Evaluation of Forestry Component Survival in Plots of the Program “Sembrando Vida” (Sowing Life) Using Drones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of Evaluated Plots
2.3. Census of the Survival of the Forestry Component
2.4. Estimation of Survival of the Forestry Component Using Drones
2.4.1. Unmanned Aerial Vehicle Used
2.4.2. Planning and Execution of Flight Missions
2.4.3. Photogrammetric Process and Estimation of the Survival of Reforested Areas
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Secretaría de Bienestar Sembrando Vida. Available online: https://www.gob.mx/bienestar/prensa/en-2022-mas-presupuesto-y-mas-beneficiarios-en-programas-de-secretaria-de-bienestar?idiom=es (accessed on 8 September 2023).
- López, J.P. El Programa Estratégico Sembrando Vida: ¿ Promueve la Soberanía Alimentaria? Grietas. Rev. Crítica Política Int. 2021, 2, 147–161. [Google Scholar]
- Secretaría de Bienestar Programa Sembrando Vida. Available online: https://www.gob.mx/bienestar/acciones-y-programas/programa-sembrando-vida (accessed on 8 September 2023).
- Pérez Ponciano, P.S. Sembrando Vida: Una Evaluación de Impacto Sobre la Cobertura Foresta; Centro de Investigación y Docencia Económicas: Mexico City, Mexico, 2023. [Google Scholar]
- Gómez-Rodriguez, G.A.; López-Martínez, J.O.; Špirić, J.; Macario-Mendoza, P.A. Local Perceptions in the Implementation of the Sembrando Vida Program in Southern Mexico. Hum. Ecol. 2023, 51, 379–395. [Google Scholar] [CrossRef]
- Astudillo-Sánchez, C.C.; Fowler, M.S.; Villanueva-Díaz, J.; Endara-Agramont, A.R.; Soria-Díaz, L. Recruitment and Facilitation in Pinus hartwegii, a Mexican Alpine Treeline Ecotone, with Potential Responses to Climate Warming. Trees 2019, 33, 1087–1100. [Google Scholar] [CrossRef]
- Hammond, W.M.; Williams, A.P.; Abatzoglou, J.T.; Adams, H.D.; Klein, T.; López, R.; Sáenz-Romero, C.; Hartmann, H.; Breshears, D.D.; Allen, C.D. Global Field Observations of Tree Die-off Reveal Hotter-Drought Fingerprint for Earth’s Forests. Nat. Commun. 2022, 13, 1761. [Google Scholar] [CrossRef]
- Sáenz-Romero, C.; Mendoza-Maya, E.; Gómez-Pineda, E.; Blanco-García, A.; Endara-Agramont, A.R.; Lindig-Cisneros, R.; López-Upton, J.; Trejo-Ramírez, O.; Wehenkel, C.; Cibrián-Tovar, D.; et al. Recent Evidence of Mexican Temperate Forest Decline and the Need for Ex Situ Conservation, Assisted Migration, and Translocation of Species Ensembles as Adaptive Management to Face Projected Climatic Change Impacts in a Megadiverse Country. Can. J. For. Res. 2020, 50, 843–854. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manage 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Comisión Nacional Forestal (CONAFOR). Reglas de Operación 2023 Del Programa Desarrollo Forestal Sustentable Para El Bienestar. Available online: https://www.conafor.gob.mx/apoyos//docs/adjuntos/c973f53fba23d9b486bd63939008b358.pdf (accessed on 8 September 2023).
- Prieto Ruíz, J.A.; Tellés, G.; Rodolfo, J. Las Reforestaciones en México: Problemática y Alternativas de Solución; Universidad Juárez del Estado de Durango: Durango, Mexico, 2016. [Google Scholar]
- Haregeweyn, N.; Tsunekawa, A.; Tsubo, M.; Fenta, A.A.; Ebabu, K.; Vanmaercke, M.; Borrelli, P.; Panagos, P.; Berihun, M.L.; Langendoen, E.J.; et al. Progress and Challenges in Sustainable Land Management Initiatives: A Global Review. Sci. Total Environ. 2023, 858, 160027. [Google Scholar] [CrossRef] [PubMed]
- Le, H.D.; Smith, C.; Herbohn, J.; Harrison, S. More than Just Trees: Assessing Reforestation Success in Tropical Developing Countries. J. Rural Stud. 2012, 28, 5–19. [Google Scholar] [CrossRef]
- Riikonen, J.; Luoranen, J. Seedling Production and the Field Performance of Seedlings. Forests 2018, 9, 740. [Google Scholar] [CrossRef]
- Prieto Ruíz, J.Á.; Duarte Santos, A.; Goche Télles, J.R.; González Orozco, M.M.; Pulgarin Gámiz, M.Á. Supervivencia y Crecimiento de dos Especies Forestales, con Base en la Morfología Inicial al Plantarse. Rev. Mex. Cienc. For. 2018, 9, 151–168. [Google Scholar] [CrossRef]
- Gallardo-Salazar, J.L.; Rodríguez-Trejo, D.; Castro-Zavala, S. Seedling Quality and Survival of a True Fir [Abies Religiosa (Kunth) Schltdl. et Cham.] Forest Plantation from Two Provenances in Central Mexico. Agrociencia 2019, 53, 631–643. [Google Scholar]
- Preece, N.D.; van Oosterzee, P.; Lawes, M.J. Reforestation Success Can Be Enhanced by Improving Tree Planting Methods. J. Environ. Manag. 2023, 336, 117645. [Google Scholar] [CrossRef] [PubMed]
- Meaghan Weeden One Tree Planted Partners with Vets to Drones and Carolina Drone Lab. Available online: https://onetreeplanted.org/blogs/stories/veterans-in-the-forest (accessed on 8 September 2023).
- Buters, T.; Belton, D.; Cross, A. Cross Seed and Seedling Detection Using Unmanned Aerial Vehicles and Automated Image Classification in the Monitoring of Ecological Recovery. Drones 2019, 3, 53. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Tang, L.; Shao, G. Drone Remote Sensing for Forestry Research and Practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, F.; Dong, J.; Yang, Z.; Zhao, G.; Zhai, J.; Qin, Y.; Xiao, X. Tracking Reforestation in the Loess Plateau, China after the “Grain for Green” Project through Integrating PALSAR and Landsat Imagery. Remote Sens. 2019, 11, 2685. [Google Scholar] [CrossRef]
- Ruwaimana, M.; Satyanarayana, B.; Otero, V.; Muslim, A.M.; Syafiq, A.M.; Ibrahim, S.; Raymaekers, D.; Koedam, N.; Dahdouh-Guebas, F. The Advantages of Using Drones over Space-Borne Imagery in the Mapping of Mangrove Forests. PLoS ONE 2018, 13, e0200288. [Google Scholar] [CrossRef]
- Hardy, A.; Makame, M.; Cross, D.; Majambere, S.; Msellem, M. Using Low-Cost Drones to Map Malaria Vector Habitats. Parasit. Vectors 2017, 10, 29. [Google Scholar] [CrossRef]
- Paneque-Gálvez, J.; McCall, M.; Napoletano, B.; Wich, S.; Koh, L. Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in Tropical Areas. Forests 2014, 5, 1481–1507. [Google Scholar] [CrossRef]
- Rascón Solano, J.; Galván Moreno, V.S.; Aguirre Calderón, O.A.; García García, S.A. Caracterización Estructural y Carbono Almacenado en un Bosque Templado Frío Censado en el Noroeste de México. Rev. Mex. Cienc. For. 2022, 13, 70. [Google Scholar] [CrossRef]
- Torres-Rojo, J.; Magaña, O. Evaluación de Plantaciones Forestales, 1st ed.; Cide Limusa: Mexico City, Mexico, 2001. [Google Scholar]
- Ventura-Ríos, A.; Plascencia-Escalante, F.O.; Hernández de la Rosa, P.; Ángeles-Pérez, G.; Aldrete, A. ¿Es la Reforestación una Estrategia para la Rehabilitación de Bosques de Pino? Una Experiencia en el Centro de México. Bosque 2017, 38, 55–66. [Google Scholar] [CrossRef]
- Masera, O.R.; Masera, D.; Navia, J. Dinámica y uso de los Recursos Forestales de la Región Purépecha: El Papel de las Pequeñas Empresas Artesanales. In Documento de trabajo/Grupo Interdisciplinario de Tecnología Rural Apropiada; Grupo Interdisciplinario de Tecnología Rural: Apropiada, Mexico, 1998; Volume 22. [Google Scholar]
- Guerrero, G.; Masera, O.; Mas, J.-F. Land Use/Land Cover Change Dynamics in the Mexican Highlands: Current Situation and Long Term Scenarios. In Modelling Environmental Dynamics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 57–76. [Google Scholar]
- Ortiz, D.A.A.; Rojas, H.R.G.G. Análisis Comparativo de Prácticas Agrícolas Sustentables en Comunidades Campesinas e Indígenas de la Meseta Purépecha, México. Revibec Rev. Iberoam. Econ. Ecológica 2010, 13, 29–39. [Google Scholar]
- Syetiawan, A.; Gularso, H.; Kusnadi, G.I.; Pramudita, G.N. Precise Topographic Mapping Using Direct Georeferencing in UAV. IOP Conf. Ser. Earth Environ. Sci. 2020, 500, 012029. [Google Scholar] [CrossRef]
- Pix4DCapture. Available online: www.pix4d.com/product/pix4dcapture (accessed on 2 April 2023).
- OpenDroneMap. Available online: http://www.opendronemap.org (accessed on 8 September 2023).
- Deliry, S.I.; Avdan, U. Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review. J. Indian Soc. Remote Sens. 2021, 49, 1997–2017. [Google Scholar] [CrossRef]
- Burdziakowski, P. Evaluation of Open Drone Map Toolkit for Geodetic Grade Aerial Drone Mapping—Case Study. Int. Multidiscip. Sci. GeoConference SGEM 2017, 23, 23. [Google Scholar] [CrossRef]
- Lee, S.; Yu, B.-H. Automatic Detection of Dead Tree from UAV Imagery. In Proceedings of the 39th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 15–19 October 2018. [Google Scholar]
- Rosas-Chavoya, M.; Gallardo-Salazar, J.L.; López-Serrano, P.M.; Alcántara-Concepción, P.C.; León-Miranda, A.K. QGIS a Constantly Growing Free and Open-Source Geospatial Software Contributing to Scientific Development. Cuad. Investig. Geográfica 2022, 48, 197–213. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- D’Eon, R.G.; Serrouya, R.; Smith, G.; Kochanny, C.O. GPS Radiotelemetry Error and Bias in Mountainous Terrain. Wildl. Soc. Bull. (1973–2006) 2002, 30, 430–439. [Google Scholar]
- Gallardo-Salazar, J.L.; Pompa-García, M.; Aguirre-Salado, C.; López-Serrano, P.; Meléndez-Soto, A. Drones: Technology with a Promising Future in Forest Management. Rev. Mex. Cienc. For. 2020, 11, 27–50. [Google Scholar] [CrossRef]
- Feduck, C.; McDermid, G.; Castilla, G. Detection of Coniferous Seedlings in UAV Imagery. Forests 2018, 9, 432. [Google Scholar] [CrossRef]
- Reis, B.P.; Martins, S.V.; Fernandes Filho, E.I.; Sarcinelli, T.S.; Gleriani, J.M.; Leite, H.G.; Halassy, M. Forest Restoration Monitoring through Digital Processing of High Resolution Images. Ecol. Eng. 2019, 127, 178–186. [Google Scholar] [CrossRef]
- Calvario, G.; Alarcón, T.E.; Dalmau, O.; Sierra, B.; Hernandez, C. An Agave Counting Methodology Based on Mathematical Morphology and Images Acquired through Unmanned Aerial Vehicles. Sensors 2020, 20, 6247. [Google Scholar] [CrossRef]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, Sensors, and Data Processing in Agroforestry: A Review towards Practical Applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Darmawan, A.; Saputra, D.K.; Asadi, M.A.; Karang, I.W.G.A. UAV Application for Site Suitability Mangrove Replantation Program, Case Study in Pasuruan and Probolinggo, East Java. E3S Web Conf. 2020, 153, 01009. [Google Scholar] [CrossRef]
- Oliveira, H.C.; Guizilini, V.C.; Nunes, I.P.; Souza, J.R. Failure Detection in Row Crops from UAV Images Using Morphological Operators. IEEE Geosci. Remote Sens. Lett. 2018, 15, 991–995. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Franjević, M.; Balenović, I.; Ugarković, D.; Matak, I.; Jurjević, L.; Đuka, A.; Kolar, A.; Tomljanović, K. Application of UAS for Monitoring of Forest Ecosystems. Croat. J. For. Eng. 2022, 43, 487–504. [Google Scholar] [CrossRef]
- Puliti, S.; Breidenbach, J.; Astrup, R. Estimation of Forest Growing Stock Volume with UAV Laser Scanning Data: Can It Be Done without Field Data? Remote Sens. 2020, 12, 1245. [Google Scholar] [CrossRef]
- Hegarty-Craver, M.; Polly, J.; O’Neil, M.; Ujeneza, N.; Rineer, J.; Beach, R.H.; Lapidus, D.; Temple, D.S. Remote Crop Mapping at Scale: Using Satellite Imagery and UAV-Acquired Data as Ground Truth. Remote Sens. 2020, 12, 1984. [Google Scholar] [CrossRef]
- Pang, B.; Nijkamp, E.; Wu, Y.N. Deep Learning with TensorFlow: A Review. J. Educ. Behav. Stat. 2019, 45, 227–248. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Imambi, S.; Prakash, K.B.; Kanagachidambaresan, G.R. PyTorch. In Programming with TensorFlow; Springer: Berlin/Heidelberg, Germany, 2021; pp. 87–104. [Google Scholar]
Plot | Municipality | Coordinates |
---|---|---|
1 | Cherán | 19.7321° N, 102.08288° W |
2 | Charapan | 19.647839° N, 102.155674° W |
3 | Paracho | 19.63818° N, 102.14781° W |
4 | Paracho | 19.65086° N, 102.13361° W |
5 | Paracho | 19.66143° N, 102.11265° W |
6 | Cherán | 19.66956° N, 101.95998° W |
7 | Cherán | 19.731087° N, 101.934684° W |
8 | Cherán | 19.731135° N, 101.932986° W |
9 | Cherán | 19.72743° N, 101.936124° W |
10 | Paracho | 19.628509° N, 102.052013° W |
11 | Uruapan | 19.579508° N, 102.10737° W |
12 | Paracho | 19.6673° N, 102.047824° W |
Source of Variation | Degrees of Freedom | Sum of Squares | Mean Square | F | p |
---|---|---|---|---|---|
Method (Field or Drone) | 1 | 1040 | 1039.7 | 2.074 | 0.152 |
Error | 122 | 61143 | 501.2 | ||
Total | 123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo-Salazar, J.L.; Sáenz-Romero, C.; Lindig-Cisneros, R.A.; Blanco-García, A.; Osuna-Vallejo, V. Evaluation of Forestry Component Survival in Plots of the Program “Sembrando Vida” (Sowing Life) Using Drones. Forests 2023, 14, 2117. https://doi.org/10.3390/f14112117
Gallardo-Salazar JL, Sáenz-Romero C, Lindig-Cisneros RA, Blanco-García A, Osuna-Vallejo V. Evaluation of Forestry Component Survival in Plots of the Program “Sembrando Vida” (Sowing Life) Using Drones. Forests. 2023; 14(11):2117. https://doi.org/10.3390/f14112117
Chicago/Turabian StyleGallardo-Salazar, José Luis, Cuauhtémoc Sáenz-Romero, Roberto A. Lindig-Cisneros, Arnulfo Blanco-García, and Verónica Osuna-Vallejo. 2023. "Evaluation of Forestry Component Survival in Plots of the Program “Sembrando Vida” (Sowing Life) Using Drones" Forests 14, no. 11: 2117. https://doi.org/10.3390/f14112117