Landauer’s Principle and Divergenceless Dynamical Systems
Abstract
:1. Introduction
2. An Extension of Landauer’s Principle to Divergenceless Dynamical Systems
2.1. Divergenceless Dynamical Systems
2.2. Extended Landauer-Like Principle
2.3. Discussion on the Derivation of the Landauer-Like Principle
3. Systems Described by Non-Exponential Distributions
4. Summary and Conclusions
- The conservation of S under the Liouville’s ensemble dynamics associated with divergenceless systems.
- The sub-additive character of S.
Acknowledgements
References
- Complexity, Entropy, and the Physics of Information; Zurek, W.H. (Ed.) Addison-Wesley: Redwood City, CA, USA, 1990.
- Beck, C.; Schlogl, F. Thermodynamics of Chaotic Systems; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Frieden, B.R.; Soffer, B.H. Lagrangians of physics and the game of Fisher-information transfer. Phys. Rev. E 1995, 52, 2274–2286. [Google Scholar] [CrossRef]
- Frieden, B.R. Physics from Fisher Information; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Frieden, B.R. Science from Fisher Information; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Maxwell’s Demons 2: Entropy, Classical and Quantum Information; Leff, H.S.; Rex, A.F. (Eds.) Institute of Physics Publishing: Bristol, PA, USA, 2003.
- Daffertshofer, A.; Plastino, A.R.; Plastino, A. Classical no-cloning theorem. Phys. Rev. Lett. 2002, 88, 210601. [Google Scholar] [CrossRef] [PubMed]
- Plastino, A.R.; Daffertshofer, A. Liouville dynamics and the conservation of classical information. Phys. Rev. Lett. 2004, 93, 138701. [Google Scholar] [CrossRef] [PubMed]
- Frieden, B.R.; Soffer, B.H. Information-theoretic significance of the Wigner distribution. Phys. Rev. A 2006, 74, 052108. [Google Scholar] [CrossRef]
- Hall, M.J.W. Universal geometric approach to uncertainty, entropy, and information. Phys. Rev. A 1999, 59, 2602–2615. [Google Scholar] [CrossRef]
- Zander, C.; Plastino, A.R.; Plastino, A.; Casas, M. Entanglement and the speed of evolution of multi-partite quantum systems. J. Phys. A: Math. Theor. 2007, 40, 2861–2872. [Google Scholar] [CrossRef]
- Jaynes, E.T. Papers on Probability, Statistics and Statistical Physics; Rosenkrantz, R.D., Ed.; Dordrecht: Reidel, Netherlands, 1987. [Google Scholar]
- Plastino, A.R.; Plastino, A. Maximum entropy and approximate descriptions of pure states. Phys. Lett. A 1993, 181, 446–449. [Google Scholar] [CrossRef]
- Plastino, A.R.; Miller, H.G.; Plastino, A. Minimum Kullback entropy approach to the Fokker-Planck equation. Phys. Rev. E 1997, 56, 3927–3934. [Google Scholar] [CrossRef]
- Loewenstein, W.R. The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Lloyd, S. Rolf Landauer: Head and heart of the physics of information. Nature 1999, 400, 720. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Piechocinska, B. Information erasure. Phys. Rev. A 2000, 61, 062314. [Google Scholar] [CrossRef]
- Daffertshofer, A.; Plastino, A.R. Landauer’s principle and the conservation of information. Phys. Lett. A 2005, 342, 213–216. [Google Scholar] [CrossRef]
- Curilef, S.; Plastino, A.R.; Wedemann, R.S.; Daffertshofer, A. Landauer’s principle and non-equilibrium statistical ensembles. Phys. Lett. A 2008, 372, 2341–2345. [Google Scholar] [CrossRef]
- Plenio, M.B.; Vitelli, V. The physics of forgetting: Landauers erasure principle and information theory. Contemp. Phys. 2001, 42, 25. [Google Scholar] [CrossRef] [Green Version]
- Daffertshofer, A.; Plastino, A.R. Forgetting and gravitation: From Landauer’s principle to Tolman’s temperature. Phys. Lett. A 2007, 362, 243–245. [Google Scholar] [CrossRef]
- Smale, S. Nonlinear Dynamics; Annals of New York Academy of Sciences 357, New York Academy of Sciences: New York, NY, USA, 1980. [Google Scholar]
- Plastino, A.R.; Plastino, A.; da Silva, L.R.; Casas, M. Dynamical thermostatting, divergenceless phase-space flows, and KBB systems. Physica A 1999, 271, 343–356. [Google Scholar] [CrossRef]
- Roston, G.; Plastino, A.R.; Casas, M.; Plastino, A.; da Silva, L.R. Dynamical thermostatting and statistical ensembles. Eur. Phys. J. B 2005, 48, 87–93. [Google Scholar] [CrossRef]
- Kerner, E.H. Gibbs Ensemble, Biological Ensemble; Gordon and Breach: London, UK, 1972. [Google Scholar]
- Kerner, E.H. Note on Hamiltonian format of Lotka-Volterra dynamics. Phys. Lett. A 1990, 151, 401–402. [Google Scholar] [CrossRef]
- Nambu, Y. Generalized hamiltonian dynamics. Phys. Rev. D 1973, 7, 2405–2412. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Morrison, P. Quantum mechanics as a generalization of Nambu dynamics to the Weyl-Wigner formalism. Phys. Lett. A 1991, 158, 453–457. [Google Scholar] [CrossRef]
- Codriansky, S.; Bernardo, C.; Aglaee, A.; Carrillo, F.; Castellanos, J.; Pereira, G.; Perez, J. Developments in Nambu mechanics. J. Phys. A 1994, 27, 2565–2578. [Google Scholar] [CrossRef]
- Plastino, A.R.; Plastino, A. Statistical treatment of autonomous systems with divergencelless flows. Physica A 1996, 232, 458–476. [Google Scholar] [CrossRef]
- Yamaleev, R.M. Generalized lorentz-force equations. Ann. Phys. N. Y. 2001, 292, 157–178. [Google Scholar] [CrossRef]
- Guha, P. Applications of Nambu mechanics to systems of hydrodynamical type. J. Math. Phys-NY 2002, 43, 4035. [Google Scholar] [CrossRef]
- Wehrl, A. General properties of entropy. Rev. Mod. Phys. 1978, 50, 221–260. [Google Scholar] [CrossRef]
- Beck, C.; Cohen, E.G.D. Superstatistics. Physica A 2003, 322, 267–275. [Google Scholar] [CrossRef]
- Beck, C.; Cohen, E.G.D. Superstatistical generalization of the work fluctuation theorem. Physica A 2004, 344, 393–402. [Google Scholar] [CrossRef]
- Beck, C. Statistics of three-dimensional lagrangian turbulence. Phys. Rev. Lett. 2007, 98, 064502. [Google Scholar] [CrossRef] [PubMed]
- Yamano, T. Thermodynamical and informational structure of superstatistics. Prog. Theor. Phys. Suppl. 2006, 162, 87–96. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
Share and Cite
Zander, C.; Plastino, A.R.; Plastino, A.; Casas, M.; Curilef, S. Landauer’s Principle and Divergenceless Dynamical Systems. Entropy 2009, 11, 586-597. https://doi.org/10.3390/e11040586
Zander C, Plastino AR, Plastino A, Casas M, Curilef S. Landauer’s Principle and Divergenceless Dynamical Systems. Entropy. 2009; 11(4):586-597. https://doi.org/10.3390/e11040586
Chicago/Turabian StyleZander, Claudia, Angel Ricardo Plastino, Angelo Plastino, Montserrat Casas, and Sergio Curilef. 2009. "Landauer’s Principle and Divergenceless Dynamical Systems" Entropy 11, no. 4: 586-597. https://doi.org/10.3390/e11040586
APA StyleZander, C., Plastino, A. R., Plastino, A., Casas, M., & Curilef, S. (2009). Landauer’s Principle and Divergenceless Dynamical Systems. Entropy, 11(4), 586-597. https://doi.org/10.3390/e11040586