In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results
2.2. Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Extracts
3.3. Test Listeria Strains
3.4. Preparation of the Inoculum
3.5. Antibacterial Susceptibility Test
3.6. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.7. Rate of Kill Assay
3.8. Statistical Analysis
4. Conclusions
Acknowledgements
- Conflict of InterestThe authors declare no conflict of interest.
References
- Salimnia, H; Patel, D; Lephart, PR; Fairfax, MR; Chandrasekar, PH. Listeria grayi: vancomycin-resistant, gram-positive rod causing bacteremia in a stem cell transplant recipient. Transpl. Infect. Dis 2010, 12, 526–528. [Google Scholar]
- Hain, T; Steinweg, C; Chakraborty, T. Comparative and functional genomics of Listeria spp. J. Biotechnol 2006, 126, 37–51. [Google Scholar]
- Vazquez-Boland, JA; Kuhn, M; Berche, P; Chakraborty, T; Dominguez-Bernal, G; Goebel, W; Gonzalez-Zorn, B; Wehland, J; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev 2001, 14, 584–640. [Google Scholar]
- Rocourt, J; Hof, H; Schrettenbrunner, A; Malinverni, R; Bille, J. Acute purulent Listeria seeligeri meningitis in an immunocompetent adult. Schweiz. Med. Wochenschr 1986, 116, 248–251. [Google Scholar]
- Todeschini, G; Friso, L; Lombardi, S; Casaril, M; Fontana, R; Corrocher, R. A case of Listeria murrayi/grayi bacteremia in a patient with advanced Hodgkin’s disease. Eur. J. Clin. Microbiol. Infect. Dis 1998, 17, 808–810. [Google Scholar]
- Rapose, A; Lick, SD; Ismail, N. Listeria grayi bacteremia in a heart transplant recipient. Transpl. Infect. Dis 2008, 10, 434–436. [Google Scholar]
- Cummin, AJ; Fielding, AK; McLauchlin, J. Listeria ivanovii infection in a patient with AIDS. J. Infect 1994, 28, 89–91. [Google Scholar]
- Guillet, C; Join-Lambert, O; Monnier, AL; Leclercq, A; Mechai, F; Mamzer-Bruneel, M; Bielecka, MK; Scortti, M; Disson, O; Berche, P; et al. Human listeriosis caused by Listeria ivanovii. Emerg. Infect. Dis 2010, 16, 136–138. [Google Scholar]
- Walker, JK; Morgan, JH; McLauchlin, J; Grant, KA; Shallcross, JA. Listeria innocua isolated from a case of ovine meningoencephalitis. Vet. Microbiol 1994, 42, 245–253. [Google Scholar]
- Schuppler, M; Loessner, MJ. The opportunistic pathogen Listeria monocytogenes: pathogenicity and interaction with the mucosal immune system. Int J Inflamm 2010, 704321, 1–12. [Google Scholar]
- Schuchat, A; Swaminathan, B; Broome, CV. Epidemiology of human listeriosis. Clin. Microbiol. Rev 1991, 4, 169–183. [Google Scholar]
- Davis, JA; Jackson, CR. Comparative Antimicrobial Susceptibility of Listeria monocytogenes, L. innocua, and L. welshimeri. Microb. Drug Res 2009, 15, 27–32. [Google Scholar]
- Allerberger, F; Wagner, M. Listeriosis: a resurgent foodborne infection. Clin. Microbiol. Infect 2010, 16, 16–23. [Google Scholar]
- Mead, PS; Slutsker, L; Dietz, V; McCaig, LF; Bresee, JS; Shapiro, C; Griffin, PM; Tauxe, RV. Food-related illness and death in the United States. Emerg. Infect. Dis 1999, 5, 607–625. [Google Scholar]
- Swaminathan, B; Gerner-Smidt, P. The epidemiology of human listeriosis. Microb. Infect 2007, 9, 1236–1243. [Google Scholar]
- Grau, FH; Vanderlinde, PB. Growth of Listeria monocytogenes on vacuum packaged beef. J. Food Prot 1990, 53, 739–741. [Google Scholar]
- Altekruse, SF; Cohen, ML; Swerdlow, DL. Emerging Foodborne diseases. Emerg. Infect. Dis 1997, 3, 285–293. [Google Scholar]
- Bertrand, S; Huys, G; Yde, M; D’Haene, K; Tardy, F; Vrints, M; Swings, J; Collard, J. Detection and characterization of tet (M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J. Med. Microbiol 2005, 54, 1151–1156. [Google Scholar]
- Rodas-Suarez, OR; Flores-Pedroche, JF; Betancourt-Rule, JM; Quinones-Ramirez, EI; Vazquez-Salinas, C. Occurrence and antibiotic sensitivity of Listeria monocytogenes strains isolated from Oysters, Fish, and Estuarine Water. App. Environ. Microbiol 2006, 72, 7410–7412. [Google Scholar]
- Odjadjare, EEO; Obi, LC; Okoh, AI. Municipal wastewater effluents as a source of Listerial pathogens in the aquatic milieu of the Eastern Cape Province of South Africa: A concern of public health importance. Int. J. Environ. Res. Public Health 2010, 7, 2376–2394. [Google Scholar]
- Iwu, MM. Handbook of African Medicinal Plants; CRC Press: Boca Raton, FL USA, 1993; pp. 183–184. [Google Scholar]
- Adedeji, OS; Farinu, GO; Ameen, SA; Olayeni, TB. The effects of dietary Bitter kola (Garcinia kola) inclusion on body weight haematology and survival rate of pullet chicks. J. Anim. Vet. Advan 2006, 5, 184–187. [Google Scholar]
- Anegbeh, PO; Iruka, C; Nkirika, C. Enhancing germination of Bitter Cola (Garcinia Kola) Heckel: Prospects for agroforestry farmers in the Niger delta. Sci. Afr 2006, 5, 1118–1931. [Google Scholar]
- Adegoke, EO; Etkin, OO; Awosika, OE. Biomedical evaluation of commonly used plant medicines. J. Ethno. Pharmacol 1981, 4, 75–98. [Google Scholar]
- Dalziel, JM. The Useful Plants of West Tropical Africa; Crown agents for the colonies: London, UK, 1937. [Google Scholar]
- Penduka, D; Okoh, AI. In-vitro antagonistic activities of crude dichloromethane extracts of Garcinia kola (Heckel) seeds against potentially pathogenic Vibrio species. J. Med. Plants. Res 2011, 5, 2071–2077. [Google Scholar]
- Njume, C; Afolayan, AJ; Clarke, AM; Ndip, RN. Crude ethanolic extracts of Garcinia kola seeds Heckel (Guttiferae) prolong the lag phase of Helicobacter pylori: Inhibitory and bactericidal potential. J. Med. Food 2011, 14, 1–6. [Google Scholar]
- Sibanda, T; Olaniran, AO; Okoh, AI. In-vitro antibacterial activities of crude extracts of Garcinia kola seeds against wound sepsis associated Staphylococcus strains. J. Med. Plants. Res 2010, 4, 710–716. [Google Scholar]
- Nwaokorie, F; Coker, A; Ogunsola, F; Gaett-Jardim, E, Jr; Gabriel, O; Patricia, A; Taiwo, A; Adesola, U. Antimicrobial activities of Garcinia kola on oral Fusabacterium nucleatum and biofilm. Afr. J. Microbiol. Res 2010, 4, 509–514. [Google Scholar]
- Akoachere, JFTK; Ndip, RN; Chenwi, EB; Ndip, LM; Njock, TE; Anong, DN. Antibacterial effect of Zingiber officinale and Garcinia kola on respiratory tract pathogens. East. Afr. Med. J 2002, 79, 588–592. [Google Scholar]
- Han, QB; Lee, SF; Qiao, CF; He, ZD; Song, JZ; Sun, HD; Xu, H. Complete NMR assignments of the antibacterial Biflavonoid GB1 from Garcinia kola. Chem. Pharm. Bull 2005, 53, 1034–1036. [Google Scholar]
- Penduka, D; Okoh, OO; Okoh, AI. In-vitro antagonistic characteristics of crude aqueous and methanolic extracts of Garcinia kola (Heckel) seeds against some Vibrio bacteria. Molecules 2011, 16, 2754–2765. [Google Scholar]
- Sibanda, T; Okoh, AI. In-vitro antibacterial regimes of crude aqueous and acetone extracts of Garcinia kola seeds. J. Biol. Sci 2008, 8, 149–154. [Google Scholar]
- Ogbulie, JN; Ogueke, CC; Nwanebu, FC. Antibacterial properties of Uvaria chamae, Congronema latifolium, Garcinia kola, Vemonia amygdalina and Aframomium melegueta. Afr. J. Biotech 2007, 6, 1549–1553. [Google Scholar]
- Ezeifeka, GO; Orji, MU; Mbata, TI; Patrick, AO. Antimicrobial activities of Cajanus cajan, Garcinia Kola and Xylopia aethiopica on pathogenic microorganisms. Biotechnology 2004, 3, 41–43. [Google Scholar]
- Xu, H; Lee, SF. Activity of plant flavonoids against antibiotic-resistant bacteria. Phythother. Res 2001, 15, 39–43. [Google Scholar]
- Okunji, C; Komarnytsky, S; Fear, G; Poulev, A; Ribnicky, DM; Awachie, PI; Ito, Y; Raskin, I. Preparative isolation and identification of tyrosinase inhibitors from the seeds of Garcinia kola by high-speed counter-current chromatography. J. Chromatog. A 2007, 1151, 45–50. [Google Scholar]
- Taiwo, O; Xu, H; Lee, SF. Antibacterial activities of extracts from Nigerian chewing sticks. Phytother. Res 1999, 13, 675–679. [Google Scholar]
- Obi, VI; Onuoha, C. Extraction and Characterization methods of plants and plant products. In Biological and Agricultural Techniques; Ogbulie, JN, Ojiako, OA, Eds.; Websmedia: Owerri, Nigeria, 2000; pp. 271–286. [Google Scholar]
- Ogueke, CC; Ogbulie, JN; Joku, HO. Antimicrobial properties and preliminary phytochemical analysis of ethanolic extracts of Alstonia bonnie. Niger. J. Microbiol 2006, 20, 896–899. [Google Scholar]
- Monache, GD; Monache, FD; Waterman, PG; Crichton, EG; de Lima, RA. Minor xanthones from Rheedia gardneriana. Phytochemistry 1984, 23, 1757–1759. [Google Scholar]
- Almeida, LSB; Murata, RM; Yatsuda, R; dos Santos, MH; Nagem, TJ; Alencar, SM; Koo, H; Rosalen, PL. Antimicrobial activity of Rheedia brasiliensis and 7-epiclusianone against Streptococcus mutans. Phytomedicine 2008, 15, 886–891. [Google Scholar]
- Pereira, IO; Marques, MJ; Pavan, ALR; Codonho, BS; Barbieri, CL; Beijo, LA; Doriguetto, AC; D’Martin, EC; dos Santos, MH. Leishmanicidal activity of benzophenones and extracts from Garcinia brasiliensis Mart. Fruits. Phytomedicine 2010, 17, 339–345. [Google Scholar]
- Zhou, Y; Lee, S; Choi, FFK; Xu, G; Liu, X; Song, J; Li, S; Qiao, C; Xu, H. Qualitative and quantitative analysis of polycyclic polyprenylated acylphloroglucinols from Garcinia species using ultra performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Analytica. Chimica. Acta 2010, 678, 96–107. [Google Scholar]
- Madubunyi, II. Antimicrobial activities of the constituents of Garcinia kola Seeds. Int. J. Pharmacog 1995, 33, 232–237. [Google Scholar]
- Burt, S. Essential oils: their antibacterial properties and potential applications in foods. Int. J. Food Microbiol 2004, 94, 223–253. [Google Scholar]
- Oliveira, JLTM; Diniz, MFM; Lima, EO; Souza, EL; Trajano, VN; Santos, BHC. Effectiveness of Origanum vulgare L. and Origanum majorana L. essential oils in inhibiting the growth of bacterial strains isolated from the patients with conjunctivitis. Braz. Arch. Biol. Technol 2009, 52, 45–50. [Google Scholar]
- CLSI (Clinical and Laboratory Standards Institute). Performance standards for antimicrobial susceptibility testing. CLSI approved standard M100-S15. Available online: http://www.clsi.org/source/orders/free/m100-s20-u.pdf accessed on 18 October 2011.
- Pankey, GA; Sabath, LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram positive bacterial infections. Clin. Inf. Dis 2004, 38, 864–870. [Google Scholar]
- Akinpelu, DA; Adegboye, MF; Adeloye, OA; Okoh, AI. Biocidal activity of partially purified fractions from methanolic extract of Garcinia kola (Heckel) seeds on bacterial isolates. Biol. Res 2008, 41, 277–287. [Google Scholar]
- Basri, DF; Fan, SH. The potential of aqueous and acetone extracts of galls of Queercus infectoria as antibacterial agents. Ind. J. Pharm 2005, 37, 26–29. [Google Scholar]
- EUCAST (European Committee for Antimicrobial Susceptibility Testing). Determination of Minimum lnhibitory Concentration (MICs) of antimicrobial agents by broth dilution. Clin. Microbiol. Infect 2003, 9, 1–7.
- Irobi, ON; Moo-Young, M; Anderson, WA. Antimicrobial activity of Annato (Bixa orellana) extract. Int. J. Pharmacog 1996, 34, 87–90. [Google Scholar]
- Eloff, JN. A sensitive and quick microplate method to determine the minimum inhibitory concentration of plants extracts for bacteria. Planta Med 1998, 64, 711–713. [Google Scholar]
- Iwalewa, EO; Suleiman, MM; Mdee, LK; Eloff, JN. Antifungal and antibacterial activities of different extracts of Harungana madagascariensis stem bark. Pharma. Biol 2009, 47, 878–885. [Google Scholar]
- Sudjana, AN; D’Orazio, C; Ryan, V; Rasool, N; Ng, J; Islam, N; Riley, TV; Hammer, KA. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob Agents 2009, 33, 461–463. [Google Scholar]
- Odenholt, I; Lowdin, E; Cars, O. Pharmacodynamics of telithromycin in-vitro against respiratory tract pathogens. Antimicrob. Agents Chemother 2001, 45, 23–29. [Google Scholar]
ORGANISM | N-H | A | C | ORGANISM | N-H | A | C |
---|---|---|---|---|---|---|---|
L. grayi (LAL 13) | 0 | 0 | 20 ± 3.055 | L. ivanovii (LEL 18) | 9 ± 1 | 8 ± 0 | 20 ± 3.215 |
L. ivanovii (LEL 17) | 8 ± 0.577 | 0 | 19 ± 1.528 | L. ivanovii (LEL 29) | 0 | 0 | 8 ± 0.577 |
L. ivanovii (LEL 30) | 17 ± 0.577 | 0 | 30 ± 0.577 | L. ivanovii (LEL 15) | 0 | 0 | 13 ± 2.082 |
L. ivanovii (LDB 11) | 9 ± 0.577 | 0 | 20 ± 1 | L. ivanovii (LDB 9) | 9 ± 1 | 0 | 25 ± 2.082 |
L. ivanovii (LEL9) | 9 ± 0.577 | 0 | 16 ± 2.082 | L. ivanovii (LDB 10) | 13 ± 0 | 8 ± 0.577 | 25 ± 0.577 |
L. ivanovii (LEL 1) | 16 ± 1.155 | 11 ± 1 | 17 ± 0.577 | L. ivanovii (LEL 2) | 0 | 0 | 28 ± 1.528 |
L. ivanovii (LEL 5) | 0 | 0 | 11 ± 0.577 | L. ivanovii (LEL 6) | 0 | 0 | 11 ± 1.732 |
L. ivanovii (LEL 3) | 0 | 0 | 35 ± 3.055 | L. ivanovii (LEL 4) | 0 | 0 | 14 ± 1 |
L. ivanovii (LEL 19) | 0 | 0 | 25 ± 4.041 | L. ivanovii (LEL 10) | 0 | 0 | 20 ± 2.082 |
L. ivanovii (LAL 9) | 11 ± 0.577 | 0 | 25 ± 1.732 | L. ivanovii (LAL 11) | 10 ± 0.577 | 8 ± 0 | 17 ± 2.646 |
L. grayi (LAL 12) | 8 ± 0 | 0 | 17 ± 1.155 | L. ivanovii (LAL 10) | 10 ± 5.77 | 8 ± 0.577 | 15 ± 2.082 |
L. grayi (LAL 15) | 10 ± 2.082 | 8 ± 0 | 18 ± 2.082 | L. ivanovii (LAL 14) | 0 | 0 | 30 ± 2.517 |
L. ivanovii (LDB 1) | 0 | 0 | 15 ± 2.082 | L. ivanovii (LDB 2) | 0 | 0 | 14 ± 0 |
L. ivanovii (LAL 6) | 0 | 0 | 19 ± 1.155 | L. ivanovii (LAL5) | 0 | 0 | 20 ± 1.528 |
L. ivanovii (LAL 7) | 0 | 0 | 20 ± 1.528 | L. monocytogenes (LAL 8) | 13 ± 5.77 | 10 ± 1.155 | 12 ± 1 |
L. ivanovii (LDB 7) | 17 ± 0.577 | 10 ± 0.577 | 27 ± 0.577 | L. ivanovii (LDB 12) | 16 ± 1.528 | 10 ± 0.577 | 25 ± 1.528 |
L. ivanovii (LDB 3) | 11 ± 0 | 8 ± 0.577 | 15 ± 1 | L. ivanovii (LDB 8) | 0 | 0 | 20 ± 1.732 |
L. ivanovii (LEL 7) | 0 | 0 | 9 ± 1 | L. ivanovii (LEL 8) | 0 | 0 | 30 ± 1.528 |
L. ivanovii (LEL 14) | 0 | 0 | 35 ± 2 | L. ivanovii (LEL 16) | 12 ± 1 | 8 ± 0.577 | 15 ± 1.528 |
L. grayi (LAL 3) | 0 | 0 | 13 ± 3.055 | L. ivanovii (LAL 4) | 0 | 0 | 20 ± 2 |
L. ivanovii (LAL 2) | 13 ± 2.082 | 8 ± 0.577 | 16 ± 1 | L. ivanovii (LAL 1) | 0 | 0 | 20 ± 2 |
Organism | Extracts | |||
---|---|---|---|---|
n-Hexane | Aqueous | |||
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
L. ivanovii (LEL9) | 0.079 | 10 | _ | _ |
L. ivanovii (LEL 18) | 0.079 | 10 | 10 | >10 |
L. ivanovii (LAL 10) | 0.157 | 10 | 10 | >10 |
L. ivanovii (LEL 30) | 0.157 | 0.625 | _ | _ |
L. ivanovii (LEL 16) | 0.157 | 10 | 10 | >10 |
L. monocytogenes (LAL 8) | 0.079 | 5 | 10 | >10 |
L. ivanovii (LDB 12) | 0.157 | 5 | >10 | >10 |
L. ivanovii (LDB 10) | 0.079 | 10 | 10 | >10 |
L. ivanovii (LEL 1) | 0.157 | 10 | >10 | >10 |
L. ivanovii (LAL 11) | 0.625 | 10 | 10 | >10 |
L. ivanovii (LDB 3) | 0.079 | 10 | 10 | >10 |
L. grayi (LAL 15) | 0.079 | 10 | 10 | >10 |
L. grayi (LAL 12) | 0.625 | 10 | _ | _ |
L. ivanovii (LDB 11) | 0.079 | 10 | _ | _ |
L. ivanovii (LAL 2) | 0.157 | 10 | 10 | >10 |
L. ivanovii (LEL 17) | 0.625 | 10 | _ | _ |
L. ivanovii (LDB 7) | 0.079 | 10 | 10 | >10 |
L. ivanovii (LDB 9) | 0.625 | 5 | _ | _ |
L. ivanovii (LAL 9) | 0.079 | 10 | _ | _ |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Penduka, D.; Okoh, A.I. In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds. Int. J. Mol. Sci. 2011, 12, 6952-6965. https://doi.org/10.3390/ijms12106952
Penduka D, Okoh AI. In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds. International Journal of Molecular Sciences. 2011; 12(10):6952-6965. https://doi.org/10.3390/ijms12106952
Chicago/Turabian StylePenduka, Dambudzo, and Anthony I. Okoh. 2011. "In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds" International Journal of Molecular Sciences 12, no. 10: 6952-6965. https://doi.org/10.3390/ijms12106952
APA StylePenduka, D., & Okoh, A. I. (2011). In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds. International Journal of Molecular Sciences, 12(10), 6952-6965. https://doi.org/10.3390/ijms12106952