Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Energies, Volume 3, Issue 3 (March 2010), Pages 277-591

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-7
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle The DEMO Quasisymmetric Stellarator
Energies 2010, 3(3), 277-284; doi:10.3390/en3030277
Received: 12 January 2010 / Accepted: 1 February 2010 / Published: 26 February 2010
PDF Full-text (547 KB) | HTML Full-text | XML Full-text
Abstract
The NSTAB nonlinear stability code solves differential equations in conservation form, and the TRAN Monte Carlo test particle code tracks guiding center orbits in a fixed background, to provide simulations of equilibrium, stability, and transport in tokamaks and stellarators. These codes are well
[...] Read more.
The NSTAB nonlinear stability code solves differential equations in conservation form, and the TRAN Monte Carlo test particle code tracks guiding center orbits in a fixed background, to provide simulations of equilibrium, stability, and transport in tokamaks and stellarators. These codes are well correlated with experimental observations and have been validated by convergence studies. Bifurcated 3D solutions of the 2D tokamak problem have been calculated that model persistent disruptions, neoclassical tearing modes (NTMs) and edge localized modes (ELMs) occurring in the International Thermonuclear Experimental Reactor (ITER), which does not pass the NSTAB simulation test for nonlinear stability. So we have designed a quasiaxially symmetric (QAS) stellarator with similar proportions as a candidate for the demonstration (DEMO) fusion reactor that does pass the test [1]. The configuration has two field periods and an exceptionally accurate 2D symmetry that furnishes excellent thermal confinement and good control of the prompt loss of alpha particles. Robust coils are found from a filtered form of the Biot-Savart law based on a distribution of current over a control surface for the coils and the current in the plasma defined by the equilibrium calculation. Computational science has addressed the issues of equilibrium, stability, and transport, so it remains to develop an effective plan to construct the coils and build a diverter. Full article
(This article belongs to the Special Issue Nuclear Fusion)
Open AccessArticle Comparison of Hybrid Blends for Solar Cell Application
Energies 2010, 3(3), 301-312; doi:10.3390/en3030301
Received: 9 December 2009 / Revised: 22 January 2010 / Accepted: 29 January 2010 / Published: 5 March 2010
Cited by 7 | PDF Full-text (653 KB) | HTML Full-text | XML Full-text
Abstract
In blended hybrid systems distinct micro- or nanostructured materials can be formed by phase separation. Network structures of particles or rods in a polymer matrix can be developed via self-assembly. We use this blending approach to compare active materials for application in solar
[...] Read more.
In blended hybrid systems distinct micro- or nanostructured materials can be formed by phase separation. Network structures of particles or rods in a polymer matrix can be developed via self-assembly. We use this blending approach to compare active materials for application in solar cell devices. Blends were fabricated from either poly(hexylthiophene) P3HT or poly(triphenylamine) PTPA mixed with nanocrystalline TiO2 rods. In this manner, we compare two different hole conducting polymers in their performance in photovoltaic devices, while experimental conditions are kept identical. We find that the choice of solvent and photovoltaic characterization conducted in inert atmosphere is of importance for blends prepared from P3HT/TiO2 blends, but not for PTPA/TiO2 blends. Even though prepared with the same TiO2 rods, solar cells prepared from PTPA blends showed an enhanced efficiency when measured under ambient conditions. Furthermore, the PTPA/TiO2 showed higher long-term stability. Full article
(This article belongs to the Special Issue Solar Cells)
Open AccessArticle Gas Turbine Combustion and Ammonia Removal Technology of Gasified Fuels
Energies 2010, 3(3), 335-449; doi:10.3390/en3030335
Received: 30 November 2009 / Revised: 26 January 2010 / Accepted: 15 January 2010 / Published: 12 March 2010
Cited by 4 | PDF Full-text (1861 KB) | HTML Full-text | XML Full-text
Abstract
From the viewpoints of securing a stable supply of energy and protecting our global environment in the future, the integrated gasification combined cycle (IGCC) power generation of various gasifying methods has been introduced in the world. Gasified fuels are chiefly characterized by the
[...] Read more.
From the viewpoints of securing a stable supply of energy and protecting our global environment in the future, the integrated gasification combined cycle (IGCC) power generation of various gasifying methods has been introduced in the world. Gasified fuels are chiefly characterized by the gasifying agents and the synthetic gas cleanup methods and can be divided into four types. The calorific value of the gasified fuel varies according to the gasifying agents and feedstocks of various resources, and ammonia originating from nitrogenous compounds in the feedstocks depends on the synthetic gas clean-up methods. In particular, air-blown gasified fuels provide low calorific fuel of 4 MJ/m3 and it is necessary to stabilize combustion. In contrast, the flame temperature of oxygen-blown gasified fuel of medium calorie between approximately 9–13 MJ/m3 is much higher, so control of thermal-NOx emissions is necessary. Moreover, to improve the thermal efficiency of IGCC, hot/dry type synthetic gas clean-up is needed. However, ammonia in the fuel is not removed and is supplied into the gas turbine where fuel-NOx is formed in the combustor. For these reasons, suitable combustion technology for each gasified fuel is important. This paper outlines combustion technologies and combustor designs of the high temperature gas turbine for various IGCCs. Additionally, this paper confirms that further decreases in fuel-NOx emissions can be achieved by removing ammonia from gasified fuels through the application of selective, non-catalytic denitration. From these basic considerations, the performance of specifically designed combustors for each IGCC proved the proposed methods to be sufficiently effective. The combustors were able to achieve strong results, decreasing thermal-NOx emissions to 10 ppm (corrected at 16% oxygen) or less, and fuel-NOx emissions by 60% or more, under conditions where ammonia concentration per fuel heating value in unit volume was 2.4 × 102 ppm/(MJ/m3) or higher. Consequently, principle techniques for combustor design for each IGCC were established by the present analytical and experimental research. Also, this paper contains some findings of the author’s previously published own works and engages in wide-ranging discussion into the future development of gasification technologies. Full article
(This article belongs to the Special Issue Coal Gasification and Liquefaction)
Open AccessArticle Procedure for the Design of a Hybrid-Series Vehicle and the Hybridization Degree Choice
Energies 2010, 3(3), 450-461; doi:10.3390/en3030450
Received: 4 January 2010 / Accepted: 5 February 2010 / Published: 15 March 2010
Cited by 7 | PDF Full-text (546 KB) | HTML Full-text | XML Full-text
Abstract
For years, the interest of the UDR1 research group has focused on the development of a Hybrid Series (HS) vehicle, different from the standard one thanks to the use of a Gas Turbine set (GT) as a thermal engine. The reason for this
[...] Read more.
For years, the interest of the UDR1 research group has focused on the development of a Hybrid Series (HS) vehicle, different from the standard one thanks to the use of a Gas Turbine set (GT) as a thermal engine. The reason for this choice resides in the opportunity to reduce weight and dimensions, in comparison to a traditional Internal Combustion Engine (ICE). It is not possible to use the GT engine set directly for the vehicle traction, therefore the UDR1 HS configuration shows the GT set connected with the electric generator only. The result is that the traction is purely electric. The resulting engine configuration is a commonly defined Hybrid Series. Many efforts are spent in the definition of a generic scientific method to define the correct ratio (Degree of Hybridization) between the installed power of the battery pack and that of the GT electric generator, which simultaneously guarantees the life of the battery pack and the capacity of the vehicle to complete a common mission without lack of energy or stopping. This article reports a method to define the power ratio between battery pack and GT generator, applied to a recent commission for the development of a mini city bus. Full article

Review

Jump to: Research

Open AccessReview Complex Nanostructures: Synthesis and Energetic Applications
Energies 2010, 3(3), 285-300; doi:10.3390/en3030285
Received: 28 December 2009 / Accepted: 3 February 2010 / Published: 26 February 2010
Cited by 22 | PDF Full-text (2846 KB) | HTML Full-text | XML Full-text
Abstract
Connected through single crystalline junctions, low dimensional materials such as nanowires and nanorods form complex nanostructures. These new materials exhibit mechanical strengths and electrical conductivities superior to their constituents while maintaining comparable surface areas, an attribute ideal for energetic applications. More efficient solar
[...] Read more.
Connected through single crystalline junctions, low dimensional materials such as nanowires and nanorods form complex nanostructures. These new materials exhibit mechanical strengths and electrical conductivities superior to their constituents while maintaining comparable surface areas, an attribute ideal for energetic applications. More efficient solar cells, higher capacity batteries and better performing photoelectrochemical cells have been built using these materials. This article reviews this exciting new class of materials and covers topics from controlled syntheses to applications in photovoltaics, chemical energy conversion and electrical charge storage. Mechanisms responsible for the improved performance are discussed. The prospect of their applications in a broader energy-related field is analyzed. Full article
(This article belongs to the Special Issue Solar Cells)
Open AccessReview Organic / IV, III-V Semiconductor Hybrid Solar Cells
Energies 2010, 3(3), 313-334; doi:10.3390/en3030313
Received: 30 December 2009 / Revised: 5 February 2010 / Accepted: 5 February 2010 / Published: 5 March 2010
Cited by 36 | PDF Full-text (1427 KB) | HTML Full-text | XML Full-text
Abstract
We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V), nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI) nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic
[...] Read more.
We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V), nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI) nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type) deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type) forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines), conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented. Full article
(This article belongs to the Special Issue Solar Cells)
Open AccessReview Current State of Development of Electricity-Generating Technologies: A Literature Review
Energies 2010, 3(3), 462-591; doi:10.3390/en3030462
Received: 3 February 2010 / Accepted: 10 March 2010 / Published: 18 March 2010
Cited by 56 | PDF Full-text (3134 KB) | HTML Full-text | XML Full-text
Abstract
Electricity is perhaps the most versatile energy carrier in modern economies, and it is therefore fundamentally linked to human and economic development. Electricity growth has outpaced that of any other fuel, leading to ever-increasing shares in the overall mix. This trend is expected
[...] Read more.
Electricity is perhaps the most versatile energy carrier in modern economies, and it is therefore fundamentally linked to human and economic development. Electricity growth has outpaced that of any other fuel, leading to ever-increasing shares in the overall mix. This trend is expected to continue throughout the following decades, as large—especially rural—segments of the world population in developing countries start to climb the “energy ladder” and become connected to power grids. Electricity therefore deserves particular attention with regard to its contribution to global greenhouse gas emissions, which is reflected in the ongoing development of low-carbon technologies for power generation. The focus of this updated review of electricity-generating technologies is twofold: (a) to provide more technical information than is usually found in global assessments on critical technical aspects, such as variability of wind power, and (b) to capture the most recent findings from the international literature. This report covers eight technologies. Seven of these are generating technologies: hydro-, nuclear, wind, photovoltaic, concentrating solar, geothermal and biomass power. The remaining technology is carbon capture and storage. This selection is fairly representative for technologies that are important in terms of their potential capacity to contribute to a low-carbon world economy. Full article

Journal Contact

MDPI AG
Energies Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
energies@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Energies
Back to Top