computational approach for its characterization across four culture media, using ultraviolet (UV) radiation imaging and radiomic analysis. Images were acquired with a camera controlled by a Raspberry Pi and processed to extract 408 radiomic features (102 per color channel and grayscale). Shapiro–Wilk and Levene’s tests were applied to verify normality and homogeneity of variances as prerequisites for an analysis of variance (ANOVA). Nine features showed statistically significant differences and, together with the culture medium type as a categorical variable, were used in a supervised classification stage with cross-validation. Classification using Support Vector Machines (SVM) achieved 97% accuracy on the test set. The results showed that the morphology of A. flavus varies significantly depending on the medium under UV radiation, with malt extract agar being the most discriminative. This non-invasive and low-cost approach demonstrates the potential of radiomics combined with machine learning to capture morphological patterns useful in the differentiation of fungi with optical response under UV radiation. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

21 pages, 6078 KB  
Article
Integrating Microstructures and Dual Constitutive Models in Instrumented Indentation Technique for Mechanical Properties Evaluation of Metallic Materials
by Yubiao Zhang, Bin Wang, Yonggang Zhang, Shuai Wang, Shun Zhang and He Xue
Materials 2025, 18(17), 4159; https://doi.org/10.3390/ma18174159 - 4 Sep 2025
Abstract
Local variations in mechanical properties are commonly observed in engineering structures, driven by complex manufacturing histories and harsh service environments. The evaluation of mechanical properties accurately constitutes a fundamental requirement for structural integrity assessment. The Instrumented Indentation Technique (IIT) can play a critical [...] Read more.
Local variations in mechanical properties are commonly observed in engineering structures, driven by complex manufacturing histories and harsh service environments. The evaluation of mechanical properties accurately constitutes a fundamental requirement for structural integrity assessment. The Instrumented Indentation Technique (IIT) can play a critical role in the in-site testing of local properties. However, it could be often a challenge to correlate indentation characteristics with uniaxial stress–strain relationships. In this study, we investigated quantitatively the connection between the indentation responses of commonly used metals and their plastic properties using the finite element inversion method. Materials typically exhibit plastic deformation mechanisms characterized by either linear or power-law hardening behaviors. Consequently, conventional prediction methods based on a single constitutive model may no longer be universally applicable. Hence, this study developed methods for acquiring mechanical properties suitable for either the power-law and linear hardening model, or combined, respectively, based on analyses of microstructures of materials exhibiting different hardening behaviors. We proposed a novel integrated IIT incorporating microstructures and material-specific constitutive models. Moreover, the inter-dependency between microstructural evolution and hardening behaviors was systematically investigated. The proposed method was validated on representative engineering steels, including austenitic stainless steel, structural steel, and low-alloy steel. The predicted deviations in yield strength and strain hardening exponent are broadly within 10%, with the maximum error at 12%. This study is expected to provide a fundamental framework for the advancement of IIT and structural integrity assessment. Full article
Show Figures

Figure 1

18 pages, 1709 KB  
Article
Formation of Improved Metallurgical Properties and Carbon Structure of Coke by Optimizing the Composition of Petrographically Heterogeneous Interbasin Coal Batches
by Denis Miroshnichenko, Kateryna Shmeltser, Maryna Kormer, Leonid Bannikov, Serhii Nedbailo, Mykhailo Miroshnychenko, Natalya Mukina and Mariia Shved
C 2025, 11(3), 69; https://doi.org/10.3390/c11030069 - 4 Sep 2025
Abstract
Given the multi-basin raw material base for coking that has been formed at most industry enterprises, there is an urgent need to optimize the component composition and improve the basic technological methods of coal raw material preparation, taking into account the petrographic characteristics [...] Read more.
Given the multi-basin raw material base for coking that has been formed at most industry enterprises, there is an urgent need to optimize the component composition and improve the basic technological methods of coal raw material preparation, taking into account the petrographic characteristics of coal batches. A comprehensive study of the components included in a coke chemical enterprise’s coking raw material base was carried out. The work used standardized methods for studying coal and coal batches’ technological and plastic–viscous properties. The qualitative characteristics of coke were determined using physical–mechanical and thermochemical methods of studying standardized indicators: crushability (M25), abrasion (M10), reactivity (CRI), post-reaction strength (CSR), and specific electrical resistance (ρ). The results were analyzed using the licensed Microsoft Excel computer program. Based on the results of proximate, plastometric, and petrographic analyses of the studied coal samples and data from experimental industrial coking, proposals were made to optimize the component composition, properties of the coal batch, and technology for its preparation for coking. The established inverse dependence of Gibbs free energy (ΔGf,total) on the reaction capacity of coke CRI and its direct reliance on its post-reaction strength CSR confirmed the feasibility of using ΔGf,total as a thermodynamic predictive parameter for optimizing and compiling coal batches that produce less reactive, stronger coke. This made it possible to improve the quality indicators of metallurgical coke. Thus, according to the M25 crushability index, the mechanical strength increased by 0.6%, and the M10 abrasion decreased by 0.4%. Significant improvements in thermochemical properties and an increase in the orderliness of the carbon structure were recorded: the CRI reactivity decreased by 3.1%, the CSR post-reaction strength increased by 8.3%, and the specific resistance decreased by 8.4%. Full article
(This article belongs to the Topic Advances in Carbon-Based Materials)
Show Figures

Figure 1

31 pages, 1150 KB  
Review
Agricultural Plastic Waste Challenges and Innovations
by Alina Raphael, David Iluz and Yitzhak Mastai
Sustainability 2025, 17(17), 7941; https://doi.org/10.3390/su17177941 - 3 Sep 2025
Abstract
Agricultural plastic waste is a growing global concern, as the widespread use of plastics in farming paired with limited waste management infrastructure has led to environmental pollution, resource inefficiency, and practical challenges in rural communities. This review systematically analyzes international policy frameworks and [...] Read more.
Agricultural plastic waste is a growing global concern, as the widespread use of plastics in farming paired with limited waste management infrastructure has led to environmental pollution, resource inefficiency, and practical challenges in rural communities. This review systematically analyzes international policy frameworks and technological advancements aimed at improving agricultural plastic waste management, drawing on peer-reviewed literature and policy documents identified through targeted database searches and screened by transparent inclusion criteria. Comparative analysis of national strategies, such as extended producer responsibility, regional management models, and technology-driven incentives, is combined with a critical evaluation of recycling and biodegradable innovations. The results reveal that while integrated policies can enhance collectthion efficiency and funding stability, their implementation often encounters high costs, logistical barriers, and variability in stakeholder commitment. Advanced recycling methods and emerging biodegradable materials demonstrate technical promise, but face challenges related to field performance, cost-effectiveness, and scalability. The review concludes that sustainable management of agricultural plastics requires a multi-faceted approach, combining robust regulation, economic incentives, technological innovation, and ongoing empirical assessment. These findings emphasize the importance of adapting strategies to local contexts and suggest that the successful transition to circular management models will depend on continued collaboration across policy, technology, and stakeholder domains. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 4862 KB  
Article
Enzymatic SPR Approach for the Detection of Nano and Microplastic Particles Using Rainwater as Matrices
by Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Jonathan Muthuswamy Ponniah, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Microplastics 2025, 4(3), 57; https://doi.org/10.3390/microplastics4030057 - 1 Sep 2025
Viewed by 257
Abstract
The increasing presence of microplastics (MPs) and nanoplastics (NPs) in environmental matrices presents substantial analytical challenges due to their small size and chemical diversity. This study introduces a novel enzymatic biosensor based on the Surface Plasmon Resonance (SPR) platform for the sensitive detection [...] Read more.
The increasing presence of microplastics (MPs) and nanoplastics (NPs) in environmental matrices presents substantial analytical challenges due to their small size and chemical diversity. This study introduces a novel enzymatic biosensor based on the Surface Plasmon Resonance (SPR) platform for the sensitive detection of MPs and NPs, utilizing laccase as the recognition element. Standard plastic particles, including polystyrene (PS, 0.1 µm), polymethyl methacrylate (PMMA, 1.0 µm and 100 µm), and polyethylene (PE, 34–50 µm), were analyzed using SPR angular interrogation along with a fixed-angle scheme. The angular approach revealed a clear relationship between the resonance angle, particle size, and refractive index, while the fixed-angle method, combined with immobilized laccase, facilitated specific detection through enzyme/substrate interactions. The analytical parameters showed detection limits ranging from 7.5 × 10−4 µg/mL (PE, 34–50 µm) to 253.2 µg/mL (PMMA, 1 µm), with significant differences based on polymer type and enzymatic affinity. Application of the biosensor to real rainwater samples collected from two regions in Mexico (Tula and Molango) confirmed its functionality, although performance varied depending on matrix composition, exhibiting inhibition in samples with high manganese (Mn2+), chromium (Cr2+), and zinc (Zn2+) content. Despite these limitations, the sensor achieved a 113% recovery rate in Tula rainwater, demonstrating its potential for straightforward in situ environmental monitoring. This study highlights the capabilities of laccase-based SPR biosensors in enhancing microplastic detection and underscores the necessity of considering matrix effects for real-world applications. Full article
Show Figures

Figure 1

21 pages, 1620 KB  
Review
Perspectives on Eco-Friendly Food Packaging: Challenges, Solutions, and Trends
by Paula Fernanda Janetti Bócoli, Vitor Emanuel de Souza Gomes, Amanda Alves Domingos Maia and Luís Marangoni Júnior
Foods 2025, 14(17), 3062; https://doi.org/10.3390/foods14173062 - 30 Aug 2025
Viewed by 634
Abstract
The development of sustainable packaging in the food industry is essential to meet the growing demand for more environmentally friendly practices and to contribute to material circularity and solid waste reduction. In this context, this review explores the main categories of sustainable packaging [...] Read more.
The development of sustainable packaging in the food industry is essential to meet the growing demand for more environmentally friendly practices and to contribute to material circularity and solid waste reduction. In this context, this review explores the main categories of sustainable packaging in the food industry, including recyclable, reusable, biodegradable, and compostable packages, highlighting the materials used, their characteristics, advantages, and limitations. Furthermore, it discusses innovations that combine convenience and safety with lower environmental impact, such as the use of biopolymers, and nanomaterials that extend food preservation, enhance properties, and enable broader application. The adoption of these technologies can reduce dependence on fossil-based plastics and minimize environmental impacts, although challenges remain, such as economic viability, regulatory standardization, and consumer acceptance. Additionally, the review addresses difficulties related to recycling and reverse logistics, emphasizing the need for a joint effort among companies, governments, and consumers to promote a more sustainable food system. Thus, the research highlights the importance of innovation and collaboration in developing viable solutions that reconcile sustainability, food safety, and efficiency in the packaging industry. Full article
Show Figures

Figure 1

21 pages, 1696 KB  
Article
Residual Stress Estimation in Structures Composed of One-Dimensional Elements via Total Potential Energy Minimization Using Evolutionary Algorithms
by Fatih Uzun and Alexander M. Korsunsky
J. Manuf. Mater. Process. 2025, 9(9), 292; https://doi.org/10.3390/jmmp9090292 - 28 Aug 2025
Viewed by 425
Abstract
This study introduces a novel energy-based inverse method for estimating residual stresses in structures composed of one-dimensional elements undergoing elastic–plastic deformation. The problem is reformulated as a global optimization task governed by the principle of minimum total potential energy. Rather than solving equilibrium [...] Read more.
This study introduces a novel energy-based inverse method for estimating residual stresses in structures composed of one-dimensional elements undergoing elastic–plastic deformation. The problem is reformulated as a global optimization task governed by the principle of minimum total potential energy. Rather than solving equilibrium equations directly, the internal stress distribution is inferred by minimizing the structure’s total potential energy using a real-coded genetic algorithm. This approach avoids gradient-based solvers, matrix assembly, and incremental loading, making it suitable for nonlinear and history-dependent systems. Plastic deformation is encoded through element-wise stress-free lengths, and a dynamic fitness exponent strategy adaptively controls selection pressure during the evolutionary process. The method is validated on single- and multi-bar truss structures under axial tensile loading, using a bilinear elastoplastic material model. The results are benchmarked against nonlinear finite element simulations and analytical calculations, demonstrating excellent predictive capability with stress errors typically below 1%. In multi-material systems, the technique accurately reconstructs tensile and compressive residual stresses arising from elastic–plastic mismatch using only post-load geometry. These results demonstrate the method’s robustness and accuracy, offering a fully non-incremental, variational alternative to traditional inverse approaches. Its flexibility and computational efficiency make it a promising tool for residual stress estimation in complex structural applications involving plasticity and material heterogeneity. Full article
Show Figures

Figure 1

22 pages, 18622 KB  
Article
Effect of Fluorinated Graphite (FG) Addition on Friction Performance of FG-Ni/WC/CeO2 Cladding Layers over a Wide Temperature Range
by Ouyang Li, Guirong Yang, Wenming Song and Ying Ma
Materials 2025, 18(17), 3983; https://doi.org/10.3390/ma18173983 - 25 Aug 2025
Viewed by 429
Abstract
This study fabricated fluorinated graphite (FG)-reinforced Ni/WC/CeO2 cladding layers on 45 steel substrates using vacuum cladding technology. Their microstructure, phase composition, mechanical properties, and tribological behavior over a wide temperature range (25–800 °C) were systematically characterized. The results demonstrate that FG addition [...] Read more.
This study fabricated fluorinated graphite (FG)-reinforced Ni/WC/CeO2 cladding layers on 45 steel substrates using vacuum cladding technology. Their microstructure, phase composition, mechanical properties, and tribological behavior over a wide temperature range (25–800 °C) were systematically characterized. The results demonstrate that FG addition promotes the formation of a self-lubricating CeF3 phase. The optimal CeF3 phase formation efficiency occurred at a 1.5 wt% FG content (NWF15). The NWF15 cladding layer exhibited the smallest average grain size (15.88 nm) and the lowest porosity (0.1410%) among all samples. Mechanical testing revealed that this cladding layer possessed the highest microhardness (1062.7 ± 21.9 HV0.2). Its H/E and H3/E2 ratios, indicative of resistance to elastic strain and plastic deformation, reached 0.0489 and 0.0291, respectively. Tribological tests revealed pronounced temperature-dependent wear behavior: abrasive wear was predominant at 25 °C; adhesive wear dominated from 200 to 600 °C; and oxidative wear became the primary mechanism at 800 °C. Throughout this temperature range, the CeF3 phase effectively reduced wear damage by suppressing groove propagation and providing effective lubrication, particularly under high-temperature conditions. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

29 pages, 3349 KB  
Review
Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential
by Mateusz Pęśko and Anna Masek
Polymers 2025, 17(17), 2286; https://doi.org/10.3390/polym17172286 - 23 Aug 2025
Viewed by 660
Abstract
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive [...] Read more.
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive and structured overview of the recent progress (2020–2025) in the integration of plant-based biofillers into both thermoplastic and thermosetting polymer matrices, with a focus on surface modification techniques, physicochemical characterization, and emerging industrial applications. Unlike the prior literature, this work highlights the dual environmental and material benefits of using plant-derived fillers, particularly in the context of waste valorization and circular material design. By clearly identifying a current research gap—the limited scalability and processing efficiency of biofillers—this review proposes a strategy in which plant-derived materials function as key enablers for sustainable composite development. Special attention is given to extraction methods of lignocellulosic fillers from renewable agricultural waste streams and their subsequent functionalization to improve matrix compatibility. Additionally, it delineates the principal approaches for biofiller modification, demonstrating how their properties can be tailored to meet specific needs in biocomposite production. This critical synthesis of the state-of-the-art literature not only reinforces the role of biofillers in reducing dependence on non-renewable fillers but also outlines future directions in scaling up their use, improving durability, and expanding performance capabilities of sustainable composites. Overall, the presented analysis contributes novel insights into the material design, processing strategies, and potential of plant biofillers as central elements in next-generation green composites. Full article
Show Figures

Graphical abstract

25 pages, 1177 KB  
Article
Fast Fashion Footprint: An Online Tool to Measure Environmental Impact and Raise Consumer Awareness
by Antonella Senese, Erika Filippelli, Blanka Barbagallo, Emanuele Petrosillo and Guglielmina Adele Diolaiuti
Geographies 2025, 5(3), 44; https://doi.org/10.3390/geographies5030044 - 23 Aug 2025
Viewed by 475
Abstract
Fast fashion is a rapidly expanding sector characterized by high production volumes, low costs, and short product lifecycles. While recent efforts have focused on improving sustainability within supply chains, consumer behavior remains a critical yet underexplored driver of environmental impacts. This study presents [...] Read more.
Fast fashion is a rapidly expanding sector characterized by high production volumes, low costs, and short product lifecycles. While recent efforts have focused on improving sustainability within supply chains, consumer behavior remains a critical yet underexplored driver of environmental impacts. This study presents a web-based calculator tool designed to estimate both the carbon and plastic footprints associated with individual fast fashion consumption, with a particular focus on shopping behaviors, garment disposal, and laundry habits. Adopting a geographical perspective, the analysis explicitly considers the spatial dynamics of consumption and logistics within the urban context of Milan (Italy), a dense metropolitan area representative of high fashion activity and mobility. By incorporating user-reported travel patterns, logistics routes, and localized emission factors, the tool links consumer habits to place-specific environmental impacts. By involving over 360 users, the tool not only quantifies emissions and plastic waste (including microfibers) but also serves an educational function, raising awareness about the hidden consequences of fashion-related choices. Results reveal high variability in environmental impacts depending on user profiles and behaviors, with online shopping, frequent use of private vehicles, and improper garment disposal contributing significantly to emissions and plastic pollution. Our findings highlight the importance of integrating consumer-focused educational tools into broader sustainability strategies. The tool’s dual function as both calculator and awareness-raising platform suggests its potential value for educational and policy initiatives aimed at promoting more sustainable fashion consumption patterns. Full article
Show Figures

Figure 1

54 pages, 3094 KB  
Review
Marine Metabolites for the Sustainable and Renewable Production of Key Platform Chemicals
by Maedeh Baharlooeian, Menny M. Benjamin, Shifali Choudhary, Amin Hosseinian, George S. Hanna and Mark T. Hamann
Processes 2025, 13(9), 2685; https://doi.org/10.3390/pr13092685 - 23 Aug 2025
Viewed by 472
Abstract
Petrochemicals currently represent the predominant global source of energy and consumer products, including the starting materials used in the platform chemical, plastic polymer, and pharmaceutical industries. However, in recent years, the world’s approaches have shifted towards green chemistry and bio-based chemical production in [...] Read more.
Petrochemicals currently represent the predominant global source of energy and consumer products, including the starting materials used in the platform chemical, plastic polymer, and pharmaceutical industries. However, in recent years, the world’s approaches have shifted towards green chemistry and bio-based chemical production in an effort to reduce CO2 emissions and mitigate climate change. Over the past few decades, researchers have discovered that marine metabolites, primarily sourced from invertebrates, can be utilized to create sustainable and renewable chemicals. This review highlights the significance of advancing marine microorganism-based biotechnology and biochemistry in developing effective conversion systems to enhance the biological production of key platform chemicals, including those utilized as biomaterials and for energy. A background in marine metabolite biochemistry lays the groundwork for potential strategies to mitigate dependence on petroleum for consumer products. This is followed by a discussion of petroleum product replacement technologies, green chemistry alternatives, and CO2 mitigation efforts for the production of sustainable and renewable key platform chemicals. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Graphical abstract

Back to TopTop