Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = wastewater portion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 281 KB  
Article
Decolourisation of a Mixture of Dyes from Different Classes Using a Bioreactor with Immobilised Pleurotus ostreatus Mycelium
by Wioletta Przystaś
Water 2025, 17(15), 2314; https://doi.org/10.3390/w17152314 - 4 Aug 2025
Viewed by 440
Abstract
Dyes are widely used in various industries, but their removal from wastewater remains a challenge due to their resistance to biodegradation. While substantial research exists regarding the removal of individual dyes, there is much less about the removal of their mixtures. The aim [...] Read more.
Dyes are widely used in various industries, but their removal from wastewater remains a challenge due to their resistance to biodegradation. While substantial research exists regarding the removal of individual dyes, there is much less about the removal of their mixtures. The aim of the research was to determine the possibility of using the immobilised mycelium of Pleurotus ostreatus strains to remove three-component mixtures of dyes from different classes. Efficiency of the removal in the continuously aerated reactor was similar to that obtained in a periodically aerated reactor and was over 90% at the end of each cycle. Despite the addition of subsequent portions of dyes, no increase in the toxicity of post-process samples was observed, and even a decrease in zootoxicity was noticed. The results of the study therefore indicate that an immobilised biomass can be used to remove the dyes, without the need to constantly inject air into the reactor. Full article
Show Figures

Graphical abstract

20 pages, 2601 KB  
Article
Waste as a Source of Fuel and Developments in Hydrogen Storage: Applied Cases in Spain and Their Future Potential
by Juan Pous de la Flor, María-Pilar Martínez-Hernando, Roberto Paredes, Enrique Garcia-Franco, Juan Pous Cabello and Marcelo F. Ortega
Appl. Sci. 2025, 15(13), 7514; https://doi.org/10.3390/app15137514 - 4 Jul 2025
Viewed by 712
Abstract
The integration of renewable energy with circular economy strategies offers effective pathways to reduce greenhouse gas emissions while enhancing local energy independence. This study analyses three real-world projects implemented in Spain that exemplify this synergy. LIFE Smart Agromobility converts pig manure into biomethane [...] Read more.
The integration of renewable energy with circular economy strategies offers effective pathways to reduce greenhouse gas emissions while enhancing local energy independence. This study analyses three real-world projects implemented in Spain that exemplify this synergy. LIFE Smart Agromobility converts pig manure into biomethane to power farm vehicles, using anaerobic digestion and microalgae-based upgrading systems. Smart Met Value refines biogas from a wastewater treatment plant in Guadalajara to produce high-purity biomethane for the municipal fleet, demonstrating the viability of energy recovery from sewage sludge. The UNDERGY project addresses green hydrogen storage by repurposing a depleted natural gas reservoir, showing geochemical and geomechanical feasibility for seasonal underground hydrogen storage. Each project utilises regionally available resources to produce clean fuels—biomethane or hydrogen—while mitigating methane and CO2 emissions. Results show significant energy recovery potential: biomethane production can replace a substantial portion of fossil fuel use in rural and urban settings, while hydrogen storage provides a scalable solution for surplus renewable energy. These applied cases demonstrate not only the technical feasibility but also the socio-economic benefits of integrating waste valorisation and energy transition technologies. Together, they represent replicable models for sustainable development and energy resilience across Europe and beyond. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 3754 KB  
Article
Calcium Ion Mixing Modes Govern Membrane Fouling Mitigation During Membrane-Based Recovery of Extracellular Polymeric Substances
by Da-Qi Cao, Yi-Xuan Song, Yun-Feng Wu, Guri Yihuo and Jing-Yi Jin
Membranes 2025, 15(6), 169; https://doi.org/10.3390/membranes15060169 - 5 Jun 2025
Cited by 2 | Viewed by 1502
Abstract
Recycling extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has garnered significant research attention. Membrane separation offers a promising approach for EPS concentration; however, membrane fouling remains a critical challenge. Previous studies demonstrate that Ca2+ addition effectively mitigates membrane [...] Read more.
Recycling extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has garnered significant research attention. Membrane separation offers a promising approach for EPS concentration; however, membrane fouling remains a critical challenge. Previous studies demonstrate that Ca2+ addition effectively mitigates membrane fouling. This study reveals that Ca2+ mixing modes govern membrane fouling in the dead-end ultrafiltration of both the practical EPS and model EPS [sodium algiante (SA)]. The interaction mechanisms between Ca2+ and the EPS under varied mixing conditions and their impact on filtration performance were systematically investigated. At a low Ca2+ concentration, the addition sequence critically influenced colloidal particle sizes formed via Ca2+-EPS interactions, altering the cake layer structure governing filtration resistance; these effects diminished at higher Ca2+ concentrations. In suspensions prepared by adding EPS to Ca2+ solution (EPS-Ca), a portion of the EPS became encapsulated within an EPS-Ca layer formed through Ca2+ EPS binding, reducing free EPS concentration and enlarging colloidal aggregates. This encapsulation reduced EPS-mediated membrane fouling, thereby lowering filtration resistance. Conversely, in suspensions prepared by adding Ca2+ to EPS solution (Ca-EPS), more complete Ca2+ EPS interactions formed a dense crosslinked structure with smaller colloids on membrane surfaces, intensifying fouling and resistance. Additionally, EPS-Ca exhibited higher compressibility than Ca-EPS, though both exhibited comparable filtration resistance under high-pressure conditions. These results offer critical insights into optimizing EPS ultrafiltration concentration to mitigate membrane fouling through Ca2+ addition strategies. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

28 pages, 710 KB  
Review
Greywater Reuse: Contaminant Profile, Health Implications, and Sustainable Solutions
by Phumudzo Budeli and Linda Lunga Sibali
Int. J. Environ. Res. Public Health 2025, 22(5), 740; https://doi.org/10.3390/ijerph22050740 - 7 May 2025
Cited by 1 | Viewed by 2804
Abstract
Global water scarcity is becoming an increasingly critical issue; greywater reuse presents a promising solution to alleviate pressure on freshwater resources, particularly in arid and water-scarce regions. Greywater typically sourced from household activities such as laundry, bathing, and dishwashing, constitutes a significant portion [...] Read more.
Global water scarcity is becoming an increasingly critical issue; greywater reuse presents a promising solution to alleviate pressure on freshwater resources, particularly in arid and water-scarce regions. Greywater typically sourced from household activities such as laundry, bathing, and dishwashing, constitutes a significant portion of domestic wastewater. However, the reuse of greywater raises concerns about the potential risks posed by its complex composition. Despite the growing body of literature on greywater reuse, most studies only focus on specific contaminants, thus there is a limited understanding of the comprehensive profile of contaminants, health, and environmental effects associated with these pollutants. This review adds new knowledge through a holistic exploration of the composition and physico-chemical characteristics of greywater, with a focus on its organic and inorganic pollutants, heavy metals, EDCs, emerging microplastics, nanoparticles, and microbial agents such as bacteria, fungi, viruses, and protozoa. This review sheds light on the current state of knowledge regarding greywater pollutants and their associated risks while highlighting the importance of safe reuse. Additionally, this review highlights the removal of contaminants from greywater and the sustainable use of grey water for addressing water scarcity in affected regions. Full article
Show Figures

Figure 1

22 pages, 6261 KB  
Article
The Development of a New Bi12ZnO20/AgI Heterosystem for the Degradation of Dye-Contaminated Water by Photocatalysis Under Solar Irradiation: Synthesis, Characterization and Kinetics
by Serine Madji, Mohamed Belmedani, Elhadj Mekatel, Sarra Zouaoui and Seif El Islam Lebouachera
Processes 2025, 13(5), 1342; https://doi.org/10.3390/pr13051342 - 27 Apr 2025
Cited by 2 | Viewed by 1023
Abstract
This study explores the efficiency of heterogeneous photocatalysis in wastewater treatment, which is recognized for inducing significant rates of degradation and mineralization of various contaminants, including dyes. The study focuses on the development of an innovative composite via a combination of the sillenite [...] Read more.
This study explores the efficiency of heterogeneous photocatalysis in wastewater treatment, which is recognized for inducing significant rates of degradation and mineralization of various contaminants, including dyes. The study focuses on the development of an innovative composite via a combination of the sillenite type semiconductor Bi12ZnO20 and the halide-type semiconductor AgI. Both semiconductors were synthesized via co-precipitation, and their phases were identified using X-ray diffraction and characterized by scanning electron microscopy, Raman spectroscopy, Brunauer–Emmett–Teller analysis for specific surface area, UV–Visible diffuse reflectance spectroscopy, and the point of zero charge. The evaluation of the photocatalytic activity of the Bi12ZnO20/AgI heterosystem was carried out by monitoring the degradation process of Basic Blue 41 (BB41) under solar irradiation conditions. The results of this study revealed that the Bi12ZnO20/AgI heterosystem achieved the efficient degradation of BB41, with a removal rate of 98% after 150 min of treatment. The mineralization study showed that the TOC value decreased from 19.89 mg L−1 to 6.87 mg L−1, indicating that a significant portion of BB41 was mineralized. Via kinetic research, it was established that the degradation process followed a pseudo-first-order mechanism. Furthermore, recycling tests showed that the synthesized heterostructures maintained good structural stability and acceptable reusability over several cycles. These findings highlight the potential of heterogeneous photocatalysis as a promising approach to addressing environmental challenges associated with azo dyes. Full article
Show Figures

Figure 1

15 pages, 1697 KB  
Article
Risk Perception and Media Polarization in International Environmental Disputes: The Fukushima Wastewater Issue in South Korea
by Kiyoung Chang
Sustainability 2025, 17(7), 3229; https://doi.org/10.3390/su17073229 - 4 Apr 2025
Cited by 1 | Viewed by 1994
Abstract
This study examines how media outlets perceive and frame environmental issues, focusing specifically on South Korean news reporting on the Fukushima wastewater release. Using computational text analysis methods and formal statistical testing, this research investigates ideological polarization in media framing and its implications [...] Read more.
This study examines how media outlets perceive and frame environmental issues, focusing specifically on South Korean news reporting on the Fukushima wastewater release. Using computational text analysis methods and formal statistical testing, this research investigates ideological polarization in media framing and its implications for risk perception. Statistical analyses provide significant evidence that progressive media emphasized environmental risks, public health concerns, and governmental accountability, whereas conservative media highlighted political actors, institutional governance, and diplomatic considerations. Media polarization peaked before policy implementation but moderated afterward. After implementation, moderate newspapers exhibited ideological convergence toward the center, accounting for a substantial portion of the observed positioning shifts, while strongly partisan outlets maintained or slightly intensified their prior positions. These results suggest that ideological polarization is most prominent in the early stages of contentious environmental policies but moderates as empirical scrutiny replaces speculation, with varying effects across ideological groups. This study provides insights into the temporal dynamics of media polarization and its role in shaping risk perception during policy implementation and regulatory oversight. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

29 pages, 4254 KB  
Article
Activated Carbons Derived from Brewing Cereal Residues and Pineapple Peelings for Removal of Acid Orange 7 (AO7) Dye
by Samadou Sanni, Ibrahim Tchakala, Tomkouani Kodom, Bonito Aristide Karamoko, Limam Moctar Bawa and Yaovi Holade
Molecules 2025, 30(4), 881; https://doi.org/10.3390/molecules30040881 - 14 Feb 2025
Cited by 1 | Viewed by 1005
Abstract
The tremendous increase in agro-industrial waste poses major environmental problems and highlights the need for innovative, sustainable solutions. One promising solution would be converting these organic wastes, such as unvalued pineapple peels (ANA) and brewer’s grains (ECB), into activated carbons to meet the [...] Read more.
The tremendous increase in agro-industrial waste poses major environmental problems and highlights the need for innovative, sustainable solutions. One promising solution would be converting these organic wastes, such as unvalued pineapple peels (ANA) and brewer’s grains (ECB), into activated carbons to meet the impending challenge of wastewater treatment. In particular, Acid Orange 7 (AO7) is one of the most widely used synthetic dyes, a significant portion of which ends up in water, posing environmental and health problems with limiting decentralized and cost-effective solutions. To address these two challenges, we investigated the best conditions for converting these organic wastes into alternative activated carbons (named CA-ANA and CA-ECB) for AO7 dye removal under representative adsorption conditions. Extensive characterization (SEM, EDX, XRD, BET) revealed an amorphous, mesoporous structure with specific surface areas of 1150–1630 m2 g−1, outperforming the majority of other biomass-derived activated carbons reported for AO7 removal. Adsorption followed pseudo-second-order kinetics and the Langmuir isotherm, with record AO7 removal efficiencies of 90–99% for AO7 concentrations of 25–35 mg L−1 in a batch reactor, the driving forces being electrostatic attraction, π–π interactions, and hydrogen bonding. These results undoubtedly highlight the potential of current waste-derived activated carbons as sustainable solutions for efficient wastewater treatment. Full article
(This article belongs to the Special Issue Recent Research Progress of Novel Ion Adsorbents)
Show Figures

Graphical abstract

17 pages, 4293 KB  
Article
A Gravity-Driven Membrane Bioreactor in Treating Real Fruit Juice Wastewater: Response Relationship Between Filtration Behavior and Microbial Community Evolution
by Dan Song, Haiyao Du, Shichun Chen, Xiaodie Han, Lu Wang, Yonggang Li, Caihong Liu, Wenjuan Zhang and Jun Ma
Membranes 2024, 14(12), 260; https://doi.org/10.3390/membranes14120260 - 6 Dec 2024
Viewed by 1559
Abstract
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from [...] Read more.
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.01 to 0.04 MPa without requiring backwashing or chemical cleaning, with the aim of investigating flux development and contaminant removal under low-energy conditions. The results demonstrate an initial decrease in flux followed by stabilization during long-term filtration. Moreover, the stabilized flux level achieved with the GDMBR at pressures of 0.01 and 0.02 MPa was observed to surpass that obtained at 0.04 MPa, ranging from 4 to 4.5 L/m−2 h−1. The stability of flux was positively associated with the low membrane fouling resistance observed in the GDMBR system. Additionally, the GDMBR system provided remarkable efficiencies in removing the chemical oxygen demand (COD), biological oxygen demand (BOD), ammonia (NH4+-N), and total nitrogen (TN), with average removal rates of 82%, 80%, 83%, and 79%, respectively. The high biological activity and microbial community diversity within the sludge and biofilm are expected to enhance its biodegradation potential, thereby contributing to the efficient removal of contaminants. Notably, a portion of total phosphorus (TP) can be effectively retained in the reactor, which highlighted the promising application of the GDMBR process for actual fruit juice wastewater based on these findings. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

30 pages, 9808 KB  
Article
Multi-Criteria Analysis for Geospatialization of Potential Areas for Water Reuse in Irrigated Agriculture in Hydrographic Regions
by Ana Paula Pereira Carvalho, Ana Claudia Pereira Carvalho, Mirian Yasmine Krauspenhar Niz, Fabrício Rossi, Giovana Tommaso and Tamara Maria Gomes
Agronomy 2024, 14(11), 2689; https://doi.org/10.3390/agronomy14112689 - 15 Nov 2024
Viewed by 1625
Abstract
As the climate crisis progresses, droughts and the seasonal availability of fresh water are becoming increasingly common in different regions of the world. One solution to tackle this problem is the reuse of treated wastewater in agriculture. This study was carried out in [...] Read more.
As the climate crisis progresses, droughts and the seasonal availability of fresh water are becoming increasingly common in different regions of the world. One solution to tackle this problem is the reuse of treated wastewater in agriculture. This study was carried out in two significant hydrographic regions located in the southeast of Brazil (Mogi Guaçu River Water Management Unit—UGRHI-09 and Piracicaba River Basin—PRB) that have notable differences in terms of land use and land cover. The aim of this study was to carry out a multi-criteria analysis of a set of environmental attributes in order to classify the areas under study according to their levels of soil suitability and runoff potential. The integrated analysis made it possible to geospatialize prospective regions for reuse, under two specified conditions. In the UGRHI-09, condition 1 corresponds to 3373.24 km2, while condition 2 comprises 286.07 km2, located mainly in the north-western and central-eastern portions of the unit. In the PRB, condition 1 was also more expressive in occupational terms, corresponding to 1447.83 km2; and condition 2 was perceptible in 53.11 km2, predominantly in the central region of the basin. The physical characteristics of the areas studied were decisive in delimiting the areas suitable for the reuse of treated wastewater. Full article
Show Figures

Figure 1

14 pages, 2077 KB  
Article
Using HF183 to Estimate Watershed-Wide Annual Loadings of Human Fecal Pollution from Onsite Wastewater Treatment Systems
by Kenneth Schiff, Amity Zimmer-Faust, Duy Nguyen, John Griffith, Joshua Steele, Darcy Ebentier McCargar and Sierra Wallace
Sustainability 2024, 16(21), 9503; https://doi.org/10.3390/su16219503 - 31 Oct 2024
Viewed by 1327
Abstract
Onsite wastewater treatment systems (OWTSs or septic systems), when properly sited, designed, operated, and maintained, treat domestic wastewater to reduce impacts on and maintain sustainability of aquatic resources. However, when OWTSs are not performing as expected, they can be a potential source of [...] Read more.
Onsite wastewater treatment systems (OWTSs or septic systems), when properly sited, designed, operated, and maintained, treat domestic wastewater to reduce impacts on and maintain sustainability of aquatic resources. However, when OWTSs are not performing as expected, they can be a potential source of human fecal pollution to recreational waters, resulting in an increased risk of illness to swimmers. Quantifying the contribution of poor-performing OWTSs relative to other sources of fecal pollution is particularly challenging in wet weather when various sources commingle as they flow downstream. This study aimed to estimate the total load of human fecal pollution from OWTSs in an arid watershed with municipal separate storm sewer systems (MS4). The novel study design sampled HF183, a DNA-based human marker, from six small catchments containing only OWTSs and no other known human fecal sources, such as sanitary sewer collection systems or people experiencing homelessness. Then, the human fecal loading from the representative catchments was extrapolated to the portions of the watershed that were not sampled but contained OWTSs. Flow-weighted mean HF183 concentrations ranged from 104 to 107 gene copies/100 mL across 29 site-events. HF183 mass loading estimates were normalized to the number of parcels per catchment and inches of rainfall per storm event. Assuming the normalized loading estimate was representative, extrapolation to all of the OWTS parcels in the watershed and average annual rainfall quantity illustrated that HF183 loading from OWTSs was a small but measurable fraction of the total HF183 mass loading emanating at the bottom of the watershed. Clearly, other human fecal sources contributed HF183 during storm events in this watershed. The loading estimate approach used in this study could be applied to other watersheds facing similar challenges in prioritizing resources for monitoring and mitigation among co-located human fecal sources. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

20 pages, 3285 KB  
Article
Optimization of Recovery of Nutrients from Pig Manure Slurry through Combined Microbial Fuel Cell and Microalgae Treatment
by Adrián Hernández-Fernández, Eduardo Iniesta-López, Ana Isabel Hernández Baños, Yolanda Garrido, Ana Sánchez Zurano, Francisco J. Hernández-Fernández and Antonia Pérez De los Ríos
Processes 2024, 12(9), 1989; https://doi.org/10.3390/pr12091989 - 15 Sep 2024
Cited by 3 | Viewed by 2594
Abstract
Microbial fuel cells (MFCs) and microalgae–bacteria consortia represent two renewable and promising technologies of growing interest that enable wastewater treatment while obtaining high-value-added products. This study integrates MFCs and microalgae production systems to treat animal slurry, aiming to remove and recover organic and [...] Read more.
Microbial fuel cells (MFCs) and microalgae–bacteria consortia represent two renewable and promising technologies of growing interest that enable wastewater treatment while obtaining high-value-added products. This study integrates MFCs and microalgae production systems to treat animal slurry, aiming to remove and recover organic and inorganic components while generating energy and producing biomass. The MFCs effectively eliminated Chemical Oxygen Demand (COD), organic nitrogen, and a portion of the suspended solids, achieving a maximum voltage of 195 mV and a power density of 87.03 mW·m−2. After pre-treatment with MFCs, the slurry was diluted to concentrations of 10%, 50%, and 100% and treated with microalgae–bacteria consortia. The results showed a biomass production of 0.51 g·L−1 and a productivity of 0.04 g·L−1·day−1 in the culture fed with 10% slurry, with significant removal efficiencies: 40.71% for COD, 97.76% for N-NH4+, 39.66% for N-NO2, 47.37% for N-NO3, and 94.37% for P-PO4−3. The combination of both technologies allowed for obtaining a properly purified slurry and the recovery of nutrients in the form of bioelectricity and high-value biomass. Increasing the concentration of animal slurry to be treated is essential to optimize and scale both technologies. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

12 pages, 3149 KB  
Article
Extracellular Polymeric Substance Composition Effects on Biosorption for Primary Carbon Diversion
by Tiow Ping Wong, Roger W. Babcock, Theodore Uekawa and Joachim Schneider
Water 2024, 16(8), 1116; https://doi.org/10.3390/w16081116 - 14 Apr 2024
Viewed by 1432
Abstract
This paper characterizes the composition of extracellular polymeric substances (EPSs) in different types of activated sludge (AS) processes and analyzes the biosorption of soluble organics when waste AS (WAS) is mixed with raw wastewater for primary carbon diversion. The fraction of AS organics [...] Read more.
This paper characterizes the composition of extracellular polymeric substances (EPSs) in different types of activated sludge (AS) processes and analyzes the biosorption of soluble organics when waste AS (WAS) is mixed with raw wastewater for primary carbon diversion. The fraction of AS organics identified as EPSs was 26% in a membrane bioreactor (MBR), 54% in conventional AS (CAS), and 51% in a trickling filter/solids contact (TF/SC) process. EPSs were found to be approximately 15% carbohydrates, 40% proteins, 40% humics, and 5% uronics in CAS and MBR AS. Biosorption was not correlated to the organic portion (VSS) of the WAS; however, statistically significant correlations were found for the total amount of EPSs (for TF/SC and CAS) and the protein fraction (for TF/SC and MBR) in the VSS. EPSs from different types of AS biosorbed the same amount of soluble organics, removing 1.43 ± 0.15 (n = 16) mg of soluble chemical oxygen demand (sCOD), and 1.20 ± 0.18 (n = 16) mg of truly soluble COD (ffCOD), per mg of cation exchange resin (CER) total extracted EPSs. Utilizing multiple extraction methods in series (CER–base–sulfide) increased EPS extraction yields by nearly 100% relative to CER alone and indicated different EPS fractionization for CAS (a smaller fraction of carbohydrates and a larger fraction of humics). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 824 KB  
Article
The Potential of Acorn Extract Treatment on PUFAs Oxidative Stability: A Case Study on Fish Cooking Wastewater
by Helena Araújo-Rodrigues, Tânia Bragança Ribeiro, Manuela Machado, Carlos D. Pereira and Manuela E. Pintado
Foods 2024, 13(6), 935; https://doi.org/10.3390/foods13060935 - 19 Mar 2024
Cited by 3 | Viewed by 2107
Abstract
Fish byproducts are valuable sources of Ω-3 polyunsaturated fatty acids (PUFAs). Their valorization potentially alleviates pressure on this sector. This study uses a circular economy approach to investigate the oil fraction from sardine cooking wastewater (SCW). Analysis of its fatty acid (FA) profile [...] Read more.
Fish byproducts are valuable sources of Ω-3 polyunsaturated fatty acids (PUFAs). Their valorization potentially alleviates pressure on this sector. This study uses a circular economy approach to investigate the oil fraction from sardine cooking wastewater (SCW). Analysis of its fatty acid (FA) profile revealed promising PUFA levels. However, PUFAs are highly susceptible to oxidation, prompting the exploration of effective and natural strategies to replace synthetic antioxidants and mitigate their associated risks and concerns. An antioxidant extract from acorn shells was developed and evaluated for its efficacy in preventing oxidative degradation. The extract exhibited significant levels of total phenolic compounds (TPC: 49.94 and 22.99 mg TAE or GAE/g DW) and antioxidant activities (ABTS: 72.46; ORAC: 59.60; DPPH: 248.24 mg TE/g DW), with tannins comprising a significant portion of phenolics (20.61 mg TAE/g DW). LC-ESI-UHR-QqTOF-MS identified ellagic acid, epicatechin, procyanidin B2 and azelaic acid as the predominant phenolic compounds. The extract demonstrated the ability to significantly reduce the peroxide index and inhibit PUFA oxidation, including linoleic acid (LA), eicosapentaenoic (EPA), and docosahexaenoic acid (DHA). This approach holds promise for developing stable, functional ingredients rich in PUFAs. Future research will focus on refining oil extraction procedures and conducting stability tests towards the development of specific applications. Full article
Show Figures

Figure 1

15 pages, 1394 KB  
Article
Phosphorus Removal Rate and Efficiency in an Electrochemical Sequencing Reactor for the Treatment of Wastewater with Low Organic Carbon Content
by Artur Mielcarek, Kamil Łukasz Bryszewski, Joanna Rodziewicz, Karolina Kłobukowska and Wojciech Janczukowicz
Energies 2024, 17(6), 1352; https://doi.org/10.3390/en17061352 - 12 Mar 2024
Cited by 2 | Viewed by 1781
Abstract
Energy is essential for the operation of wastewater treatment systems. Simultaneously, it can be a factor facilitating the electrochemical purification processes. Previous studies have shown that under specific conditions, there is no technological justification for using bio-electrochemical reactors designed for the simultaneous removal [...] Read more.
Energy is essential for the operation of wastewater treatment systems. Simultaneously, it can be a factor facilitating the electrochemical purification processes. Previous studies have shown that under specific conditions, there is no technological justification for using bio-electrochemical reactors designed for the simultaneous removal of both phosphorus and nitrogen compounds. This is because similar dephosphatation process effects can be achieved in an electrochemical reactor. Additionally, in a bio-electrochemical reactor, a portion of the organic substrate introduced for biological treatment is lost due to the electrocoagulation process. The aim of the research was to determine the influence of low direct current densities (0.4–2.0 A/m2) on the rate and efficiency of phosphorus and other compound removal in a sequencing electrochemical reactor treating real wastewater from a greenhouse with low organic compound content. In the conducted studies, an increase in electric current density resulted in an increase in the removal rates of phosphorus from 26.45 to 34.79 mg/L·h, nitrogen from 2.07 to 6.58 mg/L·h, and organic compounds from 0.44 to 1.50 mg/L·h. This corresponded to maximum removal efficiencies of 88.6 ± 2.5% for phosphorus, 7.4 ± 2.5% for nitrogen, and 51.1 ± 8.3% for organic compounds. As a result of electrocoagulation, sludge rich in phosphorus was obtained, ranging from 347 ± 38 mg/L (18.1% P) to 665 ± 36 mg/L (11.7% P). The obtained results can be utilized in the future for the development of two-stage systems for wastewater treatment with a low content of organic compounds, aiming at the removal of phosphorus and nitrogen. Full article
(This article belongs to the Special Issue Advances in Wastewater Treatment 2024)
Show Figures

Figure 1

15 pages, 5483 KB  
Article
Investigating the Potential Impact on Shallow Groundwater Quality of Oily Wastewater Injection in Deep Petroleum Reservoirs: A Multidisciplinary Evaluation at the Val d’Agri Oilfield (Southern Italy)
by Pietro Rizzo, Antonio Bucci, Pamela Monaco, Anna Maria Sanangelantoni, Gino Naclerio, Mattia Rossi, Paola Iacumin, Federica Bianchi, Claudio Mucchino, Nicolò Riboni, Dario Avagliano, Francesco Coraggio, Antonella Caputi and Fulvio Celico
Sustainability 2023, 15(12), 9161; https://doi.org/10.3390/su15129161 - 6 Jun 2023
Viewed by 2841
Abstract
The increase in oil production from petroleum reservoirs has led to studies examining the effects of these activities on groundwater quality. Oily wastewater associated with oil production is often reinjected through abandoned wells into the unproductive portions of the reservoir to avoid its [...] Read more.
The increase in oil production from petroleum reservoirs has led to studies examining the effects of these activities on groundwater quality. Oily wastewater associated with oil production is often reinjected through abandoned wells into the unproductive portions of the reservoir to avoid its discharge on the surface. The reinjection process is designed to be environmentally friendly and to exclude direct interactions between injected fluids and the surrounding groundwater; nevertheless, the evaluation of the compatibility between this process and the protection of the surrounding environment is of utmost importance when oilfields are located within sensitive and protected areas. The present work aimed to evaluate the impact of the oily wastewater reinjection into a long-term and high-rate disposal well in the Val d’Agri oilfield (Southern Italy). Previous preliminary investigations carried out at the study site led researchers to hypothesize the possible hydrocarbon contamination of the shallower aquifer caused by reinjection well integrity issues. Our strategy is based on an integrated and multidisciplinary approach involving isotopic (stable isotopes 2H and 18O), chemical, and microbiological (characterization of bacterial and archaeal communities) analyses. After a comprehensive and meticulous examination of the research data, it has been ascertained that significant discrepancies exist between the shallow and reinjection water systems. This allowed us to clarify the area’s complex flow dynamics and exclude hydrocarbon contamination of spring waters caused by the reinjection process. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

Back to TopTop