Advances in Plant–Soil Feedback Driven by Root Exudates in Forest Ecosystems
Abstract
:1. Introduction
2. Mechanism of PSF Driven by Root Exudates
2.1. Effects of Root Exudates on Abiotic Factors
2.1.1. Soil Property Regulated by Root Exudates
Effectiveness of Soil Nutrients Regulated by Root Exudates
Soil Organic Matter Regulated by Root Exudates
Soil Metal Stress Relieved by Root Exudates
2.1.2. Application of Ecological Stoichiometry in PSF
2.2. Effects of Root Exudates on Biological Factors
2.2.1. Response of Microbial Community to Root Exudates
Potential for Mathematical Models on PSF Driven by Root Exudation
2.2.2. Response of Soil Nematodes Community to Root Exudates
3. Influencing Factors of Root Exudates’ Variety and Abundance
4. In Situ Determination of Root Exudates
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thrall, P.H.; Bever, J.D.; Mihail, J.D.; Alexander, H.M. The Population Dynamics of Annual Plants and Soil-Borne Fungal Pathogens. J. Ecol. 1997, 85, 313–328. [Google Scholar] [CrossRef]
- Bever, J.D.; Westover, K.M.; Antonovics, J. Incorporating the Soil Community into Plant Population Dynamics: The Utility of the Feedback Approach. J. Ecol. 1997, 85, 561–573. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G.; Ravit, B.; Elgersma, K. Feedback in the Plant-Soil System. Annu. Rev. Environ. Resour. 2005, 30, 75–115. [Google Scholar] [CrossRef]
- Klironomos, J.N. Feedback with Soil Biota Contributes to Plant Rarity and Invasiveness in Communities. Nature 2002, 417, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Van der Putten, W.H. Plant Defense Belowground and Spatiotemporal Processes in Natural Vegetation. Ecology 2003, 84, 2269–2280. [Google Scholar] [CrossRef]
- Xia, Z.C.; Yu, L.; He, Y.; Korpelainen, H.; Li, C.Y. Broadleaf Trees Mediate Chemically the Growth of Chinese Fir through Root Exudates. Biol. Fertil. Soils 2019, 55, 737–749. [Google Scholar] [CrossRef]
- Nardi, S.; Sessi, E.; Pizzeghello, D.; Sturaro, A.; Rella, R.; Parvoli, G. Biological Activity of Soil Organic Matter Mobilized by Root Exudates. Chemosphere 2002, 46, 1075–1081. [Google Scholar] [CrossRef]
- Kulmatiski, A.; Kardol, P. Getting Plant-Soil Feedbacks out of the Greenhouse: Experimental and Conceptual Approaches Progress in Botany; Lüttge, U., Beyschlag, W., Murata, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 69, pp. 449–472. [Google Scholar] [CrossRef]
- Petermann, J.S.; Fergus, A.J.F.; Turnbull, L.A.; Schmid, B. Janzen-Connell Effects Are Widespread and Strong Enough to Maintain Diversity in Grasslands. Ecology 2008, 89, 2399–2406. [Google Scholar] [CrossRef]
- Van der Putten, W.H. Plant-Soil Feedback as a Selective Force. Trends Ecol. Evol. 1997, 12, 169–170. [Google Scholar] [CrossRef]
- Matson, P. Plant-Soil Interactions in Primary Succession at Hawaii Volcanoes National Park. Oecologia 1990, 85, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Subke, J.A.; Hahn, V.; Battipaglia, G.; Linder, S.; Buchmann, N.; Cotrufo, M.F. Feedback Interactions between Needle Litter Decomposition and Rhizosphere Activity. Oecologia 2004, 139, 551–559. [Google Scholar] [CrossRef]
- Packer, A.; Clay, K. Development of Negative Feedback During Successive Growth Cycles of Black Cherry. Proc. R. Soc. B-Biol. Sci. 2004, 271, 317–324. [Google Scholar] [CrossRef]
- Reinhart, K.O.; Royo, A.A.; Van der Putten, W.H.; Clay, K. Soil Feedback and Pathogen Activity in Prunus Serotina Throughout Its Native Range. J. Ecol. 2005, 93, 890–898. [Google Scholar] [CrossRef]
- Niu, H.B.; Liu, W.X.; Wan, F.H.; Liu, B. An Invasive Aster (Ageratina adenophora) Invades and Dominates Forest Understories in China: Altered Soil Microbial Communities Facilitate the Invader and Inhibit Natives. Plant Soil 2007, 294, 73–85. [Google Scholar] [CrossRef]
- Peay, K.G.; Baraloto, C.; Fine, P.V.A. Strong Coupling of Plant and Fungal Community Structure across Western Amazonian Rainforests. ISME J. 2013, 7, 1852–1861. [Google Scholar] [CrossRef]
- Chapman, S.K.; Langley, J.A.; Hart, S.C.; Koch, G.W. Plants Actively Control Nitrogen Cycling: Uncorking the Microbial Bottleneck. New Phytol. 2006, 169, 27–34. [Google Scholar] [CrossRef]
- Mangan, S.A.; Schnitzer, S.A.; Herre, E.A.; Mack, K.M.L.; Valencia, M.C.; Sanchez, E.I.; Bever, J.D. Negative Plant-Soil Feedback Predicts Tree-Species Relative Abundance in a Tropical Forest. Nature 2010, 466, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.A.; Maherali, H.; Reinhart, K.O.; Lekberg, Y.; Hart, M.M.; Klironomos, J. Plant-Soil Feedbacks and Mycorrhizal Type Influence Temperate Forest Population Dynamics. Science 2017, 355, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Corrales, A.; Mangan, S.A.; Turner, B.L.; Dalling, J.W. An Ectomycorrhizal Nitrogen Economy Facilitates Monodominance in a Neotropical Forest. Ecol. Lett. 2016, 19, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.J.; An, S.S.; Cheng, M.; Wang, W.Z. Plant Functional Traits and Soil Microbial Biomass in Different Vegetation Zones on the Loess Plateau. J. Plant Interact. 2014, 9, 889–900. [Google Scholar] [CrossRef]
- Fukami, T.; Nakajima, M.; Fortunel, C.; Fine, P.V.A.; Baraloto, C.; Russo, S.E.; Peay, K.G. Geographical Variation in Community Divergence: Insights from Tropical Forest Monodominance by Ectomycorrhizal Trees. Am. Nat. 2017, 190, S105–S122. [Google Scholar] [CrossRef]
- Kyaschenko, J.; Clemmensen, K.E.; Karltun, E.; Lindahl, B.D. Below-Ground Organic Matter Accumulation Along a Boreal Forest Fertility Gradient Relates to Guild Interaction within Fungal Communities. Ecol. Lett. 2017, 20, 1546–1555. [Google Scholar] [CrossRef]
- Qin, F.C.; Yu, S.X. Compatible Mycorrhizal Types Contribute to a Better Design for Mixed Eucalyptus Plantations. Front. Plant Sci. 2021, 12, 616726. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.A.; Klironomos, J. Climate, but Not Trait, Effects on Plant-Soil Feedback Depend on Mycorrhizal Type in Temperate Forests. Ecosphere 2018, 9, e02132. [Google Scholar] [CrossRef]
- Jo, I.S.; Potter, K.M.; Domke, G.M.; Fei, S.L. Dominant Forest Tree Mycorrhizal Type Mediates Understory Plant Invasions. Ecol. Lett. 2018, 21, 217–224. [Google Scholar] [CrossRef]
- Liang, M.X.; Liu, X.B.; Parker, I.M.; Johnson, D.; Zheng, Y.; Luo, S.; Gilbert, G.S.; Yu, S.X. Soil Microbes Drive Phylogenetic Diversity-Productivity Relationships in a Subtropical Forest. Sci. Adv. 2019, 5, eaax5088. [Google Scholar] [CrossRef] [PubMed]
- Neumann, G.; Römheld, V. Rhizosphere. In Rhizosphere Research: A Historical Perspective from a Plant Scientist’s Viewpoint; Hiltner, L., Ed.; Springer: Munich, Germany, 2004; pp. 35–37. [Google Scholar]
- Watson, W.M. XXI. An Account of a Treatise, Presented to the Royal Society, Intitled, Flora Sibirica Five Historia Plantarum Sibiriæ Tomus Secundus, Extracted and Translated from the Latin of Professor Gmelin, by W. Watson, F.R.S. Philos. Trans. R. Soc. Lond. 1753, 48, 141–152. [Google Scholar] [CrossRef]
- LeConte, J. XLI. Observations on a Remarkable Exudation of Ice from the Stems of Vegetables, and on a Singular Protrusion of Icy Columns from Certain Kinds of Earth During Frosty Weather. Lond. Edinb. Dubl. Phil. Mag. 1850, 36, 329–342. [Google Scholar] [CrossRef]
- Hartmann, A.; Rothballer, M.; Schmid, M. Lorenz Hiltner, a Pioneer in Rhizosphere Microbial Ecology and Soil Bacteriology Research. Plant Soil 2008, 312, 7–14. [Google Scholar] [CrossRef]
- Nutman, P.S. Colour Reactions between Clay Minerals and Root Secretions. Nature 1951, 167, 288. [Google Scholar] [CrossRef]
- Zentmyer, G.A. Chemotaxis of Zoospores for Root Exudates. Science 1961, 133, 1595–1596. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.S.; Bais, H.P.; Grotewold, E.; Vivanco, J.M. Root Exudation and Rhizosphere Biology. Plant Physiol. 2003, 132, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Sasse, J.; Martinoia, E.; Northen, T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Luo, D.H.; Xiong, Z.Y.; Wang, Z.F.; Gao, M. Changes in Rhizosphere Phosphorus Fractions and Phosphate-Mineralizing Microbial Populations in Acid Soil as Influenced by Organic Acid Exudation. Soil Tillage Res. 2023, 225, 105543. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and Function of Root Exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef]
- Bergersen, F.J. The Structure of Ineffective Root Nodules of Legumes: An Unusual New Type of Ineffectiveness, and an Appraisal of Present Knowledge. Aust. J. Biol. Sci. 1957, 10, 233–242. [Google Scholar] [CrossRef]
- Tang, C.S.; Takenaka, T. Quantitation of a Bioactive Metabolite in Undisturbed Rhizosphere-Benzyl Isothiocyanate Fromcarica papaya L. J. Chem. Ecol. 1983, 9, 1247–1253. [Google Scholar] [CrossRef]
- Valentine, J.L.; Bryant, P.J.; Gutshall, P.L.; Gan, O.H.; Thompson, E.D.; Niu, H.C. Hplc-Ms Determination of Delta9-Tetrahydrocannabiol in Human Body Samples. NIDA Res. Monogr. 1976, 7, 96–106. Available online: https://api.semanticscholar.org/CorpusID:10109688 (accessed on 7 March 2024).
- Dixon, R.K.; Garrett, H.E.; Cox, G.S. Cytokinins in the Root Pressure Exudate of Citrus jambhiri Lush. Colonized by Vesicular-Arbuscular Mycorrhizae. Tree Physiol. 1988, 4, 9–18. [Google Scholar] [CrossRef]
- Zhao, J.H.; Ye, Y.Q.; Sun, X.D.; Shi, L.Y.; Chen, X.L.; Guan, Q.W. Root Exudation Patterns of Chinese Fir after Thinning Relating to Root Characteristics and Soil Conditions. For. Ecol. Manag. 2023, 541, 121068. [Google Scholar] [CrossRef]
- McLaughlin, S.; Zhalnina, K.; Kosina, S.; Northen, T.R.; Sasse, J. The Core Metabolome and Root Exudation Dynamics of Three Phylogenetically Distinct Plant Species. Nat. Commun. 2023, 14, 1649. [Google Scholar] [CrossRef]
- Feng, F.J.; Yang, C.Y.; Li, M.J.; Zhan, S.Y.; Liu, H.Y.; Chen, A.G.; Wang, J.M.; Zhang, Z.Y.; Gu, L. Key Molecular Events Involved in Root Exudates-Mediated Replanted Disease of Rehmannia glutinosa. Plant Physiol. Biochem. 2022, 172, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Chen, X.F.; Zheng, Z.C.; Huang, W.L.; Guo, J.X.; Yang, L.T.; Chen, L.S. Characterization of Copper-Induced-Release of Exudates by Citrus sinensis Roots and Their Possible Roles in Copper-Tolerance. Chemosphere 2022, 308, 136348. [Google Scholar] [CrossRef] [PubMed]
- Weston, L.A.; Ryan, P.R.; Watt, M. Mechanisms for Cellular Transport and Release of Allelochemicals from Plant Roots into the Rhizosphere. J. Exp. Bot. 2012, 63, 3445–3454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Mao, Z.Q.; Wang, L.Q.; Shu, H.R. Bioassay and Identification of Root Exudates of Three Fruit Tree Species. J. Integr. Plant Biol. 2007, 49, 257–261. [Google Scholar] [CrossRef]
- Tuckmantel, T.; Leuschner, C.; Preusser, S.; Kandeler, E.; Angst, G.; Mueller, C.W.; Meier, I.C. Root Exudation Patterns in a Beech Forest: Dependence on Soil Depth, Root Morphology, and Environment. Soil. Biol. Biochem. 2017, 107, 188–197. [Google Scholar] [CrossRef]
- Fujii, K.; Hayakawa, C. Sukartiningsih Root Exudation and Biodegradation of Organic Acids in a Tropical Forest Soil under Dipterocarp and Pioneer Trees. Plant Soil 2021, 469, 213–226. [Google Scholar] [CrossRef]
- Fujii, K.; Shibata, M.; Kitajima, K.; Ichie, T.; Kitayama, K.; Turner, B.L. Plant-Soil Interactions Maintain Biodiversity and Functions of Tropical Forest Ecosystems. Environ. Res. 2018, 33, 149–160. [Google Scholar] [CrossRef]
- Nardi, S.; Concheri, G.; Pizzeghello, D.; Sturaro, A.; Rella, R.; Parvoli, G. Soil Organic Matter Mobilization by Root Exudates. Chemosphere 2000, 41, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Oburger, E.; Jones, D.L. Sampling Root Exudates—Mission Impossible? Rhizosphere 2018, 6, 116–133. [Google Scholar] [CrossRef]
- Ulbrich, T.C.; Rivas-Ubach, A.; Tiemann, L.K.; Friesen, M.L.; Evans, S.E. Plant Root Exudates and Rhizosphere Bacterial Communities Shift with Neighbor Context. Soil Biol. Biochem. 2022, 172, 108753. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Wang, N.; Yu, M.K.; Yu, J.G.; Xue, L.H. Rhizosphere and Straw Return Interactively Shape Rhizosphere Bacterial Community Composition and Nitrogen Cycling in Paddy Soil. Front. Microbiol. 2022, 13, 945927. [Google Scholar] [CrossRef]
- Baptistella, J.L.C.; de Andrade, S.A.L.; Favarin, J.L.; Mazzafera, P. Urochloa in Tropical Agroecosystems. Front. Sustain. Food Syst. 2020, 4, 119. [Google Scholar] [CrossRef]
- Yuan, Y.; Dai, X.Q.; Fu, X.L.; Kou, L.; Luo, Y.Q.; Jiang, L.F.; Wang, H.M. Differences in the Rhizosphere Effects among Trees, Shrubs and Herbs in Three Subtropical Plantations and Their Seasonal Variations. Eur. J. Soil. Biol. 2020, 100, 103218. [Google Scholar] [CrossRef]
- Jing, H.; Wang, H.; Wang, G.; Liu, G.; Cheng, Y. The Mechanism Effects of Root Exudate on Microbial Community of Rhizosphere Soil of Tree, Shrub, and Grass in Forest Ecosystem under N Deposition. ISME Commun. 2023, 3, 120. [Google Scholar] [CrossRef] [PubMed]
- Ambus, P.; Robertson, G.P. The Effect of Increased N Deposition on Nitrous Oxide, Methane and Carbon Dioxide Fluxes from Unmanaged Forest and Grassland Communities in Michigan. Biogeochemistry 2006, 79, 315–337. [Google Scholar] [CrossRef]
- Fisher, J.J.; Rehner, S.A.; Bruck, D.J. Diversity of Rhizosphere Associated Entomopathogenic Fungi of Perennial Herbs, Shrubs and Coniferous Trees. J. Invertebr. Pathol. 2011, 106, 289–295. [Google Scholar] [CrossRef]
- Kuang, J.; Han, S.; Chen, Y.; Bates, C.T.; Wang, P.; Shu, W. Root-Associated Fungal Community Reflects Host Spatial Co-Occurrence Patterns in a Subtropical Forest. ISME Commun. 2021, 1, 65. [Google Scholar] [CrossRef]
- Schulze, E.D.; Chapin, F.S., 3rd; Gebauer, G. Nitrogen Nutrition and Isotope Differences among Life Forms at the Northern Treeline of Alaska. Oecologia 1994, 100, 406–412. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G.; Kourtev, P.; Huang, W. Changes in Soil Functions Following Invasions of Exotic Understory Plants in Deciduous Forests. Ecol. Appl. 2001, 11, 1287–1300. [Google Scholar] [CrossRef]
- Xiong, Y.M.; Xia, H.X.; Li, Z.A.; Cai, X.A.; Fu, S.L. Impacts of Litter and Understory Removal on Soil Properties in a Subtropical Acacia Mangium Plantation in China. Plant Soil 2008, 304, 179–188. [Google Scholar] [CrossRef]
- Hortal, S.; Bastida, F.; Armas, C.; Lozano, Y.M.; Moreno, J.L.; García, C.; Pugnaire, F.I. Soil Microbial Community under a Nurse-Plant Species Changes in Composition, Biomass and Activity as the Nurse Grows. Soil. Biol. Biochem. 2013, 64, 139–146. [Google Scholar] [CrossRef]
- van der Ploeg, R.R.; Böhm, W.; Kirkham, M.B. On the Origin of the Theory of Mineral Nutrition of Plants and the Law of the Minimum. Soil. Sci. Soc. Am. J. 1999, 63, 1055–1062. [Google Scholar] [CrossRef]
- Mur, L.A.J.; Simpson, C.; Kumari, A.; Gupta, A.K.; Gupta, K.J. Moving Nitrogen to the Centre of Plant Defence against Pathogens. Ann. Bot. 2017, 119, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Ojha, R.; Jha, S.; Krishi, V.; Kendra; Garhwa, J. Role of Mineral Nutrition in Management of Plant Diseases Farmers’ Prosperity through Improved Agricultural Technologies; Singh, H.K., Solankey, S.S., Roy, M.K., Eds.; Jaya Publishing House: New Delhi, India, 2021; pp. 241–261. [Google Scholar]
- Song, X.H.; Wan, F.F.; Chang, X.C.; Zhang, J.; Sun, M.H.; Liu, Y. Effects of Nutrient Deficiency on Root Morphology and Nutrient Allocation in Pistacia Chinensis Bunge Seedlings. Forests 2019, 10, 1035. [Google Scholar] [CrossRef]
- Liu, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Root Exudates Shift How N Mineralization and N Fixation Contribute to the Plant-Available N Supply in Low Fertility Soils. Soil Biol. Biochem. 2022, 165, 108541. [Google Scholar] [CrossRef]
- Clarholm, M.; Skyllberg, U.; Rosling, A. Organic Acid Induced Release of Nutrients from Metal-Stabilized Soil Organic Matter—The Unbutton Model. Soil. Biol. Biochem. 2015, 84, 168–176. [Google Scholar] [CrossRef]
- Finzi, A.C.; Abramoff, R.Z.; Spiller, K.S.; Brzostek, E.R.; Darby, B.A.; Kramer, M.A.; Phillips, R.P. Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Carbon and Nutrient Cycles. Glob. Change Biol. 2015, 21, 2082–2094. [Google Scholar] [CrossRef]
- Maurer, D.; Malique, F.; Alfarraj, S.; Albasher, G.; Horn, M.A.; Butterbach-Bahl, K.; Dannenmann, M.; Rennenberg, H. Interactive Regulation of Root Exudation and Rhizosphere Denitrification by Plant Metabolite Content and Soil Properties. Plant Soil 2021, 467, 107–127. [Google Scholar] [CrossRef]
- Oburger, E.; Kirk, G.J.D.; Wenzel, W.W.; Puschenreiter, M.; Jones, D.L. Interactive Effects of Organic Acids in the Rhizosphere. Soil. Biol. Biochem. 2009, 41, 449–457. [Google Scholar] [CrossRef]
- Bao, Y.Y.; Ma, J.Y.; Pan, C.R.; Guo, A.Y.; Li, Y.X.; Xing, B.S. Citric Acid Enhances Ce Uptake and Accumulation in Rice Seedlings Exposed to CeO2 Nanoparticles and Iron Plaque Attenuates the Enhancement. Chemosphere 2020, 240, 124897. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Carbon Input by Roots into the Soil: Quantification of Rhizodeposition from Root to Ecosystem Scale. Glob. Change Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhao, C.; Zhao, X.K.; Yang, L.Y.; Liu, C.; Jiang, L.Y.; Liu, G.D.; Liu, P.D.; Luo, L.J. Multi-Omics-Based Identification of Purple Acid Phosphatases and Metabolites Involved in Phosphorus Recycling in Stylo Root Exudates. Int. J. Biol. Macromol. 2023, 241, 124569. [Google Scholar] [CrossRef] [PubMed]
- Nwoke, O.C.; Diels, J.; Abaidoo, R.; Nziguheba, G.; Merckx, R. Organic Acids in the Rhizosphere and Root Characteristics of Soybean (Glycine max) and Cowpea (Vigna unguiculata) in Relation to Phosphorus Uptake in Poor Savanna Soils. Afr. J. Biotechnol. 2008, 7, 3617–3624. [Google Scholar] [CrossRef]
- Jia, H.; Lu, H.L.; Dai, M.Y.; Hong, H.L.; Liu, J.C.; Yan, C.L. Effect of Root Exudates on Sorption, Desorption, and Transport of Phenanthrene in Mangrove Sediments. Mar. Pollut. Bull. 2016, 109, 171–177. [Google Scholar] [CrossRef]
- Krishnapriya, V.; Pandey, R. Root Exudation Index: Screening Organic Acid Exudation and Phosphorus Acquisition Efficiency in Soybean Genotypes. Crop Pasture Sci. 2016, 67, 1096–1109. [Google Scholar] [CrossRef]
- Lyu, Y.; Tang, H.L.; Li, H.G.; Zhang, F.S.; Rengel, Z.; Whalley, W.R.; Shen, J.B. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply. Front. Plant Sci. 2016, 7, 1939. [Google Scholar] [CrossRef] [PubMed]
- Giles, C.D.; Brown, L.K.; Adu, M.O.; Mezeli, M.M.; Sandral, G.A.; Simpson, R.J.; Wendler, R.; Shand, C.A.; Menezes-Blackburn, D.; Darch, T.; et al. Response-Based Selection of Barley Cultivars and Legume Species for Complementarity: Root Morphology and Exudation in Relation to Nutrient Source. Plant Sci. 2017, 255, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Bing, H.J.; Wu, Y.H.; Sun, H.Y.; Zhou, J. Low Molecular Weight Organic Acids Regulate Soil Phosphorus Availability in the Soils of Subalpine Forests, Eastern Tibetan Plateau. Catena 2021, 203, 105328. [Google Scholar] [CrossRef]
- Meier, I.C.; Tuckmantel, T.; Heitkotter, J.; Muller, K.; Preusser, S.; Wrobel, T.J.; Kandeler, E.; Marschner, B.; Leuschner, C. Root Exudation of Mature Beech Forests across a Nutrient Availability Gradient: The Role of Root Morphology and Fungal Activity. New Phytol. 2020, 226, 583–594. [Google Scholar] [CrossRef]
- Anderson, D.W. The Effect of Parent Material and Soil Development on Nutrient Cycling in Temperate Ecosystems. Biogeochemistry 1988, 5, 71–97. [Google Scholar] [CrossRef]
- Turner, B.L.; Engelbrecht, B.M.J. Soil Organic Phosphorus in Lowland Tropical Rain Forests. Biogeochemistry. 2011, 103, 297–315. [Google Scholar] [CrossRef]
- Kitayama, K.; Majalap-Lee, N.; Aiba, S. Soil Phosphorus Fractionation and Phosphorus-Use Efficiencies of Tropical Rainforests Along Altitudinal Gradients of Mount Kinabalu, Borneo. Oecologia 2000, 123, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.P.; Erlitz, Y.; Bier, R.; Bernhardt, E.S. New Approach for Capturing Soluble Root Exudates in Forest Soils. Funct. Ecol. 2008, 22, 990–999. [Google Scholar] [CrossRef]
- Aoki, M.; Fujii, K.; Kitayama, K. Environmental Control of Root Exudation of Low-Molecular Weight Organic Acids in Tropical Rainforests. Ecosystems 2012, 15, 1194–1203. [Google Scholar] [CrossRef]
- Higa, A.; Khandakar, J.; Mori, Y.; Kitamura, Y. Increased De Novo Riboflavin Synthesis and Hydrolysis of Fmn Are Involved in Riboflavin Secretion from Hyoscyamus Albus Hairy Roots under Iron Deficiency. Plant Physiol. Biochem. 2012, 58, 166–173. [Google Scholar] [CrossRef]
- Tsai, H.H.; Schmidt, W. Mobilization of Iron by Plant-Borne Coumarins. Trends Plant Sci. 2017, 22, 538–548. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus Acquisition and Use: Critical Adaptations by Plants for Securing a Nonrenewable Resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef]
- He, W.; Yuan, Y.S.; Zhang, Z.L.; Xiao, J.; Liu, Q.; Laiho, R.; Yin, H.J. Effect of N Addition on Root Exudation and Associated Microbial N Transformation under Sibiraea Angustata in an Alpine Shrubland. Plant Soil 2021, 460, 469–481. [Google Scholar] [CrossRef]
- Bojovic, D.D.; Dukic, M.; Maksimovic, V.; Skocajic, D.; Surucic, L. The Effects of Iron Deficiency on Lead Accumulation in Ailanthus altissima (Mill.) Swingle Seedlings. J. Environ. Qual. 2012, 41, 1517–1524. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of Soil Inorganic P in the Rhizosphere as Affected by Root-Induced Chemical Changes: A Review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Olander, L.P.; Vitousek, P.M. Regulation of Soil Phosphatase and Chitinase Activityby N and P Availability. Biogeochemistry 2000, 49, 175–191. [Google Scholar] [CrossRef]
- Tian, K.; Kong, X.S.; Yuan, L.H.; Lin, H.; He, Z.H.; Yao, B.; Ji, Y.L.; Yang, J.B.; Sun, S.C.; Tian, X.J. Priming Effect of Litter Mineralization: The Role of Root Exudate Depends on Its Interactions with Litter Quality and Soil Condition. Plant Soil 2019, 440, 457–471. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in Soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- He, Y.H.; Cheng, W.X.; Zhou, L.Y.; Shao, J.J.; Liu, H.Y.; Zhou, H.M.; Zhu, K.; Zhou, X.H. Soil Doc Release and Aggregate Disruption Mediate Rhizosphere Priming Effect on Soil C Decomposition. Soil Biol. Biochem. 2020, 144, 107787. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Priming Effects: Interactions between Living and Dead Organic Matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
- Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Front. Plant Sci. 2019, 10, 157. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Active Microorganisms in Soil: Critical Review of Estimation Criteria and Approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- De Nobili, M.; Contin, M.; Mondini, C.; Brookes, P.C. Soil Microbial Biomass Is Triggered into Activity by Trace Amounts of Substrate. Soil Biol. Biochem. 2001, 33, 1163–1170. [Google Scholar] [CrossRef]
- Yin, H.J.; Li, Y.F.; Xiao, J.; Xu, Z.F.; Cheng, X.Y.; Liu, Q. Enhanced Root Exudation Stimulates Soil Nitrogen Transformations in a Subalpine Coniferous Forest under Experimental Warming. Glob. Change Biol. 2013, 19, 2158–2167. [Google Scholar] [CrossRef]
- Phillips, R.P.; Meier, I.C.; Bernhardt, E.S.; Grandy, A.S.; Wickings, K.; Finzi, A.C. Roots and Fungi Accelerate Carbon and Nitrogen Cycling in Forests Exposed to Elevated CO2. Ecol. Lett. 2012, 15, 1042–1049. [Google Scholar] [CrossRef]
- Guo, H.P.; Feng, X.; Hong, C.T.; Chen, H.M.; Zeng, F.R.; Zheng, B.S.; Jiang, D.A. Malate Secretion from the Root System Is an Important Reason for Higher Resistance of Miscanthus Sacchariflorus to Cadmium. Physiol. Plant 2017, 159, 340–353. [Google Scholar] [CrossRef]
- Meng, H.; Yan, Z.; Li, X. Effects of Exogenous Organic Acids and Flooding on Root Exudates, Rhizosphere Bacterial Community Structure, and Iron Plaque Formation in Kandelia Obovata Seedlings. Sci. Total Environ. 2022, 830, 154695. [Google Scholar] [CrossRef]
- Qin, R.J.; Hirano, Y.; Brunner, I. Exudation of Organic Acid Anions from Poplar Roots after Exposure to Al, Cu and Zn. Tree Physiol. 2007, 27, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.R.; Hindersmann, J.; Trentin, E.; De Conti, L.; Drescher, G.L.; Somavilla, A.; Tabaldi, L.A.; Schawalbert, R.; Birck, T.P.; Nicoloso, F.T.; et al. Physiological and Biochemical Characterization of Copper-Toxicity Tolerance Mechanism in Grass Species Native to Pampa Biome and Atlantic Forest for Use in Phytoremediation. Environ. Sci. Pollut. Res. 2023, 30, 5076–5088. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Zhong, L.B.; Wang, L.; Liu, X.M.; Tang, C.X.; Chen, H.J.; Xu, J.M. Contrasting Effects of Alkaline Amendments on the Bioavailability and Uptake of Cd in Rice Plants in a Cd-Contaminated Acid Paddy Soil. Environ. Sci. Pollut. Res. 2018, 25, 8827–8835. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.P.; Guo, Z.H.; Lei, P.; Wang, Y.S.; Li, Y.L.; Cheng, W.; Zhang, M.; Wu, S.D.; Yi, H.W. Simultaneous Mitigation of Tissue Cadmium and Lead Accumulation in Rice Via Sulfate-Reducing Bacterium. Ecotox Environ. Saf. 2019, 169, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Liu, C.; Ding, N.F.; Fu, Q.L.; Lin, Y.C.; Li, H.; Li, N.Y. Silicon Alleviates Cadmium Toxicity in Two Cypress Varieties by Strengthening the Exodermis Tissues and Stimulating Phenolic Exudation of Roots. Plant Growth Regul. 2016, 35, 420–429. [Google Scholar] [CrossRef]
- Jian, L.; Jingchun, L.; Chongling, Y.; Daolin, D.; Haoliang, L. The Alleviation Effect of Iron on Cadmium Phytotoxicity in Mangrove A. Marina. Alleviation Effect of Iron on Cadmium Phytotoxicity in Mangrove Avicennia Marina (Forsk.) Vierh. Chemosphere. 2019, 226, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.M.; Fransson, P.M.A.; Finlay, R.D.; van Hees, P.A.W. Quantitative Analysis of Root and Ectomycorrhizal Exudates as a Response to Pb, Cd and as Stress. Plant Soil 2008, 313, 39–54. [Google Scholar] [CrossRef]
- Millaleo, R.; Raoz, M.; Ulloa-Inostroza, E.; Duran, P.; Mora, M.D. Early Responses to Manganese (Mn) Excess and Its Relation to Antioxidant Performance and Organic Acid Exudation in Barley Cultivars. J. Soil Sci. Plant Nutr. 2018, 18, 1206–1223. [Google Scholar] [CrossRef]
- Yang, J.W.; Zhong, L.Y.; Liu, L.M. Influence of Aqueous Fe(Iii) on Release of Mn(Ii) from Low-Molecular-Weight Organic Acid-Promoted Dissolution of an Oxisol and Gamma-MnO2. Environ. Earth Sci. 2015, 74, 1625–1632. [Google Scholar] [CrossRef]
- Hiltbrunner, E.; Fluckiger, W. Manganese Deficiency of Silver Fir Trees (Abies alba) at a Reforested Site in the Jura Mountains, Switzerland: Aspects of Cause and Effect. Tree Physiol. 1996, 16, 963–975. [Google Scholar] [CrossRef]
- Ciadamidaro, L.; Madejon, P.; Madejon, E. Soil Chemical and Biochemical Properties under Populus Alba Growing: Three Years Study in Trace Element Contaminated Soils. Appl. Microbiol. Biotechnol. 2014, 73, 26–33. [Google Scholar] [CrossRef]
- Wang, G.; Ren, Y.; Bai, X.J.; Su, Y.Y.; Han, J.P. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants 2022, 11, 3200. [Google Scholar] [CrossRef]
- Bernot, R.J.; Poulin, R. Ecological Stoichiometry for Parasitologists. Trends Parasitol. 2018, 34, 928–933. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A Global Analysis of Soil Microbial Biomass Carbon, Nitrogen and Phosphorus in Terrestrial Ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Dickman, E.M.; Vanni, M.J.; Horgan, M.J. Interactive Effects of Light and Nutrients on Phytoplankton Stoichiometry. Oecologia 2006, 149, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Redfield, A.C. The Biological Control of Chemical Factors in the Environment. Am. Sci. 1958, 46, 205–221. Available online: https://www.jstor.org/stable/27827150 (accessed on 7 March 2024).
- Gusewell, S. N:P Ratios in Terrestrial Plants: Variation and Functional Significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- He, J.; Lu, Q.; Wu, C.M.; Liu, H.Y. Response of Soil and Plant Nutrients to Planting Years in Precious Ancient Camellia tetracocca Plantations. Agronomy 2023, 13, 914. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, F.P.; Zeng, Z.X.; Du, H.; Zhang, L.J.; Su, L.; Lu, M.Z.; Zhang, H. Carbon, Nitrogen and Phosphorus Stoichiometry and Its Influencing Factors in Karst Primary Forest. Forests 2022, 13, 1990. [Google Scholar] [CrossRef]
- He, X.L.; Ma, J.; Jin, M.; Li, Z. Characteristics and Controls of Ecological Stoichiometry of Shrub Leaf in the Alpine Region of Northwest China. Catena 2023, 224, 107005. [Google Scholar] [CrossRef]
- Li, J.W.; Liu, Y.L.; Hai, X.Y.; Shangguan, Z.P.; Deng, L. Dynamics of Soil Microbial C:N:P Stoichiometry and Its Driving Mechanisms Following Natural Vegetation Restoration after Farmland Abandonment. Sci. Total Environ. 2019, 693, 133613. [Google Scholar] [CrossRef]
- Vrede, T.; Dobberfuhl, D.R.; Kooijman, S.; Elser, J.J. Fundamental Connections among Organism C:N:P Stoichiometry, Macromolecular Composition, and Growth. Ecology 2004, 85, 1217–1229. [Google Scholar] [CrossRef]
- Xue, X.; Adhikari, B.N.; Ball, B.A.; Barrett, J.E.; Miao, J.X.; Perkes, A.; Martin, M.; Simmons, B.L.; Wall, D.H.; Adams, B.J. Ecological Stoichiometry Drives the Evolution of Soil Nematode Life History Traits. Soil. Biol. Biochem. 2023, 177, 108891. [Google Scholar] [CrossRef]
- Bragazza, L.; Fontana, M.; Guillaume, T.; Scow, K.M.; Sinaj, S. Nutrient Stoichiometry of a Plant-Microbe-Soil System in Response to Cover Crop Species and Soil Type. Plant Soil 2021, 461, 517–531. [Google Scholar] [CrossRef]
- Elser, J.J.; Acharya, K.; Kyle, M.; Cotner, J.; Makino, W.; Markow, T.; Watts, T.; Hobbie, S.; Fagan, W.; Schade, J.; et al. Growth Rate-Stoichiometry Couplings in Diverse Biota. Ecol. Lett. 2003, 6, 936–943. [Google Scholar] [CrossRef]
- Chen, Y.M.; Wang, M.K.; Zhuang, S.Y.; Chiang, P.N. Chemical and Physical Properties of Rhizosphere and Bulk Soils of Three Tea Plants Cultivated in Ultisols. Geoderma 2006, 136, 378–387. [Google Scholar] [CrossRef]
- Han, W.X.; Fang, J.Y.; Reich, P.B.; Woodward, F.I.; Wang, Z.H. Biogeography and Variability of Eleven Mineral Elements in Plant Leaves across Gradients of Climate, Soil and Plant Functional Type in China. Ecol. Lett. 2011, 14, 788–796. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zhang, J.L.; Slik, J.W.F.; Cao, K.F. Leaf Element Concentrations of Terrestrial Plants across China Are Influenced by Taxonomy and the Environment. Glob. Ecol. Biogeogr. 2012, 21, 809–818. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhao, N.; Liu, C.C.; Yang, H.; Li, M.L.; Yu, G.R.; Wilcox, K.; Yu, Q.; He, N.P. C:N:P Stoichiometry in China’s Forests: From Organs to Ecosystems. Funct. Ecol. 2018, 32, 50–60. [Google Scholar] [CrossRef]
- Lan, Z.L.; Zhang, S.L.; Xie, L.C.; Li, X.; Sial, T.A.; Shar, A.G.; Fan, J.L.; Zhang, J.G.; Dong, Q.; Fu, G.J. Effects of Artemisia Ordosica on Fine-Scale Spatial Distribution of Soil C, N and P and Physical-Chemical Properties in the Mu Us Desert, China. J. Soils Sediments 2022, 22, 172–184. [Google Scholar] [CrossRef]
- Maaroufi, N.I.; De Long, J.R. Global Change Impacts on Forest Soils: Linkage between Soil Biota and Carbon-Nitrogen-Phosphorus Stoichiometry. Front. For. Glob. Change 2020, 3, 16. [Google Scholar] [CrossRef]
- Li, C.; Liu, L.; Zheng, L.; Yu, Y.; Mushinski, R.M.; Zhou, Y.; Xiao, C.W. Greater Soil Water and Nitrogen Availability Increase C:N Ratios of Root Exudates in a Temperate Steppe. Soil. Biol. Biochem. 2021, 161, 108384. [Google Scholar] [CrossRef]
- Muller, M.; Oelmann, Y.; Schickhoff, U.; Bohner, J.; Scholten, T. Himalayan Treeline Soil and Foliar C:N:P Stoichiometry Indicate Nutrient Shortage with Elevation. Geoderma 2017, 291, 21–32. [Google Scholar] [CrossRef]
- Liu, G.F.; Ye, X.H.; Huang, Z.Y.; Dong, M.; Cornelissen, J.H.C. Leaf and Root Nutrient Concentrations and Stoichiometry Along Aridity and Soil Fertility Gradients. J. Veg. Sci. 2019, 30, 291–300. [Google Scholar] [CrossRef]
- Wen, Z.H.; Pang, J.Y.; Ryan, M.H.; Shen, J.B.; Siddique, K.H.M.; Lambers, H. In Addition to Foliar Manganese Concentration, Both Iron and Zinc Provide Proxies for Rhizosheath Carboxylates in Chickpea under Low Phosphorus Supply. Plant Soil 2021, 465, 31–46. [Google Scholar] [CrossRef]
- Sun, Y.; Liao, J.H.; Zou, X.M.; Xu, X.; Yang, J.Y.; Chen, H.Y.H.; Ruan, H.H. Coherent Responses of Terrestrial C:N Stoichiometry to Drought across Plants, Soil, and Microorganisms in Forests and Grasslands. Agric. For. Meteorol. 2020, 292, 108104. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Y.Y.; Jiang, L.; Zhu, J.; Chen, J.J.; Huang, Q.R.; Liu, J.F.; Xu, D.W.; He, Z.S. C:N:P Stoichiometry of Plant, Litter and Soil Along an Elevational Gradient in Subtropical Forests of China. Forests 2022, 13, 372. [Google Scholar] [CrossRef]
- Spohn, M.; Ermak, A.; Kuzyakov, Y. Microbial Gross Organic Phosphorus Mineralization Can Be Stimulated by Root Exudates—A P-33 Isotopic Dilution Study. Soil. Biol. Biochem. 2013, 65, 254–263. [Google Scholar] [CrossRef]
- Jin, X.; Liu, Y.; Hu, W.; Wang, G.; Kong, Z.; Wu, L.; Ge, G. Soil Bacterial and Fungal Communities and the Associated Nutrient Cycling Responses to Forest Conversion after Selective Logging in a Subtropical Forest of China. For. Ecol. Manag. 2019, 444, 308–317. [Google Scholar] [CrossRef]
- Gupta, R.; Keppanan, R.; Leibman-Markus, M.; Rav-David, D.; Elad, Y.; Ment, D.; Bar, M. The Entomopathogenic Fungi Metarhizium Brunneum and Beauveria Bassiana Promote Systemic Immunity and Confer Resistance to a Broad Range of Pests and Pathogens in Tomato. Phytopathology 2022, 112, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, X.N.; Yao, S.; Yang, X.L.; Jiang, X. Correlations between Soil Metabolomics and Bacterial Community Structures in the Pepper Rhizosphere under Plastic Greenhouse Cultivation. Sci. Total Environ. 2020, 728, 138439. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, L.M.; Hattenschwiler, S.; Milcu, A.; Wambsganss, J.; Shihan, A.; Fromin, N. Tree Species Mixing Affects Soil Microbial Functioning Indirectly Via Root and Litter Traits and Soil Parameters in European Forests. Funct. Ecol. 2021, 35, 2190–2204. [Google Scholar] [CrossRef]
- Hutengs, C.; Eisenhauer, N.; Schadler, M.; Lochner, A.; Seidel, M.; Vohland, M. Vnir and Mir Spectroscopy of Plfa-Derived Soil Microbial Properties and Associated Soil Physicochemical Characteristics in an Experimental Plant Diversity Gradient. Soil Biol. Biochem. 2021, 160, 108319. [Google Scholar] [CrossRef]
- Xue, P.P.; Carrillo, Y.; Pino, V.; Minasny, B.; McBratney, A.B. Soil Properties Drive Microbial Community Structure in a Large Scale Transect in South Eastern Australia. Sci. Rep. 2018, 8, 11725. [Google Scholar] [CrossRef]
- Liu, L.L.; Huang, X.Q.; Zhang, J.B.; Cai, Z.C.; Jiang, K.; Chang, Y.Y. Deciphering the Relative Importance of Soil and Plant Traits on the Development of Rhizosphere Microbial Communities. Soil Biol. Biochem. 2020, 148, 107909. [Google Scholar] [CrossRef]
- Micallef, S.A.; Shiaris, M.P.; Colon-Carmona, A. Influence of Arabidopsis Thaliana Accessions on Rhizobacterial Communities and Natural Variation in Root Exudates. J. Exp. Bot. 2009, 60, 1729–1742. [Google Scholar] [CrossRef]
- Hu, L.F.; Robert, C.A.M.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.B.; Manzo, D.; Chervet, N.; Steinger, T.; van der Heijden, M.G.A.; et al. Root Exudate Metabolites Drive Plant-Soil Feedbacks on Growth and Defense by Shaping the Rhizosphere Microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.J.; Cho, H.J.; Karaoz, U.; Loque, D.; Bowen, B.P.; et al. Dynamic Root Exudate Chemistry and Microbial Substrate Preferences Drive Patterns in Rhizosphere Microbial Community Assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.S.; Zhao, W.Q.; Xiao, J.; Zhang, Z.L.; Qiao, M.F.; Liu, Q.; Yin, H.J. Exudate Components Exert Different Influences on Microbially Mediated C Losses in Simulated Rhizosphere Soils of a Spruce Plantation. Plant Soil. 2017, 419, 127–140. [Google Scholar] [CrossRef]
- Jilkova, V.; Jandova, K.; Cajthaml, T.; Kukla, J.; Jansa, J. Differences in the Flow of Spruce-Derived Needle Leachates and Root Exudates through a Temperate Coniferous Forest Mineral Topsoil. Geoderma 2022, 405, 115441. [Google Scholar] [CrossRef]
- Liu, G.C.; Yan, G.Y.; Huang, B.B.; Sun, X.Y.; Xing, Y.J.; Wang, Q.G. Long-Term Nitrogen Addition Alters Nutrient Foraging Strategies of Populus Davidiana and Betula Platyphylla in a Temperate Natural Secondary Forest. Eur. J. For. Res. 2022, 141, 307–320. [Google Scholar] [CrossRef]
- Frank, G.S.; Nakatsu, C.H.; Jenkins, M.A. Soil Chemistry and Microbial Community Functional Responses to Invasive Shrub Removal in Mixed Hardwood Forests. Appl. Microbiol. Biotechnol. 2018, 131, 75–88. [Google Scholar] [CrossRef]
- Cullings, K.; Raleigh, C.; New, M.H.; Henson, J. Effects of Artificial Defoliation of Pines on the Structure and Physiology of the Soil Fungal Community of a Mixed Pine-Spruce Forest. Appl. Environ. Microbiol. 2005, 71, 1996–2000. [Google Scholar] [CrossRef]
- Wu, H.L.; Wang, X.Z.; He, X.J.; Zhang, S.B.; Liang, R.B.; Shen, J. Effects of Root Exudates on Denitrifier Gene Abundance, Community Structure and Activity in a Micro-Polluted Constructed Wetland. Sci. Total Environ. 2017, 598, 697–703. [Google Scholar] [CrossRef]
- Chen, S.M.; Waghmode, T.R.; Sun, R.B.; Kuramae, E.E.; Hu, C.S.; Liu, B.B. Root-Associated Microbiomes of Wheat under the Combined Effect of Plant Development and Nitrogen Fertilization. Microbiome 2019, 7, 136. [Google Scholar] [CrossRef]
- Ma, L.; Yang, L.L.; Liu, W.; Zhang, Y.; Zhou, Q.H.; Wu, Z.B.; He, F. Effects of Root Exudates on Rhizosphere Bacteria and Nutrient Removal in Pond-Ditch Circulation Systems (Pdcss) for Rural Wastewater Treatment. Sci. Total Environ. 2021, 785, 147282. [Google Scholar] [CrossRef]
- Steinauer, K.; Chatzinotas, A.; Eisenhauer, N. Root Exudate Cocktails: The Link between Plant Diversity and Soil Microorganisms? Ecol. Evol. 2016, 6, 7387–7396. [Google Scholar] [CrossRef]
- Veach, A.M.; Morris, R.; Yip, D.Z.; Yang, Z.K.; Engle, N.L.; Cregger, M.A.; Tschaplinski, T.J.; Schadt, C.W. Rhizosphere Microbiomes Diverge among Populus Trichocarpa Plant-Host Genotypes and Chemotypes, but It Depends on Soil Origin. Microbiome 2019, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Zheng, M.Z.; Dong, W.P.; Xu, P.L.; Zheng, Y.; Yang, W.; Luo, Y.M.; Guo, J.H.; Niu, D.D.; Yu, Y.Y.; et al. Plant Disease Resistance-Related Pathways Recruit Beneficial Bacteria by Remodeling Root Exudates Upon Bacillus Cereus Ar156 Treatment. Microbiol. Spectr. 2023, 11, e0361122. [Google Scholar] [CrossRef]
- Rudrappa, T.; Czymmek, K.J.; Pare, P.W.; Bais, H.P. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria. Plant Physiol. 2008, 148, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Manici, L.M.; Caputo, F.; Rossi, A.; Topp, A.R.; Zago, M.; Kelderer, M. Thermal Disturbance of Fertile Soils to Search for New Biological Control Options in Strawberry Crops Affected by Yield Decline. Biol. Control 2018, 126, 65–73. [Google Scholar] [CrossRef]
- Zboralski, A.; Filion, M. Genetic Factors Involved in Rhizosphere Colonization by Phytobeneficial Pseudomonas spp. Comput. Struct. Biotechnol. J. 2020, 18, 3539–3554. [Google Scholar] [CrossRef]
- Comeau, D.; Balthazar, C.; Novinscak, A.; Bouhamdani, N.; Joly, D.L.; Filion, M. Interactions between Bacillus spp., Pseudomonas spp. and Cannabis sativa Promote Plant Growth. Front. Microbiol. 2021, 12, 715758. [Google Scholar] [CrossRef]
- Wang, X.N.; Zhang, J.C.; Wang, X.F.; An, J.P.; You, C.X.; Zhou, B.; Hao, Y.J. The Growth-Promoting Mechanism of Brevibacillus Laterosporus Amcc100017 on Apple Rootstock Malus Robusta. Hortic. Plant J. 2022, 8, 22–34. [Google Scholar] [CrossRef]
- Peng, H.X.; de-Bashan, L.E.; Higgins, B.T. Comparison of Algae Growth and Symbiotic Mechanisms in the Presence of Plant Growth Promoting Bacteria and Non-Plant Growth Promoting Bacteria. Algal Res. 2021, 53, 102156. [Google Scholar] [CrossRef]
- Rizvi, A.; Khan, M.S. Heavy Metal Induced Oxidative Damage and Root Morphology Alterations of Maize (Zea mays L.) Plants and Stress Mitigation by Metal Tolerant Nitrogen Fixing Azotobacter Chroococcum. Ecotox Environ. Saf. 2018, 157, 9–20. [Google Scholar] [CrossRef]
- Song, C.; Wang, W.J.; Gan, Y.F.; Wang, L.F.; Chang, X.L.; Wang, Y.; Yang, W.Y. Growth Promotion Ability of Phosphate-Solubilizing Bacteria from the Soybean Rhizosphere under Maize-Soybean Intercropping Systems. J. Sci. Food Agric. 2022, 102, 1430–1442. [Google Scholar] [CrossRef]
- Anandham, R.; Sridar, R.; Nalayini, P.; Poonguzhali, S.; Madhaiyan, M.; Sa, T. Potential for Plant Growth Promotion in Groundnut (Arachis hypogaea L.) Cv. Alr-2 by Co-Inoculation of Sulfur-Oxidizing Bacteria and Rhizobium. Microbiol. Res. 2007, 162, 139–153. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, J.M.; Lu, X.M.; Zhou, C. Development of Plant Systemic Resistance by Beneficial Rhizobacteria: Recognition, Initiation, Elicitation and Regulation. Front. Plant Sci. 2023, 13, 1118073. [Google Scholar] [CrossRef]
- Liu, F.C.; Xing, S.J.; Ma, H.L.; Du, Z.Y.; Ma, B.Y. Plant Growth-Promoting Rhizobacteria Affect the Growth and Nutrient Uptake of Fraxinus Americana Container Seedlings. Appl. Microbiol. Biotechnol. 2013, 97, 4617–4625. [Google Scholar] [CrossRef]
- You, W.J.; Ge, C.H.; Jiang, Z.C.; Chen, M.M.; Li, W.; Shao, Y.Z. Screening of a Broad-Spectrum Antagonist-Bacillus Siamensis, and Its Possible Mechanisms to Control Postharvest Disease in Tropical Fruits. Biol. Control 2021, 157, 104584. [Google Scholar] [CrossRef]
- Brescia, F.; Vlassi, A.; Bejarano, A.; Seidl, B.; Marchetti-Deschmann, M.; Schuhmacher, R.; Puopolo, G. Characterisation of the Antibiotic Profile of Lysobacter Capsici Az78, an Effective Biological Control Agent of Plant Pathogenic Microorganisms. Microorganisms 2021, 9, 1320. [Google Scholar] [CrossRef]
- Weller, D.M. Biological Control of Soilborne Plant Pathogens in the Rhizosphere with Bacteria. Annu. Rev. Phytopathol. 1988, 26, 379–407. [Google Scholar] [CrossRef]
- Akatsuki, M.; Makita, N. Influence of Fine Root Traits on in Situ Exudation Rates in Our Conifers from Different Mycorrhizal Associations. Tree Physiol. 2020, 40, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Wang, R.; Lu, B.; Guerin-Laguette, A.; He, X.H.; Yu, F.Q. Mycorrhization of Quercus Mongolica Seedlings by Tuber Melanosporum Alters Root Carbon Exudation and Rhizosphere Bacterial Communities. Plant Soil 2021, 467, 391–403. [Google Scholar] [CrossRef]
- Mundra, S.; Kauserud, H.; Okland, T.; Nordbakken, J.F.; Ransedokken, Y.; Kjonaas, O.J. Shift in Tree Species Changes the Belowground Biota of Boreal Forests. New Phytol. 2022, 234, 2073–2087. [Google Scholar] [CrossRef] [PubMed]
- Bzdyk, R.M.; Sikora, K.; Studnicki, M.; Aleksandrowicz-Trzcinska, M. Communities of Mycorrhizal Fungi among Seedlings of Scots Pine (Pinus sylvestris L.) Growing on a Clearcut in Microsites Generated by Different Site-Preparation Methods. Forests. 2022, 13, 353. [Google Scholar] [CrossRef]
- Scartazza, A.; Sbrana, C.; D’Andrea, E.; Matteucci, G.; Rezaie, N.; Lauteri, M. Above- and Belowground Interplay: Canopy CO2 Uptake, Carbon and Nitrogen Allocation and Isotope Fractionation Along the Plant-Ectomycorrhiza Continuum. Plant Cell Environ. 2023, 46, 889–900. [Google Scholar] [CrossRef]
- Pires, A.C.C.; Cleary, D.F.R.; Almeida, A.; Cunha, A.; Dealtry, S.; Mendonca-Hagler, L.C.S.; Smalla, K.; Gomes, N.C.M. Denaturing Gradient Gel Electrophoresis and Barcoded Pyrosequencing Reveal Unprecedented Archaeal Diversity in Mangrove Sediment and Rhizosphere Samples. Appl. Environ. Microbiol. 2012, 78, 5520–5528. [Google Scholar] [CrossRef]
- Montesinos-Navarro, A.; Segarra-Moragues, J.G.; Valiente-Banuet, A.; Verdu, M. Plant Facilitation Occurs between Species Differing in Their Associated Arbuscular Mycorrhizal Fungi. New Phytol. 2012, 196, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Lagrange, H.; Jay-Allgmand, C.; Lapeyrie, F. Rutin, the Phenolglycoside from Eucalyptus Root Exudates, Stimulates Pisolithus Hyphal Growth at Picomolar Concentrations. New Phytol. 2001, 149, 349–355. [Google Scholar] [CrossRef]
- Plett, J.M.; Martin, F. Poplar Root Exudates Contain Compounds That Induce the Expression of Missp7 in Laccaria Bicolor. Plant Signal Behav. 2012, 7, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Genre, A.; Chabaud, M.; Balzergue, C.; Puech-Pages, V.; Novero, M.; Rey, T.; Fournier, J.; Rochange, S.; Becard, G.; Bonfante, P.; et al. Short-Chain Chitin Oligomers from Arbuscular Mycorrhizal Fungi Trigger Nuclear Ca2+ Spiking in Medicago Truncatula Roots and Their Production Is Enhanced by Strigolactone. New Phytol. 2013, 198, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K.; Matsuzaki, K.; Hayashi, H. Plant Sesquiterpenes Induce Hyphal Branching in Arbuscular Mycorrhizal Fungi. Nature 2005, 435, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, M.M.; Wang, Q.; Webster, F.X.; Kiemle, D.; Hong, Y.J.; Tantillo, D.J.; Coates, R.M.; Wray, A.T.; Askew, W.; O’Donnell, C.; et al. Formation of the Unusual Semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase Tps08 in the Root Stele Is Involved in Defense against Belowground Herbivory. Plant Cell 2013, 25, 1108–1125. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Cheng, Z.H.; Xiao, X.M.; Khan, A.R.; Ahmed, S.S. Ultrastructural Studies of the Inhibition Effect against Phytophthora Capsici of Root Exudates Collected from Two Garlic Cultivars Along with Their Qualitative Analysis. Crop Prot. 2011, 30, 1149–1155. [Google Scholar] [CrossRef]
- Ankati, S.; Rani, T.S.; Podile, A.R. Changes in Root Exudates and Root Proteins in Groundnut-Pseudomonas Sp. Interaction Contribute to Root Colonization by Bacteria and Defense Response of the Host. Plant Growth Regul. 2019, 38, 523–538. [Google Scholar] [CrossRef]
- Liu, X.X.; Xu, S.Z.; Wang, X.P.; Xin, L.; Wang, L.S.; Mao, Z.Q.; Chen, X.S.; Wu, S.J. Mdbak1 Overexpression in Apple Enhanced Resistance to Replant Disease as Well as to the Causative Pathogen Fusarium Oxysporum. Plant Physiol. Biochem. 2022, 179, 144–157. [Google Scholar] [CrossRef]
- Tian, B.L.; Pei, Y.C.; Huang, W.; Ding, J.Q.; Siemann, E. Increasing Flavonoid Concentrations in Root Exudates Enhance Associations between Arbuscular Mycorrhizal Fungi and an Invasive Plant. ISME J. 2021, 15, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Brtnicky, M.; Kintl, A.; Hammerschmiedt, T.; Mustafa, A.; Elbl, J.; Kucerik, J.; Vyhnanek, T.; Skladanka, J.; Hunady, I.; Holatko, J. Clover Species Specific Influence on Microbial Abundance and Associated Enzyme Activities in Rhizosphere and Non-Rhizosphere Soils. Agronomy 2021, 11, 2214. [Google Scholar] [CrossRef]
- Oppenheimer-Shaanan, Y.; Jakoby, G.; Starr, M.L.; Karliner, R.; Eilon, G.; Itkin, M.; Malitsky, S.; Klein, T. A Dynamic Rhizosphere Interplay between Tree Roots and Soil Bacteria under Drought Stress. eLife 2022, 11, e79679. [Google Scholar] [CrossRef]
- Sietio, O.M.; Santalahti, M.; Putkinen, A.; Adamczyk, S.; Sun, H.; Heinonsalo, J. Restriction of Plant Roots in Boreal Forest Organic Soils Affects the Microbial Community but Does Not Change the Dominance from Ectomycorrhizal to Saprotrophic Fungi. FEMS Microbiol. Ecol. 2019, 95, FIZ133. [Google Scholar] [CrossRef] [PubMed]
- Eilers, K.G.; Lauber, C.L.; Knight, R.; Fierer, N. Shifts in Bacterial Community Structure Associated with Inputs of Low Molecular Weight Carbon Compounds to Soil. Soil. Biol. Biochem. 2010, 42, 896–903. [Google Scholar] [CrossRef]
- Wang, Q.T.; Yuan, Y.S.; Zhang, Z.L.; Liu, D.Y.; Xiao, J.; Yin, H.J. Exudate Components Mediate Soil C Dynamic through Different Priming Mechanisms in Forest Soils. Appl. Microbiol. Biotechnol. 2021, 160, 103855. [Google Scholar] [CrossRef]
- Gu, Y.A.; Wang, X.F.; Yang, T.J.; Friman, V.P.; Geisen, S.; Wei, Z.; Xu, Y.C.; Jousset, A.; Shen, Q.R. Chemical Structure Predicts the Effect of Plant-Derived Low-Molecular Weight Compounds on Soil Microbiome Structure and Pathogen Suppression. Funct. Ecol. 2020, 34, 2158–2169. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere Microbiome Assemblage Is Affected by Plant Development. ISME J. 2014, 8, 790–803. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, X. Soil Properties Are Key Determinants for the Development of Exudate Gradients in a Rhizosphere Simulation Model. Soil. Biol. Biochem. 2010, 42, 210–219. [Google Scholar] [CrossRef]
- Drake, J.E.; Darby, B.A.; Giasson, M.A.; Kramer, M.A.; Phillips, R.P.; Finzi, A.C. Stoichiometry Constrains Microbial Response to Root Exudation-Insights from a Model and a Field Experiment in a Temperate Forest. Biogeosciences 2013, 10, 821–838. [Google Scholar] [CrossRef]
- Gilligan, C.A. Dynamics of Root Colonization by the Take-All Fungus, Gaeumannomyces Graminis. Soil Biol. Biochem. 1980, 12, 507–512. [Google Scholar] [CrossRef]
- Darrah, P.R. Models of the Rhizosphere. Plant Soil. 1991, 133, 187–199. [Google Scholar] [CrossRef]
- Baumert, V.L.; Vasilyeva, N.A.; Vladimirov, A.A.; Meier, I.C.; Kogel-Knabner, I.; Mueller, C.W. Root Exudates Induce Soil Macroaggregation Facilitated by Fungi in Subsoil. Front. Environ. Sci. 2018, 6, 00140. [Google Scholar] [CrossRef]
- Chertov, O.; Kuzyakov, Y.; Priputina, I.; Frolov, P.; Shanin, V.; Grabarnik, P. Modelling the Rhizosphere Priming Effect in Combination with Soil Food Webs to Quantify Interaction between Living Plant, Soil Biota and Soil Organic Matter. Plants 2022, 11, 2605. [Google Scholar] [CrossRef] [PubMed]
- Personeni, E.; Nguyen, C.; Marchal, P.; Pages, L. Experimental Evaluation of an Efflux-Influx Model of C Exudation by Individual Apical Root Segments. J. Exp. Bot. 2007, 58, 2091–2099. [Google Scholar] [CrossRef]
- Li, X.; Liu, T.; Li, H.; Geisen, S.; Hu, F.; Liu, M. Management Effects on Soil Nematode Abundance Differ among Functional Groups and Land-Use Types at a Global Scale. J. Anim. Ecol. 2022, 91, 1770–1780. [Google Scholar] [CrossRef]
- van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil Nematode Abundance and Functional Group Composition at a Global Scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef]
- Gebremikael, M.T.; Steel, H.; Buchan, D.; Bert, W.; De Neve, S. Nematodes Enhance Plant Growth and Nutrient Uptake under C and N-Rich Conditions. Sci. Rep. 2016, 6, 32862. [Google Scholar] [CrossRef]
- Biederman, L.A.; Boutton, T.W. Biodiversity and Trophic Structure of Soil Nematode Communities Are Altered Following Woody Plant Invasion of Grassland. Soil Biol. Biochem. 2009, 41, 1943–1950. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Pan, K.W.; Sun, X.M.; Azene, B.; Gruba, P.; Wu, X.G.; Zhang, L.; Zhang, M.; Tang, T.W.; Zhu, R.H. Environmental Factors Indirectly Impact the Nematode Carbon Budget of Subalpine Spruce Forests. Forests 2022, 13, 462. [Google Scholar] [CrossRef]
- Hu, J.W.; Hassi, U.; Gebremikael, M.T.; Dumack, K.; De Swaef, T.; Wesemael, W.; Sleutel, S.; De Neve, S. Root Traits Explain Multitrophic Interactions of Belowground Microfauna on Soil Nitrogen Mineralization and Plant Productivity. Soil. Biol. Biochem. 2023, 184, 109093. [Google Scholar] [CrossRef]
- Gough, L.; Moore, J.C.; Shaver, G.R.; Simpson, R.T.; Johnson, D.R. Above- and Belowground Responses of Arctic Tundra Ecosystems to Altered Soil Nutrients and Mammalian Herbivory. Ecology 2012, 93, 1683–1694. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, C.C.; Nemergut, D.R.; Schmidt, S.K.; Townsend, A.R. Increases in Soil Respiration Following Labile Carbon Additions Linked to Rapid Shifts in Soil Microbial Community Composition. Biogeochemistry 2007, 82, 229–240. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setala, H.; van der Putten, W.H.; Wall, D.H. Ecological Linkages between Aboveground and Belowground Biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Kudrin, A.A. Effects of Low Quantities of Added Labile Carbon on Soil Nematodes in Intact Forest Soil Microcosms. Eur. J. Soil Biol. 2017, 78, 29–37. [Google Scholar] [CrossRef]
- Schneckenberger, K.; Demin, D.; Stahr, K.; Kuzyakov, Y. Microbial Utilization and Mineralization of [C-14]Glucose Added in Six Orders of Concentration to Soil. Soil Biol. Biochem. 2008, 40, 1981–1988. [Google Scholar] [CrossRef]
- Moore, J.C.; McCann, K.; de Ruiter, P.C. Modeling Trophic Pathways, Nutrient Cycling, and Dynamic Stability in Soils. Pedobiologia 2005, 49, 499–510. [Google Scholar] [CrossRef]
- Osler, G.H.R.; Sommerkorn, M. Toward a Complete Soil C and N Cycle: Incorporating the Soil Fauna. Ecology 2007, 88, 1611–1621. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.H.; Kou, Y.P.; Zhao, W.Q.; Liu, Q. Differences in the Effects of Broadleaf and Coniferous Trees on Soil Nematode Communities and Soil Fertility across Successional Stages. Plant Soil 2022, 485, 197–212. [Google Scholar] [CrossRef]
- Chen, J.; Ferris, H. Growth and Nitrogen Mineralization of Selected Fungi and Fungal-Feeding Nematodes on Sand Amended with Organic Matter. Plant Soil 2012, 218, 91–101. [Google Scholar] [CrossRef]
- Vlaar, L.E.; Thiombiano, B.; Abedini, D.; Schilder, M.; Yang, Y.T.; Dong, L.M. A Combination of Metabolomics and Machine Learning Results in the Identification of a New Cyst Nematode Hatching Factor. Metabolites 2022, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Gautier, C.; Montarry, J.; Piriou, C.; Renault, L.; Porte, C.; Yvin, J.C.; Nguema-Ona, E.; Fournet, S. Impact of the Genetic Diversity of Three Cyst Nematodes on the Effectiveness of Root Exudates to Induce Hatching. Eur. J. Plant Pathol. 2021, 161, 553–563. [Google Scholar] [CrossRef]
- Hiltpold, I.; Jaffuel, G.; Turlings, T.C.J. The Dual Effects of Root-Cap Exudates on Nematodes: From Quiescence in Plant-Parasitic Nematodes to Frenzy in Entomopathogenic Nematodes. J. Exp. Bot. 2015, 66, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Oota, M.; Toyoda, S.; Kotake, T.; Wada, N.; Hashiguchi, M.; Akashi, R.; Ishikawa, H.; Favery, B.; Tsai, A.Y.L.; Sawa, S. Rhamnogalacturonan-I as a Nematode Chemoattractant from Lotus corniculatus L. Super-Growing Root Culture. Front. Plant Sci. 2023, 13, 1008725. [Google Scholar] [CrossRef]
- Bell, C.A.; Lilley, C.J.; McCarthy, J.; Atkinson, H.J.; Urwin, P.E. Plant-Parasitic Nematodes Respond to Root Exudate Signals with Host-Specific Gene Expression Patterns. PLoS Pathog. 2019, 15, e1007503. [Google Scholar] [CrossRef] [PubMed]
- Harbach, C.J.; Wlezien, E.; Tylka, G.L. A Mechanistic Approach to Assessing the Potential for Cover Crops to Serve as Trap Crops for the Soybean Cyst Nematode. Plant Dis. 2021, 105, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.L.F.; Nyczepir, A.P.; Rupprecht, S.M.; Mitchell, A.D.; Martin, P.A.W.; Brush, C.W.; Chitwood, D.J.; Vinyard, B.T. Tall Fescue ‘Jesup (Max-Q)’: Meloidogyne Incognita Development in Roots and Nematotoxicity. Agron. J. 2013, 105, 755–763. [Google Scholar] [CrossRef]
- Ali, J.G.; Alborn, H.T.; Stelinski, L.L. Constitutive and Induced Subterranean Plant Volatiles Attract Both Entomopathogenic and Plant Parasitic Nematodes. J. Ecol. 2011, 99, 26–35. [Google Scholar] [CrossRef]
- Ali, J.G.; Alborn, H.T.; Stelinski, L.L. Subterranean Herbivore-Induced Volatiles Released by Citrus Roots Upon Feeding by Diaprepes Abbreviatus Recruit Entomopathogenic Nematodes. J. Chem. Ecol. 2010, 36, 361–368. [Google Scholar] [CrossRef]
- Ngala, B.; Mariette, N.; Ianszen, M.; Dewaegeneire, P.; Denis, M.C.; Porte, C.; Piriou, C.; Robilliard, E.; Couetil, A.; Nguema-Ona, E.; et al. Hatching Induction of Cyst Nematodes in Bare Soils Drenched with Root Exudates under Controlled Conditions. Front. Plant Sci. 2021, 11, 602825. [Google Scholar] [CrossRef]
- Kud, J.; Pillai, S.S.; Raber, G.; Caplan, A.; Kuhl, J.C.; Xiao, F.M.; Dandurand, L.M. Belowground Chemical Interactions: An Insight into Host-Specific Behavior of Globodera spp. Hatched in Root Exudates from Potato and Its Wild Relative, Solanum sisymbriifolium. Front. Plant Sci. 2022, 12, 802622. [Google Scholar] [CrossRef] [PubMed]
- Warnock, N.D.; Wilson, L.; Canet-Perez, J.V.; Fleming, T.; Fleming, C.C.; Maule, A.G.; Dalzell, J.J. Exogenous Rna Interference Exposes Contrasting Roles for Sugar Exudation in Host-Finding by Plant Pathogens. Int. J. Parasit. 2016, 46, 473–477. [Google Scholar] [CrossRef]
- Wang, J.Q.; Mao, J.Y.; Tan, Y.Y.; Lam, S.K.; Guo, Q.L.; Shi, X.Z. Leaf Phenology Rather Than Mycorrhizal Type Regulates Soil Nematode Abundance, but Collectively Affects Nematode Diversity in Seven Common Subtropical Tree Species. For. Ecosyst. 2023, 10, 100103. [Google Scholar] [CrossRef]
- Espada, M.; Filipiak, A.; Li, H.M.; Shinya, R.; Vicente, C.S.L. Editorial: Global Occurrence of Pine Wilt Disease: Biological Interactions and Integrated Management. Front. Plant Sci. 2022, 13, 993482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.J.; Li, J.J.; Huang, Y.M.; Gao, S.; Zhang, J. Root-Soil Facilitation in Mixed Eucalyptus Grandis Plantations Including Nitrogen-Fixing Species. For. Ecol. Manag. 2022, 516, 120215. [Google Scholar] [CrossRef]
- Phillips, R.P.; Finzi, A.C.; Bernhardt, E.S. Enhanced Root Exudation Induces Microbial Feedbacks to N Cycling in a Pine Forest under Long-Term CO2 Fumigation. Ecol. Lett. 2011, 14, 187–194. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The Role of Root Exudates in Rhizosphere Interations with Plants and Other Organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.R.; Kastovska, E.; Borovec, J.; Santruckova, H.; Picek, T. Species Effects and Seasonal Trends on Plant Efflux Quantity and Quality in a Spruce Swamp Forest. Plant Soil. 2018, 426, 179–196. [Google Scholar] [CrossRef]
- Zwetsloot, M.J.; Kessler, A.; Bauerle, T.L. Phenolic Root Exudate and Tissue Compounds Vary Widely among Temperate Forest Tree Species and Have Contrasting Effects on Soil Microbial Respiration. New Phytol. 2018, 218, 530–541. [Google Scholar] [CrossRef]
- Li, M.J.; Song, Z.; Li, Z.B.; Qiao, R.Y.; Zhang, P.D.; Ding, C.J.; Xie, J.B.; Chen, Y.L.; Guo, H. Populus Root Exudates Are Associated with Rhizosphere Microbial Communities and Symbiotic Patterns. Front. Microbiol. 2022, 13, 1042944. [Google Scholar] [CrossRef]
- Zhao, M.L.; Zhao, J.; Yuan, J.; Hale, L.; Wen, T.; Huang, Q.W.; Vivanco, J.M.; Zhou, J.Z.; Kowalchuk, G.A.; Shen, Q.R. Root Exudates Drive Soil-Microbe-Nutrient Feedbacks in Response to Plant Growth. Plant Cell Environ. 2021, 44, 613–628. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, M.Z.; Song, M.N.; Tian, J.; Song, B.Z.; Hu, Y.J.; Zhang, J.; Yao, Y.C. Intercropping with Aromatic Plants Increased the Soil Organic Matter Content and Changed the Microbial Community in a Pear Orchard. Front. Microbiol. 2021, 12, 616932. [Google Scholar] [CrossRef]
- Nakayama, M.; Tateno, R. Solar Radiation Strongly Influences the Quantity of Forest Tree Root Exudates. Trees-Struct. Funct. 2018, 32, 871–879. [Google Scholar] [CrossRef]
- Canarini, A.; Merchant, A.; Dijkstra, F.A. Drought Effects on Helianthus Annuus and Glycine Max Metabolites: From Phloem to Root Exudates. Rhizosphere 2016, 2, 85–97. [Google Scholar] [CrossRef]
- Bobille, H.; Fustec, J.; Robins, R.J.; Cukier, C.; Limami, A.M. Effect of Water Availability on Changes in Root Amino Acids and Associated Rhizosphere on Root Exudation of Amino Acids in Pisum sativum L. Phytochemistry 2019, 161, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Fu, Y.L.; Zhou, L.Y.; He, Y.H.; Zhou, G.Y.; Dietrich, P.; Long, J.L.; Wang, X.X.; Jia, S.X.; Ji, Y.H.; et al. Plant Growth Strategy Determines the Magnitude and Direction of Drought-Induced Changes in Root Exudates in Subtropical Forests. Glob. Change Biol. 2023, 29, 3476–3488. [Google Scholar] [CrossRef]
- Brunn, M.; Hafner, B.D.; Zwetsloot, M.J.; Weikl, F.; Pritsch, K.; Hikino, K.; Ruehr, N.K.; Sayer, E.J.; Bauerle, T.L. Carbon Allocation to Root Exudates Is Maintained in Mature Temperate Tree Species under Drought. New Phytol. 2022, 235, 965–977. [Google Scholar] [CrossRef]
- Du, Z.Y.; Xing, S.J.; Ma, B.Y.; Liu, F.C.; Ma, H.L.; Wang, Q.H. Effects of Root Pruning on the Growth and Rhizosphere Soil Characteristics of Short-Rotation Closed-Canopy Poplar. For. Syst. 2012, 21, 236–246. [Google Scholar] [CrossRef]
- Jing, D.W.; Liu, F.C.; Wang, M.Y.; Ma, H.L.; Du, Z.Y.; Ma, B.Y.; Dong, Y.F. Effects of Root Pruning on the Physicochemical Properties and Microbial Activities of Poplar Rhizosphere Soil. PLoS ONE 2017, 12, e0187685. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Parton, W.J.; Gonzalez-Meler, M.A.; Phillips, R.; Asao, S.; McNickle, G.G.; Brzostek, E.; Jastrow, J.D. Synthesis and Modeling Perspectives of Rhizosphere Priming. New Phytol. 2014, 201, 31–44. [Google Scholar] [CrossRef] [PubMed]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.L.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining Fine Roots Improves Understanding of Below-Ground Contributions to Terrestrial Biosphere Processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef]
- Wang, P.; Snijders, R.; Kohlen, W.; Liu, J.Y.; Bisseling, T.; Limpens, E. Medicago Spx1 and Spx3 Regulate Phosphate Homeostasis, Mycorrhizal Colonization, and Arbuscule Degradation. Plant Cell 2021, 33, 3470–3486. [Google Scholar] [CrossRef] [PubMed]
- Sanon, A.; Andrianjaka, Z.N.; Prin, Y.; Bally, R.; Thioulouse, J.; Comte, G.; Duponnois, R. Rhizosphere Microbiota Interfers with Plant-Plant Interactions. Plant Soil 2009, 321, 259–278. [Google Scholar] [CrossRef]
- de Vries, F.T.; Williams, A.; Stringer, F.; Willcocks, R.; McEwing, R.; Langridge, H.; Straathof, A.L. Changes in Root-Exudate-Induced Respiration Reveal a Novel Mechanism through Which Drought Affects Ecosystem Carbon Cycling. New Phytol. 2019, 224, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Liu, X.Y.; Vinci, G.; Spaccini, R.; Drososa, M.; Li, L.Q.; Piccolo, A.; Pan, G.X. Molecular Changes of Soil Organic Matter Induced by Root Exudates in a Rice Paddy under CO2 Enrichment and Warming of Canopy Air. Soil Biol. Biochem. 2019, 137, 107544. [Google Scholar] [CrossRef]
- Wang, W.Y.; Jia, T.H.; Qi, T.Y.; Li, S.S.; Degen, A.A.; Han, J.; Bai, Y.F.; Zhang, T.; Qi, S.; Huang, M.; et al. Root Exudates Enhanced Rhizobacteria Complexity and Microbial Carbon Metabolism of Toxic Plants. iScience 2022, 25, 105243. [Google Scholar] [CrossRef]
- Warren, C.R. Simultaneous Efflux and Uptake of Metabolites by Roots of Wheat. Plant Soil 2016, 406, 359–374. [Google Scholar] [CrossRef]
- Sandnes, A.; Eldhuset, T.D.; Wollebaek, G. Organic Acids in Root Exudates and Soil Solution of Norway Spruce and Silver Birch. Soil. Biol. Biochem. 2005, 37, 259–269. [Google Scholar] [CrossRef]
- Williams, A.; Langridge, H.; Straathof, A.L.; Fox, G.; Muhammadali, H.; Hollywood, K.A.; Xu, Y.; Goodacre, R.; de Vries, F.T. Comparing Root Exudate Collection Techniques: An Improved Hybrid Method. Soil. Biol. Biochem. 2021, 161, 108391. [Google Scholar] [CrossRef]
- Jaitz, L.; Mueller, B.; Koellensperger, G.; Huber, D.; Oburger, E.; Puschenreiter, M.; Hann, S. Lc-Ms Analysis of Low Molecular Weight Organic Acids Derived from Root Exudation. Anal. Bioanal. Chem. 2011, 400, 2587–2596. [Google Scholar] [CrossRef]
- Hertenberger, G.; Wanek, W. Evaluation of Methods to Measure Differential N-15 Labeling of Soil and Root N Pools for Studies of Root Exudation. Rapid Commun. Mass. Spectrom. 2004, 18, 2415–2425. [Google Scholar] [CrossRef]
- Vives-Peris, V.; Gomez-Cadenas, A.; Perez-Clemente, R.M. Citrus Plants Exude Proline and Phytohormones under Abiotic Stress Conditions. Plant Cell Rep. 2017, 36, 1971–1984. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ding, T.-X.; van der Ent, A.; Liu, C.; Morel, J.L.; Sirguey, C.; Liu, W.-S.; Tang, Y.-T.; Qiu, R.-L. A Novel Method for in Situ Imaging of Root Exudates and Labile Elements Reveals Phosphorus Deficiency-Induced Mobilization of Rare Earth Elements in the Rhizosphere of Phytolacca americana. Plant Soil 2024, 495, 13–26. [Google Scholar] [CrossRef]
- Oburger, E.; Gruber, B.; Schindlegger, Y.; Schenkeveld, W.D.C.; Hann, S.; Kraemer, S.M.; Wenzel, W.W.; Puschenreiter, M. Root Exudation of Phytosiderophores from Soil-Grown Wheat. New Phytol. 2014, 203, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Strehmel, N.; Bottcher, C.; Schmidt, S.; Scheel, D. Profiling of Secondary Metabolites in Root Exudates of Arabidopsis thaliana. Phytochemistry 2014, 108, 35–46. [Google Scholar] [CrossRef]
- Li, X.; Dong, J.L.; Chu, W.Y.; Chen, Y.J.; Duan, Z.Q. The Relationship between Root Exudation Properties and Root Morphological Traits of Cucumber Grown under Different Nitrogen Supplies and Atmospheric CO2 Concentrations. Plant Soil. 2018, 425, 415–432. [Google Scholar] [CrossRef]
- Xia, B.; Zhou, Y.; Liu, X.; Xiao, J.; Liu, Q.; Gu, Y.C.; Ding, L.S. Use of Electrospray Ionization Ion-Trap Tandem Mass Spectrometry and Principal Component Analysis to Directly Distinguish Monosaccharides. Rapid Commun. Mass. Spectrom. 2012, 26, 1259–1264. [Google Scholar] [CrossRef]
- Maver, M.; Trevisan, F.; Miras-Moreno, B.; Lucini, L.; Trevisan, M.; Cesco, S.; Mimmo, T. The Interplay between Nitrogenated Allelochemicals, Mineral Nutrition and Metabolic Profile in Barley Roots. Plant Soil. 2022, 479, 715–730. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.; Wang, N. A Capillary Based In-Situ Sampling and Microextraction Device for Soil Allelochemicals. CN Patent 109342111A, 15 February 2019. [Google Scholar]
- Akbar, L.; Castillo, V.C.G.; Olorocisimo, J.P.; Ohta, Y.; Kawahara, M.; Takehara, H.; Haruta, M.; Tashiro, H.; Sasagawa, K.; Ohsawa, M.; et al. Multi-Region Microdialysis Imaging Platform Revealed Dorsal Raphe Nucleus Calcium Signaling and Serotonin Dynamics During Nociceptive Pain. Int. J. Mol. Sci. 2023, 24, 6654. [Google Scholar] [CrossRef]
- Schulze, S.; Neuber, C.; Moller, S.; Pietzsch, J.; Schaser, K.D.; Rammelt, S. Microdialysis Reveals Anti-Inflammatory Effects of Sulfated Glycosaminoglycanes in the Early Phase of Bone Healing. Int. J. Mol. Sci. 2023, 24, 2077. [Google Scholar] [CrossRef]
- Inselsbacher, E.; Ohlund, J.; Jamtgard, S.; Huss-Danell, K.; Nasholm, T. The Potential of Microdialysis to Monitor Organic and Inorganic Nitrogen Compounds in Soil. Soil. Biol. Biochem. 2011, 43, 1321–1332. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H. Use of Microdialysis to Assess Short-Term Soil Soluble N Dynamics with Biochar Additions. Soil Biol. Biochem. 2019, 136, 107512. [Google Scholar] [CrossRef]
- Qiao, B.; Li, C.Y.; Liang, C.Y.; Li, X.; Tian, M.F.; Li, Q.Q.; Zhao, C.J.; Fu, Y.J. Determination of Phenolic Acids in Rehmannia Glutinosa Rhizosphere Using a New Method of Microdialysis-Hplc. S. Afr. J. Bot. 2022, 148, 387–395. [Google Scholar] [CrossRef]
- Qiao, B.; Nie, S.; Li, Q.; Majeed, Z.; Cheng, J.; Yuan, Z.; Li, C.; Zhao, C. Quick and in Situ Detection of Different Polar Allelochemicals in Taxus Soil by Microdialysis Combined with Uplc-Ms/Ms. J. Agric. Food Chem. 2022, 70, 16435–16445. [Google Scholar] [CrossRef]
Species | Number of Compounds | Sum of Relative Compound Abundances (10−3 AU2 g−1 root) | Catechin Concentration (μg/g root) |
---|---|---|---|
Acer saccharum | 6.6 ± 0.7 b | 2.1 ± 0.5 c | 19.19 ± 5.72 b |
Alnus rugosa | 28.9 ± 1.6 a | 9.3 ± 2.8 b | 4.06 ± 1.24 c |
Fagus grandifolia | 2.9 ± 0.4 c | 0.8 ± 0.2 c | 2.60 ± 2.39 c |
Picea abies | 20.0 ± 2.0 a | 7.6 ± 1.1 b | 23.54 ± 5.15 b |
Pinus strobus | 26.8 ± 1.5 a | 28.6 ± 3.2 a | 116.06 ± 15.65 a |
Quercus rubra | 4.12 ± 0.5 bc | 0.2 ± 0.0 d | 1.00 ± 0.53 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Li, Q.; Qiao, B.; Jia, K.; Li, C.; Zhao, C. Advances in Plant–Soil Feedback Driven by Root Exudates in Forest Ecosystems. Forests 2024, 15, 515. https://doi.org/10.3390/f15030515
Sun W, Li Q, Qiao B, Jia K, Li C, Zhao C. Advances in Plant–Soil Feedback Driven by Root Exudates in Forest Ecosystems. Forests. 2024; 15(3):515. https://doi.org/10.3390/f15030515
Chicago/Turabian StyleSun, Wenxue, Qianqian Li, Bin Qiao, Kaitao Jia, Chunying Li, and Chunjian Zhao. 2024. "Advances in Plant–Soil Feedback Driven by Root Exudates in Forest Ecosystems" Forests 15, no. 3: 515. https://doi.org/10.3390/f15030515