Anticancer Activities of C18-, C19-, C20-, and Bis-Diterpenoid Alkaloids Derived from Genus Aconitum
Abstract
:1. Introduction
2. Chemical Structure of Diterpenoid Alkaloids
3. Anticancer Activities of Diterpenoid Alkaloids
3.1. C18-Diterpenoid Alkaloids
3.2. C19-Diterpenoid Alkaloids
3.3. C20-Diterpenoid Alkaloids
3.4. Bis-Diterpenoid Alkaloids
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stewart, B.W.; Wild, C.P. World Cancer Report 2014; International Agency for Research on Cancer: Lyon, France, 2014. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Simoben, C.V.; Ibezim, A.; Ntie-Kang, F.; Nwodo, J.N.; Lifongo, L.L. Exploring cancer therapeutics with natural products from African medicinal plants, part I: Xanthones, quinones, steroids, coumarins, phenolics and other classes of compounds. Anti-Cancer Agents Med. Chem. 2015, 15, 1092–1111. [Google Scholar] [CrossRef]
- Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol. 2015, 35, S224–S243. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guan, X.; Chi, Y.; Robinson, N.; Liu, J.P. Chinese herbal medicine as adjuvant treatment to chemotherapy for multidrug-resistant tuberculosis (MDR-TB): A systematic review of randomised clinical trials. Tuberculosis (Edinb.) 2015, 95, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Shinozuka, K.; Yoshikawa, N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J. Pharmacol. Sci. 2015, 127, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.H.; Tang, L.Y.; Zhou, X.D.; Wang, T.; Kou, Z.Z.; Wang, Z.J. A review on phytochemistry and pharmacological activities of the processed lateral root of Aconitum carmichaelii Debeaux. J. Ethnopharmacol. 2015, 60, 173–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Z.; Zhu, P.L. Experience for treating stroke with Aconitum from professor WANG Xin-zhi. Clin. J. Chin. Med. 2012, 4, 96–97. [Google Scholar]
- Guo, W.L.; Shi, S.F. Professor Suofang Shi using high–dose Aconite to treat asthma with cold symptoms. Jilin J. Tradit. Chin. Med. 2011, 31, 112–114. [Google Scholar]
- Gu, Y.R.; Tong, B.L. 30 cases of the treatment of rheumatoid arthritis with high–dose Aconite. J. Anhui Univ. Chin. Med. 1996, 15, 25. [Google Scholar]
- Li, Q.; Guo, L.N.; Zheng, J.; Ma, S.C. Reaserch progress of medicinal genus Aconitum. Chin. J. Pharm. Anal. 2016, 36, 1129–1145. [Google Scholar]
- Shao, F.; Li, S.L.; Liu, R.H.; Huang, H.L.; Ren, G.; Yao, Y.X.; Hao, X.C. Analgesic and anti-inflammatory effects of different processed products of Aconiti lateralis radix praeparata. Lishizhen. Med. Mater. Med. Res. 2011, 22, 2329–2330. [Google Scholar]
- Li, L.J.; Zhang, F.L.; Wu, R.Z.; Lin, Q.; Liu, P.R. A comparative study on the functions of anti-inflammatory and analgesic of monkshood and its small pieces processed by a new method. Yunnan J. Tradit. Chin. Med. Mater. Med. 2004, 25, 34–35. [Google Scholar]
- Tong, Y.; Li, N.; Wu, X.Q. Effect of Fuzi on cAMP-PKA signal transduction pathways in rat of chronic arrhythmia. Pharmacol. Clin. Chin. Mater. Med. 2013, 29, 90–92. [Google Scholar]
- Gao, T.T.; Ma, S.; Song, J.Y.; Bi, H.T.; Tao, Y.D. Antioxidant and immunological activities of water-soluble polysaccharides from Aconitum kusnezoffii Reichb. Int. J. Biol. Macromol. 2011, 49, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.B.; Liu, L.; Shao, W.; Wei, T.; Lin, G.M. Microcalorimetry studies of the antimicrobial actions of Aconitum alkaloids. J. Zhejiang Univ. Sci. B 2015, 16, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.P.; Jiang, Y.D.; Liu, J.J.; Kang, Y.X.; Li, R.Q.; Wang, J.Y. The anti-tumor activity and mechanism of alkaloids from Aconitum szechenyianum Gay. Bioorg. Med. Chem. Lett. 2016, 26, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.R. A review on anticancer activity of Aconitum. J. Fujian Univ. Tradit. Chin. Med. 1991, 22, 54–56. [Google Scholar]
- Bai, X.Y. Toxicity and anti-tumor effect of Aconitum carmichaelii. J. Pract. Tradit. Chin. Med. 2005, 21, 125. [Google Scholar]
- Xu, Q.P.; Liu, J.H.; Liu, B.R. Progress in study on antitumor activity of C19-, C20-diterpenoid alkaloids. Progr. Pharm. Sci. 2016, 40, 3–10. [Google Scholar]
- Nyirimigabo, E.; Xu, Y.Y.; Li, Y.B.; Wang, Y.M.; Agyemang, K.; Zhang, Y.J. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J. Pharm. Pharmacol. 2015, 67, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.F.; Liu, S.; Meng, L.L.; Pi, Z.F.; Song, F.R.; Liu, Z.Q. Bioactive heterocyclic alkaloids with diterpene structure isolated from traditional Chinese medicines. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1026, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Zhu, Y.Y.; Zhao, C.Q. Recent advances on chemical constituents, pharmacological study and the endophytes of the genus Aconitum. Nat. Prod. Res. Dev. 2012, 24, 248–259. [Google Scholar]
- Zhang, Y.; Xiang, C. Research progress of antitumor drugs. Jiangxi Med. J. 2004, 39, 445–448. [Google Scholar]
- An, J.X.; Liu, F.; Liu, F.; Zeng, G.Y.; Zhou, Y.J. Recent research progress on diterpenoid alkaloids from genus Aconitum and their analgesic activity. Cent. South Pharm. 2016, 14, 521–522. [Google Scholar]
- Wang, F.P.; Liang, X.T. Chemistry of the diterpenoid alkaloids. In The Alkaloids: Chemistry and Pharmacology; Cordell, G.A., Ed.; Academic Press: London, UK, 1992; Volume 42, pp. 151–247. [Google Scholar]
- Wang, F.P.; Chen, Q.H. C19-diterpenoid alkaloids. In The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Academic Press: London, UK, 2010; Volume 69, pp. 1–609. [Google Scholar]
- Wang, F.P.; Chen, Q.H.; Liang, X.-T. C18-diterpenoid alkaloids. In The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Academic Press: London, UK, 2009; Volume 67, pp. 1–78. [Google Scholar]
- Wang, F.P.; Liang, X.T. C20-diterpenoid alkaloids. In The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Academic Press: London, UK, 2002; Volume 59, pp. 1–280. [Google Scholar]
- Xue, J.; Yang, C.H.; Liu, J.H.; Liang, J.Y.; Tang, Q.F.; Zhang, S.J. Recent advance of diterpenoid alkaloids in genus Aconitum. Strait Pharm. J. 2009, 21, 1–10. [Google Scholar]
- Cai, C.Q.; Yang, C.H.; Liang, J.Y.; Liu, J.H. Advance in studies on structure-activity relationships of diterpenoid alkaloids in genus Aconitum. Strait Pharm. J. 2013, 25, 1–4. [Google Scholar]
- Wang, F.P.; Chen, Q.H.; Liu, X.Y. Diterpenoid alkaloids. Nat. Prod. Rep. 2010, 27, 529–570. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.A.; Li, M. Effect of lappaconitine on postoperative pain and serum complement 3 and 4 levels of cancer patients undergoing pectum surgery. Chin. J. Integr. Tradit. West. Med. 2015, 35, 668–672. [Google Scholar]
- Su, M.Y. Study of Lappaconitine with Ropivacaine for Postoperative Analgesia for Cancer of Stomach. Master Thesis, Zhengzhou University, Zhengzhou, China, 28 April 2005. [Google Scholar]
- Lin, C.C.; Chen, W.N.; Chen, C.J.; Lin, Y.W.; Zimmer, A.; Chen, C.C. An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc. Natl. Acad. Sci. USA 2012, 109, E76–E83. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.R.; Xu, M.; Xu, L.Q.; Xiong, F. Cytotoxic effect of lappaconitine on non-small cell lung cancer in vitro and its molecular mechanism. J. Chin. Med. Mater. 2014, 37, 840–843. [Google Scholar]
- Sheng, L.R. The Effect of Lappaconitine and Its Synergistic Effect with Docetaxol and Oxaliplatinon Lung Cancer. Master Thesis, Jinan University, Guangzhou, China, 4 May 2010. [Google Scholar]
- Lin, L.; Xiao, L.Y.; Lin, P.Y.; Zhang, D.; Chen, Q.W. Experimental study on the anti-tumor effect of lappaconitine hydrobromide. TCM Res. 2005, 18, 16–18. [Google Scholar]
- Kim, D.K.; Kwon, H.Y.; Lee, K.R.; Rhee, D.K.; Zee, O.P. Isolation of a multidrug resistance inhibitor from Aconitum pseudo-laeve var. erectum. Arch. Pharm. Res. 1998, 21, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.M.; Sun, G.Z. Study on anti-tumor and antimetastasis effects and clinical treatment of cancer of aconitine. Beijing J. Tradit. Chin. Med. 1986, 8, 27–28. [Google Scholar]
- Qian, Z. The Effect and Preliminary Mechanism Study on Monkshood Polysaccharide Combined with Aconitine to the Hepatocellualar Carcinoma Cell. Master Thesis, Nanjing University of Chinese Medicine, Nanjing, China, June 2015. [Google Scholar]
- Liu, X.Q.; Chen, X.Y.; Wang, Y.Z.; Yuan, S.J.; Tang, Y. Study on reversing multi-drug tolerance of KBV200 cell by aconitine. Chin. J. Basic Med. Tradit. Chin. Med. 2004, 10, 55–57. [Google Scholar]
- Hou, L.; Liu, X.Y.; Chen, X.Y.; Zhang, K.T.; Wang, Y.Z.; Wang, X.M. Using gene chip technology to investigate the mechanism of aconitine's reversing the drug resistan. Chin. J. Inf. Tradit. Chin. Med. 2005, 12, 34–36. [Google Scholar]
- Tian, S.D.; Liu, X.Q.; Wang, X.M.; Tang, Y.; Chen, X.Y. Immunohistochemistry study of aconitine on the expression of Pgp protein in KBV200 cell. Chin. Arch. Tradit. Chin. Med. 2006, 24, 55–56. [Google Scholar]
- Guo, Z.J.; Xu, Y.; Zhang, H.; Li, M.Y.; Xi, K. New alkaloids from Aconitum taipaicum and their cytotoxic activities. Nat. Prod. Res. 2014, 28, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guo, Z.J.; Han, L.; You, X.Y.; Xu, Y. The antitumor effect and mechanism of taipeinine A, a new C19-diterpenoid alkaloid from Aconitum taipeicum, on the HepG2 human hepatocellular carcinoma cell line. J. BUON 2014, 19, 705–712. [Google Scholar] [PubMed]
- Gao, F.; Li, Y.Y.; Wang, D.; Huang, X.; Liu, Q. Diterpenoid alkaloids from the Chinese traditional herbal “Fuzi” and their cytotoxic activity. Molecules 2012, 17, 5187–5194. [Google Scholar] [CrossRef] [PubMed]
- Chodoeva, A.; Bosc, J.J.; Guillon, J.; Decendit, A.; Petraud, M.; Absalon, C.; Vitry, C.; Jarry, C.; Robert, J. 8-O-Azeloyl-14-benzoylaconine: A new alkaloid from the roots of Aconitum karacolicum Rapcs and its antiproliferative activities. Bioorg. Med. Chem. 2005, 13, 6493–6501. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T. Studies on the Antitumor Constituents of Aconitum vaginayum. Master Thesis, Huazhong University of Science and Technology, Wuhan, China, 30 May 2008. [Google Scholar]
- Hao, W.J. Study on the Chemical Constituents of the Alkaloids from the Root of Aconitum flavum Hand.—Mazz and Its Anti-Tumor Activities. Master Thesis, Ningxia Medical University, Yinchuan, China, April 2014. [Google Scholar]
- Wada, K.; Hazawa, M.; Takahashi, K.; Mori, T.; Kawahara, N.; Kashiwakura, I. Inhibitory effects of diterpenoid alkaloids on the growth of A172 human malignant cells. J. Nat. Prod. 2007, 70, 1854–1858. [Google Scholar] [CrossRef] [PubMed]
- Hazawa, M.; Wada, K.; Takahashi, K.; Mori, T.; Kawahara, N.; Kashiwakura, I. Suppressive effects of novel derivatives prepared from Aconitum alkaloids on tumor growth. Investig. New Drugs 2009, 27, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Hazawa, M.; Takahashi, K.; Wada, K.; Mori, T.; Kawahara, N.; Kashiwakura, I. Structure-activity relationships between the Aconitum C20-diterpenoid alkaloid derivatives and the growth suppressive activities of Non-Hodgkin’s lymphoma Raji cells and human hematopoietic stem/progenitor cells. Investig. New Drugs 2011, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.; Hazawa, M.; Takahashi, K.; Mori, T.; Kawahara, N.; Kashiwakura, I. Structure-activity relationships and the cytotoxic effects of novel diterpenoid alkaloid derivatives against A549 human lung carcinoma cells. J. Nat. Med. 2011, 65, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.; Ohkoshi, E.; Zhao, Y.; Goto, M.; Morris-Natschke, S.L.; Lee, K.H. Evaluation of Aconitum diterpenoid alkaloids as antiproliferative agents. Bioorg. Med. Chem. Lett. 2015, 25, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Chodoeva, A.; Bosc, J.J.; Guillon, J.; Costet, P.; Decendit, A.; Mérillon, J.M.; Léger, J.M.; Jarry, C.; Robert, J. Hemisynthesis and antiproliferative properties of mono-[O-(14-benzoylaconine-8-yl)]esters and bis-[O-(14-benzoylaconine-8-yl)]esters. Eur. J. Med. Chem. 2012, 54, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Chodoeva, A.; Bosc, J.J.; Lartigue, L.; Guillon, J.; Auzanneau, C.; Costet, P.; Zurdinov, A.; Jarry, C.; Robert, J. Antitumor activity of semisynthetic derivatives of Aconitum alkaloids. Investig. New Drugs 2014, 32, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar, Y.M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 2017, 125, 143–189. [Google Scholar] [CrossRef] [PubMed]
- Traboulsi, T.; El-Ezzy, M.; Gleason, J.L.; Mader, S. Antiestrogens: Structure-activity relationships and use in breast cancer treatment. J. Mol. Endocrinol. 2017, 58, R15–R31. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | Cancer Types | Cell Lines | IC50 | Reference |
---|---|---|---|---|---|
C18-diterpenoid alkaloids | |||||
1 | Lappaconitine | Lung cancer | A549 | 6.71 × 103 µM/48 h | [39] |
C19-diterpenoid alkaloids | |||||
2 | Lycaconitine | Fibroblast carcinoma | KB V20C | 110.65 µM/72 h | [39] |
3 | Aconitine | Oral squamous cell carcinoma | KBv200 | 348.29 µM/72 h | [42] |
Hepatoma carcinoma | Hepal-6 | 590.03 µM/48 h | [41] | ||
Hepatoma carcinoma | HePG2 | 0.85 × 10−2 µM/72 h | [47] | ||
Colon cancer | HCT8 | 8.12 × 10−2 µM/72 h | |||
Breast cancer | MCF7 | 2.45 × 10−2 µM/72 h | |||
4 | (1α,6α,8α,14α,16α)-20-ethyl-8,14-dihydroxy-1,6,16-trimethoxy-4-(methoxymethyl)-aconitane | Leukemia | HL-60 | 0.44 µM/24 h | [46] |
Leukemia | K-562 | 1.55 µM/24 h | |||
5 | Oxonitine | Colon cancer | HCT8 | 29.48 × 10−2 µM/72 h | [47] |
Breast cancer | MCF7 | 3.13 × 10−2 µM/72 h | |||
Hepatoma carcinoma | HePG2 | 8.61 × 10−2 µM/72 h | |||
6 | Deoxyaconitine | Colon cancer | HCT8 | 5.14 × 10−2 µM/72 h | [47] |
Breast cancer | MCF7 | 10.35 × 10−2µM/72 h | |||
Hepatoma carcinoma | HePG2 | 9.21 × 10−2 µM/72 h | |||
7 | Hypaconitine | Colon cancer | HCT8 | 12.05 × 10−2 µM/72 h | [47] |
Breast cancer | MCF7 | 6.46 × 10−2 µM/72 h | |||
Hepatoma carcinoma | HePG2 | 0.92 × 10−2 µM/72 h | |||
8 | Mesaconitine | Colon cancer | HCT8 | 13.16 × 10−2 µM/72 h | [47] |
Breast cancer | MCF7 | 4.57 × 10−2 µM/72 h | |||
Hepatoma carcinoma | HePG2 | 1.45 × 10−2 µM/72 h | |||
9 | Crassicauline A | Colon cancer | HCT8 | 16.45 × 10−2 µM/72 h | [47] |
Breast cancer | MCF7 | 12.86 × 10−2 µM/72 h | |||
Hepatoma carcinoma | HePG2 | 2.36 × 10−2 µM/72 h | |||
10 | 8-O-Azeloyl-14-benzoylaconine | Colon cancer | HCT-15 | 16.8 µM/24h | [48] |
Lung cancer | A549 | 19.4 µM/24 h | |||
Breast cancer | MCF-7 | 10.3 µM/24 h | |||
11 | Cammaconine | Gastric carcinoma | AGS | 0.32 µM/48 h | [49] |
Hepatoma carcinoma | HepG2 | 34.55 µM/48 h | |||
Lung cancer | A549 | 0.32 µM/48 h | |||
12 | Neoline | Gastric carcinoma | SGC-7901 | 37.55 µM/48 h | [50] |
Hepatoma carcinoma | HepG2 | 28.36 µM/48 h | |||
Lung cancer | A549 | 34.74 µM/48 h | |||
13 | 14-O-acetylneoline | Gastric carcinoma | SGC-7901 | 16.97 µM/48 h | [50] |
Hepatoma carcinoma | HepG2 | 33.76 µM/48 h | |||
Lung cancer | A549 | 18.75 µM/48 h | |||
C20-diterpenoid alkaloids | |||||
14 | Atisinium chloride | Gastric carcinoma | AGS | 0.44 µM/48 h | [49] |
Hepatoma carcinoma | HepG2 | 66.69 µM/48 h | |||
Lung cancer | A549 | 2.29 µM/48 h | |||
15 | Songorine | Gastric carcinoma | SGC-7901 | 46.55 µM/48 h | [50] |
Hepatoma carcinoma | HepG2 | 87.72 µM/48 h | |||
Lung cancer | A549 | 61.90 µM/48 h | |||
16 | 12-epi-napelline | Gastric carcinoma | SGC-7901 | 64.79 µM/48 h | [50] |
Hepatoma carcinoma | HepG2 | 96.99 µM/48 h | |||
Lung cancer | A549 | 65.91 µM/48 h | |||
17 | 12-epi-dehydronapelline | Gastric carcinoma | SGC-7901 | 65.00 µM/48 h | [50] |
Hepatoma carcinoma | HepG2 | 46.63 µM/48 h | |||
Lung cancer | A549 | 76.50 µM/48 h | |||
18 | 12-acetylluciculine | Malignant glioma | A172 | 13.95 µM/24 h | [51] |
19 | Pseudokobusine | Malignant glioma | A172 | >15.18 µM/24 h | [51] |
20 | 6,11-dibenzoylpseudokobusine | Malignant glioma | A172 | 2.42 µM/24 h | [51] |
21 | 11-veratroylpseudokobusine | Malignant glioma | A172 | 2.52 µM/24 h | [51] |
Lung cancer | A549 | 3.5 µM/24 h | [52] | ||
22 | 11-cinnamoylpseudokobusine | Malignant glioma | A172 | 1.94 µM/24 h | [51] |
Lung cancer | A549 | 5.1 µM/24 h | [52] | ||
23 | 11-(m-trifluoromethylbenzoyl)pseudokobusine | Malignant glioma | A172 | Not shown | [51] |
Lung cancer | A549 | 4.4 µM/24 h | [52] | ||
Lung cancer | A549 | 4.67 µM/24 h | [54] | ||
Lymphoma | Raji | 4.39 µM/96 h | [53] | ||
24 | 11-anisoylpseudokobusine | Malignant glioma | A172 | 2.80 µM/24 h | [51] |
Lung cancer | A549 | 1.7 µM/24 h | [52] | ||
Lymphoma | Raji | 5.18 µM/96 h | [53] | ||
25 | 11-p-nitrobenzoylpseudokobusine | Malignant glioma | A172 | 3.13 µM/24 h | [51] |
Lung cancer | A549 | 3.5 µM/24 h | [52] | ||
26 | 11,15-dianisoylpseudokobusine | Lung cancer | A549 | 1.72 µM/24 h | [54] |
27 | 11,15-di-p-nitrobenzoylpseudokobusin | Lung cancer | A549 | 2.66 µM/24 h | [54] |
28 | 11-(p-trifluoromethylbenzoyl)kobusine | Lung cancer | A549 | 5.44 µM/24 h | [54] |
29 | 11-(m-trifluoromethylbenzoyl)kobusine | Lung cancer | A549 | 3.75 µM/24 h | [54] |
30 | 11,15-di-p-nitrobenzoylkobusine | Lung cancer | A549 | 5.08 µM/24 h | [54] |
31 | 11-p-nitrobenzoylpseudokobusine | Lung cancer | A549 | 4.24 µM/24 h | [54] |
32 | 11-cinnamoylpseudokobusine | Lung cancer | A549 | 3.02 µM/24 h | [54] |
33 | 6,11-dianisoylpseudokobusine | Lung cancer | A549 | 3.68 µM/24 h | [54] |
34 | 11-veratroylpseudokobusine | Lung cancer | A549 | 4.07 µM/24 h | [54] |
35 | 11-anisoylpseudokobusine | Lung cancer | A549 | 2.20 µM/24 h | [54] |
36 | 11,15-dibenzoylkobusine | Lung cancer | A549 | GI50 = 8.4 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 9.3 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 6.0 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 7.5 µM/72 h | |||
37 | 11,15-dianisoylkobusine | Lung cancer | A549 | GI50 = 6.7 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 7.1 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 5.3 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 5.2 µM/72 h | |||
38 | 11,15-di-(4-nitrobenzoyl)kobusine | Lung cancer | A549 | GI50 = 6.9 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 7.0 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 5.3 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 5.5 µM/72 h | |||
39 | 11,15-di-(4-fluorobenzoyl)kobusine | Lung cancer | A549 | GI50 = 8.1 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 6.8 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 5.2 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 7.1 µM/72 h | |||
40 | 11,15-di-(3-trifluoromethylcinnamoyl)kobusine | Lung cancer | A549 | GI50 = 5.5 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 6.2 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 4.1 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 3.1 µM/72 h | |||
41 | 11,15-dibenzoylpseudokobusine | Lung cancer | A549 | GI50 = 8.8 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 7.6 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 5.2 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 6.3 µM/72 h | |||
42 | 11-(4-nitrobenzoyl)pseudokobusine | Lung cancer | A549 | GI50 = 5.8 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 7.2 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 6.4 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 6.4 µM/72 h | |||
43 | 11,15-di-(3-nitrobenzoyl)pseudokobusine | Lung cancer | A549 | GI50 = 5.0 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 5.2 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 5.6 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 5.6 µM/72 h | |||
44 | 11-(3-trifluoromethylbenzoyl)pseudokobusine | Lung cancer | A549 | GI50 = 6.8 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 7.7 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 8.9 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 6.2 µM/72 h | |||
45 | 11-cinnamoylpseudokobusine | Lung cancer | A549 | GI50 = 8.4 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 6.5 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 7.0 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 6.4 µM/72 h | |||
46 | 11-tritylpseudokobusine | Lung cancer | A549 | GI50 = 6.4 µM/72 h | [55] |
Prostate cancer | DU145 | GI50 = 6.0 µM/72 h | |||
Epidermoid carcinoma | KB | GI50 = 6.6 µM/72 h | |||
Epidermoid carcinoma | KB-VIN | GI50 = 5.3 µM/72 h | |||
Bis-diterpenoid alkaloids | |||||
47 | Bis-[O-(14-benzoylaconine-8-yl)]-pimelate | Lung cancer | A549 | 9.50 µM/72 h | [56] |
Breast cancer | MCF-7 | 7.56 µM/72 h | |||
Colon cancer | HCT-15 | 4.64 µM/72 h | |||
48 | Bis-[O-(14-benzoylaconine-8-yl)]-suberate | Lung cancer | A549 | 7.53 µM/72 h | [56] |
Breast cancer | MCF-7 | 6.90 µM/72 h | |||
Colon cancer | HCT-15 | 4.01 µM/72 h | |||
49 | Bis-[O-(14-benzoylaconine-8-yl)]-azelate | Lung cancer | A549 | 19.5 µM/72 h | [56] |
Breast cancer | MCF-7 | 16.9 µM/72 h | |||
Colon cancer | HCT-15 | 28.0 µM/72 h |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, M.-Y.; Yu, Q.-T.; Shi, C.-Y.; Luo, J.-B. Anticancer Activities of C18-, C19-, C20-, and Bis-Diterpenoid Alkaloids Derived from Genus Aconitum. Molecules 2017, 22, 267. https://doi.org/10.3390/molecules22020267
Ren M-Y, Yu Q-T, Shi C-Y, Luo J-B. Anticancer Activities of C18-, C19-, C20-, and Bis-Diterpenoid Alkaloids Derived from Genus Aconitum. Molecules. 2017; 22(2):267. https://doi.org/10.3390/molecules22020267
Chicago/Turabian StyleRen, Meng-Yue, Qing-Tian Yu, Chun-Yu Shi, and Jia-Bo Luo. 2017. "Anticancer Activities of C18-, C19-, C20-, and Bis-Diterpenoid Alkaloids Derived from Genus Aconitum" Molecules 22, no. 2: 267. https://doi.org/10.3390/molecules22020267
APA StyleRen, M. -Y., Yu, Q. -T., Shi, C. -Y., & Luo, J. -B. (2017). Anticancer Activities of C18-, C19-, C20-, and Bis-Diterpenoid Alkaloids Derived from Genus Aconitum. Molecules, 22(2), 267. https://doi.org/10.3390/molecules22020267