Next Article in Journal
Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology
Previous Article in Journal
Metabolite Profiling of Triterpene Glycosides of the Far Eastern Sea Cucumber Eupentacta fraudatrix and Their Distribution in Various Body Components Using LC-ESI QTOF-MS
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Mar. Drugs 2017, 15(10), 305; doi:10.3390/md15100305

Dual Biological Functions of a Cytoprotective Effect and Apoptosis Induction by Bioavailable Marine Carotenoid Fucoxanthinol through Modulation of the Nrf2 Activation in RAW264.7 Macrophage Cells

Department Bioresource Technology, Okinawa National College of Technology, 905 Henoko, Nago-city, Okinawa Prefecture 905-2192, Japan
*
Author to whom correspondence should be addressed.
Received: 6 September 2017 / Revised: 18 September 2017 / Accepted: 1 October 2017 / Published: 6 October 2017
View Full-Text   |   Download PDF [3844 KB, uploaded 10 October 2017]   |  

Abstract

In this study, the function of fucoxanthinol (FxOH) as a bioavailable marine carotenoid together with the pre-metabolite, fucoxanthin (Fx), was examined through the Nrf2-ARE pathway. The antioxidant activity in the low concentration range of the compounds (1–4 μM) with a peroxyl radical scavenging capacity was proved by the ORAC (Oxygen Radical Absorbance Capacity) method and an ESR study. Similar concentrations of the compound also activated the Nrf2-ARE signaling with the Nrf2 translocation into the nuclear, then the expression of the antioxidant protein HO-1 increased. On the other hand, the high concentrations of both compounds (>10 μM) induced apoptosis with caspase 3/7 activation during suppression of the anti-apoptotic proteins, such as Bcl-XL and phosphorous Akt (pAkt). The Nrf2 expression was then activated in the nuclear, indicating that the Nrf2 plays a significant role in the cytoprotective effect against the toxicity of the compounds. These results indicated that the compounds have the dual functions of a cytoprotective effect and the apoptosis induction dependent on the treated concentrations through the Nrf2 activation. In addition, the results of all the assays involved in our previous studies suggested that the metabolite FxOH having a higher activity than the Fx, will be a bioavailable compound in biological systems. View Full-Text
Keywords: marine carotenoid; fucoxanthinol; Nrf2; apoptosis; ESR; peroxy radical marine carotenoid; fucoxanthinol; Nrf2; apoptosis; ESR; peroxy radical
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Taira, J.; Sonamoto, M.; Uehara, M. Dual Biological Functions of a Cytoprotective Effect and Apoptosis Induction by Bioavailable Marine Carotenoid Fucoxanthinol through Modulation of the Nrf2 Activation in RAW264.7 Macrophage Cells. Mar. Drugs 2017, 15, 305.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top