Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Mar. Drugs, Volume 15, Issue 10 (October 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The Conus genus includes around 500 species of marine mollusks producing venomous peptides known as [...] Read more.
View options order results:
result details:
Displaying articles 1-36
Export citation of selected articles as:
Open AccessArticle Growth, Toxin Production and Allelopathic Effects of Pseudo-nitzschia multiseries under Iron-Enriched Conditions
Mar. Drugs 2017, 15(10), 331; https://doi.org/10.3390/md15100331
Received: 26 August 2017 / Revised: 27 September 2017 / Accepted: 21 October 2017 / Published: 24 October 2017
Cited by 1 | PDF Full-text (1774 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In order to assess the effects of Fe-enrichment on the growth and domoic acid (DA) production of the toxigenic diatom Pseudo-nitzschia multiseries, static cultures that received the addition of different iron (Fe) concentrations were maintained for 30 days. Intra- and extracellular DA
[...] Read more.
In order to assess the effects of Fe-enrichment on the growth and domoic acid (DA) production of the toxigenic diatom Pseudo-nitzschia multiseries, static cultures that received the addition of different iron (Fe) concentrations were maintained for 30 days. Intra- and extracellular DA concentrations were evaluated over time, and growth and chain-formation were compared to those of non-toxic diatoms, Bacillaria sp. Growth rates of P. multiseries (μ = 0.45–0.73 d−1) were similar among cultures containing different Fe concentrations. Likewise, the similar incidence and length of P. multiseries stepped cell chains (usually 2–4; up to 8-cell long) among the treatments reinforces that the cultures were not growth-inhibited under any condition tested, suggesting an efficient Fe acquisition mechanism. Moreover, DA concentrations were significantly higher under the highest Fe concentration, indicating that Fe is required for toxin synthesis. Bacillaria sp. reached comparable growth rates under the same Fe concentrations, except when the dissolved cell contents from a P. multiseries culture was added. The 50–70% reduction in cell density and 70–90% decrease in total chlorophyll-a content of Bacillaria sp. at early stationary growth phase indicates, for the first time, an allelopathic effect of undetermined compounds released by Pseudo-nitzschia to another diatom species. Full article
(This article belongs to the Special Issue Harmful Marine Phytoplankton)
Figures

Figure 1

Open AccessArticle Accumulation and Tissue Distribution of Dinophysitoxin-1 and Dinophysitoxin-3 in the Mussel Crenomytilus grayanus Feeding on the Benthic Dinoflagellate Prorocentrum foraminosum
Mar. Drugs 2017, 15(10), 330; https://doi.org/10.3390/md15100330
Received: 2 October 2017 / Revised: 19 October 2017 / Accepted: 19 October 2017 / Published: 24 October 2017
Cited by 1 | PDF Full-text (919 KB) | HTML Full-text | XML Full-text
Abstract
A DTX-1-producing microalga, Prorocentrum foraminosum, from Peter the Great Bay, Sea of Japan, was fed to Gray’s mussels, Crenomytilus grayanus, for 12 days. An increase in DTX-1 and 7-O-acyl-DTX-1 (DTX-3) was observed in the digestive gland, kidneys, and gills.
[...] Read more.
A DTX-1-producing microalga, Prorocentrum foraminosum, from Peter the Great Bay, Sea of Japan, was fed to Gray’s mussels, Crenomytilus grayanus, for 12 days. An increase in DTX-1 and 7-O-acyl-DTX-1 (DTX-3) was observed in the digestive gland, kidneys, and gills. The digestive gland accumulated 91–100% of DTX-1 + DTX-3; and kidneys and gills accumulated, up to 8.5% and 4.3%, respectively. The kidneys had a distinctive pattern of toxin accumulation where the concentration of DTX-1 did not grow significantly after the eighth day of feeding, indicating the potential of DTX-1 elimination. The digestive gland and gills predominantly accumulated DTX-1, with a dramatic increase between Days 8 and 12. The DTX-3 content was highest in the digestive gland. The composition of DTX-3 in the acyl groups was similar for the digestive gland and kidneys, and did not change during feeding. The total toxin uptake of mussels exceeded the total toxin content from ingested cells by 2.4 times, showing that toxins may have accumulated from the seawater. This assumption needs to be further proved. The muscle, gonads, and mantle remained free of toxins. No genotoxic effect was observed in the gills and digestive gland. Full article
(This article belongs to the Special Issue Algal Toxins II, 2017)
Figures

Figure 1

Open AccessFeature PaperReview Marine-Derived Penicillium Species as Producers of Cytotoxic Metabolites
Mar. Drugs 2017, 15(10), 329; https://doi.org/10.3390/md15100329
Received: 10 August 2017 / Revised: 30 September 2017 / Accepted: 9 October 2017 / Published: 24 October 2017
Cited by 2 | PDF Full-text (5249 KB) | HTML Full-text | XML Full-text
Abstract
Since the discovery of penicillin, Penicillium has become one of the most attractive fungal genera for the production of bioactive molecules. Marine-derived Penicillium has provided numerous excellent pharmaceutical leads over the past decades. In this review, we focused on the cytotoxic metabolites *
[...] Read more.
Since the discovery of penicillin, Penicillium has become one of the most attractive fungal genera for the production of bioactive molecules. Marine-derived Penicillium has provided numerous excellent pharmaceutical leads over the past decades. In this review, we focused on the cytotoxic metabolites * (* Cytotoxic potency was referred to five different levels in this review, extraordinary (IC50/LD50: <1 μM or 0.5 μg/mL); significant (IC50/LD50: 1~10 μM or 0.5~5 μg/mL); moderate (IC50/LD50: 10~30 μM or 5~15 μg/mL); mild (IC50/LD50: 30~50 μM or 15~25 μg/mL); weak (IC50/LD50: 50~100 μM or 25~50 μg/mL). The comparative potencies of positive controls were referred when they were available). produced by marine-derived Penicillium species, and on their cytotoxicity mechanisms, biosyntheses, and chemical syntheses. Full article
Figures

Figure 1

Open AccessArticle Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles
Mar. Drugs 2017, 15(10), 328; https://doi.org/10.3390/md15100328
Received: 4 August 2017 / Revised: 30 August 2017 / Accepted: 17 October 2017 / Published: 24 October 2017
Cited by 1 | PDF Full-text (4648 KB) | HTML Full-text | XML Full-text
Abstract
Aloe vera is a perennial plant employed for medical, pharmaceutical and cosmetic purposes that is rich in amino acids, enzymes, vitamins and polysaccharides, which are responsible for its therapeutic properties. Incorporating these properties into a biopolymer film obtained from alginate and chitosan allowed
[...] Read more.
Aloe vera is a perennial plant employed for medical, pharmaceutical and cosmetic purposes that is rich in amino acids, enzymes, vitamins and polysaccharides, which are responsible for its therapeutic properties. Incorporating these properties into a biopolymer film obtained from alginate and chitosan allowed the development of a novel wound dressing with antibacterial capacity and healing effects to integrate the antibacterial capacity of silver nanoparticles with the healing and emollient properties of Aloe vera gel. Three alginate-chitosan matrices were obtained through blending methods using different proportions of alginate, chitosan, the Aloe vera (AV) gel and silver nanoparticles (AgNps), which were incorporated into the polymeric system through immersion methods. Physical, chemical and antibacterial characteristics were evaluated in each matrix. Interaction between alginate and chitosan was identified using the Fourier transform infrared spectroscopy technique (FTIR), porosity was studied using scanning electron microscopy (SEM), swelling degree was calculated by difference in weight, Aloe vera gel release capacity was estimated by applying a drug model (Peppas) and finally antibacterial capacity was evaluated against S. Aureus and P. aeruginosa. Results show that alginate-chitosan (A (1:3 Chit 1/Alg 1); B (1:3 Chit 1.5/Alg 1) and C (3:1 Chit 1/Alg 1/B12)) matrices with Aloe vera (AV) gel and silver nanoparticles (AgNps) described here displayed antibacterial properties and absorption and Aloe vera release capacity making it a potential wound dressing for minor injuries. Full article
(This article belongs to the Special Issue Marine Oligosaccharides and Polysaccharides)
Figures

Figure 1

Open AccessReview Recent Advances in the Isolation, Synthesis and Biological Activity of Marine Guanidine Alkaloids
Mar. Drugs 2017, 15(10), 324; https://doi.org/10.3390/md15100324
Received: 8 September 2017 / Revised: 10 October 2017 / Accepted: 16 October 2017 / Published: 24 October 2017
Cited by 1 | PDF Full-text (2773 KB) | HTML Full-text | XML Full-text
Abstract
Marine organisms are prolific resources of guanidine-containing natural products with intriguing structures and promising biological activities. These molecules have therefore attracted the attention of chemists and biologists for their further studies towards potential drug leads. This review focused on the guanidine alkaloids derived
[...] Read more.
Marine organisms are prolific resources of guanidine-containing natural products with intriguing structures and promising biological activities. These molecules have therefore attracted the attention of chemists and biologists for their further studies towards potential drug leads. This review focused on the guanidine alkaloids derived from marine sources and discussed the recent progress on their isolation, synthesis and biological activities, covering the literature from the year 2010 to the present. Full article
Figures

Figure 1

Open AccessArticle Anti-Inflammatory Cembranoids from the Soft Coral Lobophytum crassum
Mar. Drugs 2017, 15(10), 327; https://doi.org/10.3390/md15100327
Received: 26 September 2017 / Revised: 19 October 2017 / Accepted: 20 October 2017 / Published: 23 October 2017
Cited by 3 | PDF Full-text (2014 KB) | HTML Full-text | XML Full-text
Abstract
Abstract: Cembrane-type diterpenoids are among the most frequently encountered natural products from the soft corals of the genus Lobophytum. In the course of our investigation to identify anti-inflammatory constituents from a wild-type soft coral Lobophytum crassum, two new cembranoids, lobophyolide
[...] Read more.
Abstract: Cembrane-type diterpenoids are among the most frequently encountered natural products from the soft corals of the genus Lobophytum. In the course of our investigation to identify anti-inflammatory constituents from a wild-type soft coral Lobophytum crassum, two new cembranoids, lobophyolide A (1) and B (2), along with five known compounds (37), were isolated. The structures of these natural products were identified using NMR and MS spectroscopic analyses. Compound 1 was found to possess the first identified α-epoxylactone group among all cembrane-type diterpenoids. The in vitro anti-inflammatory effect of compounds 1–5 was evaluated. The results showed that compounds 1–5 not only reduced IL-12 release, but also attenuated NO production in LPS-activated dendritic cells. Our data indicated that the isolated series of cembrane-type diterpenoids demonstrated interesting structural features and anti-inflammatory activity which could be further developed into therapeutic entities. Full article
Figures

Graphical abstract

Open AccessReview Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients
Mar. Drugs 2017, 15(10), 326; https://doi.org/10.3390/md15100326
Received: 9 August 2017 / Revised: 14 October 2017 / Accepted: 18 October 2017 / Published: 21 October 2017
PDF Full-text (663 KB) | HTML Full-text | XML Full-text
Abstract
Human skin is constantly exposed to damaging ultraviolet radiation (UVR), which induces a number of acute and chronic disorders. To reduce the risk of UV-induced skin injury, people apply an additional external protection in the form of cosmetic products containing sunscreens. Nowadays, because
[...] Read more.
Human skin is constantly exposed to damaging ultraviolet radiation (UVR), which induces a number of acute and chronic disorders. To reduce the risk of UV-induced skin injury, people apply an additional external protection in the form of cosmetic products containing sunscreens. Nowadays, because of the use of some chemical filters raises a lot of controversies, research focuses on exploring novel, fully safe and highly efficient natural UV-absorbing compounds that could be used as active ingredients in sun care products. A promising alternative is the application of multifunctional mycosporine-like amino acids (MAAs), which can effectively compete with commercially available filters. Here, we outline a complete characterization of these compounds and discuss their enormous biotechnological potential with special emphasis on their use as sunscreens, activators of cells proliferation, anti-cancer agents, anti-photoaging molecules, stimulators of skin renewal, and functional ingredients of UV-protective biomaterials. Full article
(This article belongs to the Special Issue Marine Products for Health and Beauty)
Figures

Figure 1

Open AccessReview Pleiotropic Role of Puupehenones in Biomedical Research
Mar. Drugs 2017, 15(10), 325; https://doi.org/10.3390/md15100325
Received: 1 September 2017 / Revised: 27 September 2017 / Accepted: 16 October 2017 / Published: 21 October 2017
Cited by 1 | PDF Full-text (1561 KB) | HTML Full-text | XML Full-text
Abstract
Marine sponges represent a vast source of metabolites with very interesting potential biomedical applications. Puupehenones are sesquiterpene quinones isolated from sponges of the orders Verongida and Dictyoceratida. This family of chemical compounds is composed of a high number of metabolites, including puupehenone, the
[...] Read more.
Marine sponges represent a vast source of metabolites with very interesting potential biomedical applications. Puupehenones are sesquiterpene quinones isolated from sponges of the orders Verongida and Dictyoceratida. This family of chemical compounds is composed of a high number of metabolites, including puupehenone, the most characteristic compound of the family. Chemical synthesis of puupehenone has been reached by different routes, and the special chemical reactivity of this molecule has allowed the synthesis of many puupehenone-derived compounds. The biological activities of puupehenones are very diverse, including antiangiogenic, antitumoral, antioxidant, antimicrobial, immunomodulatory and antiatherosclerotic effects. Despite the very important roles described for puupehenones concerning different pathologies, the exact mechanism of action of these compounds and the putative therapeutic effects in vivo remain to be elucidated. This review offers an updated and global view about the biology of puupehenones and their therapeutic possibilities in human diseases such as cancer. Full article
(This article belongs to the collection Marine Compounds and Cancer) Printed Edition available
Figures

Figure 1

Open AccessArticle Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides
Mar. Drugs 2017, 15(10), 321; https://doi.org/10.3390/md15100321
Received: 22 August 2017 / Revised: 15 October 2017 / Accepted: 16 October 2017 / Published: 20 October 2017
Cited by 2 | PDF Full-text (4348 KB) | HTML Full-text | XML Full-text
Abstract
3,6-Anhydro-l-galactose (AHG), a major monomeric constituent of red macroalgae (Rhodophyta), was recently reported to possess skin whitening activity. Moreover, AHG-containing oligosaccharides, such as agarooligosaccharides (AOSs) and neoagarooligosaccharides (NAOSs), have various physiological activities, including anti-inflammatory, antioxidant, and skin moisturizing effects.
[...] Read more.
3,6-Anhydro-l-galactose (AHG), a major monomeric constituent of red macroalgae (Rhodophyta), was recently reported to possess skin whitening activity. Moreover, AHG-containing oligosaccharides, such as agarooligosaccharides (AOSs) and neoagarooligosaccharides (NAOSs), have various physiological activities, including anti-inflammatory, antioxidant, and skin moisturizing effects. In this study, AHG and NAOSs were produced from agarose by enzymatic reactions catalyzed by an endo-type β-agarase, an exo-type β-agarase, and a neoagarobiose hydrolase. In a cell proliferation assay, AHG, AOSs, and NAOSs at 12.5, 25, and 50 μg/mL concentrations did not exhibit cytotoxicity toward murine B16 melanoma cells or human epidermal melanocytes. In an in vitro skin whitening activity assay of AHG, AOSs, and NAOSs at 50 μg/mL, AHG showed the highest skin whitening activity in both murine B16 melanoma cells and human epidermal melanocytes; this activity was mediated by the inhibition of melanogenesis. Neoagarotetraose and neoagarohexaose also exhibited in vitro skin whitening activity, whereas neoagarobiose and AOSs with degrees of polymerization of 3 (agarotriose), 5 (agaropentaose), and 7 (agaroheptaose) did not. Therefore, AHG is responsible for the skin whitening activity of agar-derived sugars, and the structural differences among the AHG-containing oligosaccharides may be responsible for their different skin whitening activities. Full article
(This article belongs to the Special Issue Marine Products for Health and Beauty)
Figures

Graphical abstract

Open AccessFeature PaperArticle A Synthetic Analogue of Neopeltolide, 8,9-Dehydroneopeltolide, Is a Potent Anti-Austerity Agent against Starved Tumor Cells
Mar. Drugs 2017, 15(10), 320; https://doi.org/10.3390/md15100320
Received: 26 September 2017 / Revised: 12 October 2017 / Accepted: 16 October 2017 / Published: 20 October 2017
PDF Full-text (6209 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Neopeltolide, an antiproliferative marine macrolide, is known to specifically inhibit complex III of the mitochondrial electron transport chain (mETC). However, details of the biological mode-of-action(s) remain largely unknown. This work demonstrates potent cytotoxic activity of synthetic neopeltolide analogue, 8,9-dehydroneopeltolide (8,9-DNP), against starved human
[...] Read more.
Neopeltolide, an antiproliferative marine macrolide, is known to specifically inhibit complex III of the mitochondrial electron transport chain (mETC). However, details of the biological mode-of-action(s) remain largely unknown. This work demonstrates potent cytotoxic activity of synthetic neopeltolide analogue, 8,9-dehydroneopeltolide (8,9-DNP), against starved human pancreatic adenocarcinoma PANC-1 cells and human non-small cell lung adenocarcinoma A549 cells. 8,9-DNP induced rapid dissipation of the mitochondrial membrane potential and depletion of intracellular ATP level in nutrient-deprived medium. Meanwhile, in spite of mTOR inhibition under starvation conditions, impairment of cytoprotective autophagy was observed as the lipidation of LC3-I to form LC3-II and the degradation of p62 were suppressed. Consequently, cells were severely deprived of energy sources and underwent necrotic cell death. The autophagic flux inhibited by 8,9-DNP could be restored by glucose, and this eventually rescued cells from necrotic death. Thus, 8,9-DNP is a potent anti-austerity agent that impairs mitochondrial ATP synthesis and cytoprotective autophagy in starved tumor cells. Full article
Figures

Figure 1

Open AccessArticle Chitosan Ascorbate Nanoparticles for the Vaginal Delivery of Antibiotic Drugs in Atrophic Vaginitis
Mar. Drugs 2017, 15(10), 319; https://doi.org/10.3390/md15100319
Received: 14 September 2017 / Revised: 10 October 2017 / Accepted: 13 October 2017 / Published: 19 October 2017
Cited by 3 | PDF Full-text (2531 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the present work was the development of chitosan ascorbate nanoparticles (CSA NPs) loaded into a fast-dissolving matrix for the delivery of antibiotic drugs in the treatment of atrophic vaginitis. CSA NPs loaded with amoxicillin trihydrate (AX) were obtained by ionotropic
[...] Read more.
The aim of the present work was the development of chitosan ascorbate nanoparticles (CSA NPs) loaded into a fast-dissolving matrix for the delivery of antibiotic drugs in the treatment of atrophic vaginitis. CSA NPs loaded with amoxicillin trihydrate (AX) were obtained by ionotropic gelation in the presence of pentasodium tripolyphosphate (TPP). Different CSA:TPP and CSA:AX weight ratios were considered and their influence on the particle size, polydispersion index and production yield were investigated. CSA NPs were characterized for mucoadhesive, wound healing and antimicrobial properties. Subsequently, CSA NPs were loaded in polymeric matrices, whose composition was optimized using a DoE (Design of Experiments) approach (simplex centroid design). Matrices were obtained by freeze-drying aqueous solutions of three hydrophilic excipients, polyvinylpirrolidone, mannitol and glycin. They should possess a mechanical resistance suitable for the administration into the vaginal cavity and should readily dissolve in the vaginal fluid. In addition to antioxidant properties, due to the presence of ascorbic acid, CSA NPs showed in vitro mucoadhesive, wound healing and antimicrobial properties. In particular, nanoparticles were characterized by an improved antimicrobial activity with respect to a chitosan solution, prepared at the same concentration. The optimized matrix was characterized by mechanical resistance and by the fast release in simulated vaginal fluid of nanoparticles characterized by unchanged size. Full article
(This article belongs to the Special Issue Marine Biomaterials II, 2017)
Figures

Figure 1

Open AccessArticle Identification and Characterization of an Isoform Antifreeze Protein from the Antarctic Marine Diatom, Chaetoceros neogracile and Suggestion of the Core Region
Mar. Drugs 2017, 15(10), 318; https://doi.org/10.3390/md15100318
Received: 13 September 2017 / Revised: 13 October 2017 / Accepted: 16 October 2017 / Published: 18 October 2017
Cited by 1 | PDF Full-text (4588 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Antifreeze proteins (AFPs) protecting the cells against freezing are produced in response to extremely low temperatures in diverse psychrophilic organisms, and they are encoded by multiple gene families. The AFP of Antarctic marine diatom Chaetoceros neogracile is reported in our previous research, but
[...] Read more.
Antifreeze proteins (AFPs) protecting the cells against freezing are produced in response to extremely low temperatures in diverse psychrophilic organisms, and they are encoded by multiple gene families. The AFP of Antarctic marine diatom Chaetoceros neogracile is reported in our previous research, but like other microalgae, was considered to probably have additional genes coding AFPs. In this paper, we reported the cloning and characterization of additional AFP gene from C. neogracile (Cn-isoAFP). Cn-isoAFP protein is 74.6% identical to the previously reported Cn-AFP. The promoter sequence of Cn-isoAFP contains environmental stress responsive elements for cold, thermal, and high light conditions. Cn-isoAFP transcription levels increased dramatically when cells were exposed to freezing (−20 °C), thermal (10 °C), or high light (600 μmol photon m−2 s−1) stresses. The thermal hysteresis (TH) activity of recombinant Cn-isoAFP was 0.8 °C at a protein concentration of 5 mg/mL. Results from homology modeling and TH activity analysis of site-directed mutant proteins elucidated AFP mechanism to be a result of flatness of B-face maintained via hydrophobic interactions. Full article
Figures

Figure 1

Open AccessReview Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties
Mar. Drugs 2017, 15(10), 317; https://doi.org/10.3390/md15100317
Received: 27 June 2017 / Revised: 7 October 2017 / Accepted: 11 October 2017 / Published: 17 October 2017
Cited by 2 | PDF Full-text (5377 KB) | HTML Full-text | XML Full-text
Abstract
Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified
[...] Read more.
Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural–activity relationships (SARs) of sea cucumber glycosides are also discussed briefly. Full article
(This article belongs to the Special Issue Marine Glycosides)
Figures

Figure 1

Open AccessArticle Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases
Mar. Drugs 2017, 15(10), 316; https://doi.org/10.3390/md15100316
Received: 30 August 2017 / Revised: 28 September 2017 / Accepted: 12 October 2017 / Published: 17 October 2017
Cited by 1 | PDF Full-text (1869 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin
[...] Read more.
A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin (invertebrate cells, associated microorganisms, or filtered plankton), physiological functions, and natural molecular targets of these alkaloids are largely unknown. Following the identification of leucettamine B as an inhibitor of selected protein kinases, we synthesized a family of analogues, collectively named leucettines, as potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) and potential pharmacological leads for the treatment of several diseases, including Alzheimer’s disease and Down syndrome. We assembled a small library of marine sponge- and ascidian-derived 2-aminoimidazolone alkaloids, along with several synthetic analogues, and tested them on a panel of mammalian and protozoan kinases. Polyandrocarpamines A and B were found to be potent and selective inhibitors of DYRKs and CLKs. They inhibited cyclin D1 phosphorylation on a DYRK1A phosphosite in cultured cells. 2-Aminoimidazolones thus represent a promising chemical scaffold for the design of potential therapeutic drug candidates acting as specific inhibitors of disease-relevant kinases, and possibly other disease-relevant targets. Full article
(This article belongs to the Special Issue Progress on Marine Natural Products as Lead Compounds)
Figures

Graphical abstract

Open AccessFeature PaperArticle Algal Foams Applied in Fixed-Bed Process for Lead(II) Removal Using Recirculation or One-Pass Modes
Mar. Drugs 2017, 15(10), 315; https://doi.org/10.3390/md15100315
Received: 24 August 2017 / Revised: 10 October 2017 / Accepted: 13 October 2017 / Published: 17 October 2017
PDF Full-text (2050 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The incorporation of brown algae into biopolymer beads or foams for metal sorption has been previously reported. However, the direct use of these biomasses for preparing foams is a new approach. In this study, two kinds of porous foams were prepared by ionotropic
[...] Read more.
The incorporation of brown algae into biopolymer beads or foams for metal sorption has been previously reported. However, the direct use of these biomasses for preparing foams is a new approach. In this study, two kinds of porous foams were prepared by ionotropic gelation using algal biomass (AB, Laminaria digitata) or alginate (as the reference) and applied for Pb(II) sorption. These foams (manufactured as macroporous discs) were packed in filtration holders (simulating fixed-bed column) and the system was operated in either a recirculation or a one-pass mode. Sorption isotherms, uptake kinetics and sorbent reuse were studied in the recirculation mode (analogous to batch system). In the one-pass mode (continuous fixed-bed system), the influence of parameters such as flow rate, feed metal concentration and bed height were investigated on both sorption and desorption. In addition, the effect of Cu(II) on Pb(II) recovery from binary solutions was also studied in terms of both sorption and desorption. Sorption isotherms are well fitted by the Langmuir equation while the pseudo-second order rate equation described well both sorption and desorption kinetic profiles. The study of material regeneration confirms that the reuse of the foams was feasible with a small mass loss, even after 9 cycles. In the one-pass mode, for alginate foams, a slower flow rate led to a smaller saturation volume, while the effect of flow rate was less marked for AB foams. Competitive study suggests that the foams have a preference for Pb(II) over Cu(II) but cannot selectively remove Pb(II) from the binary solution. Full article
(This article belongs to the Special Issue Marine Compounds Used in Biosorption)
Figures

Figure 1

Back to Top