Previous Issue
Volume 15, April
 
 

Forests, Volume 15, Issue 5 (May 2024) – 77 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 5133 KiB  
Article
Qualitative Changes in Birch Sap after Freezing and Thawing
by Justas Mingaila, Vladas Vilimas, Pranas Viškelis, Vitas Marozas, Česlovas Bobinas and Jonas Viškelis
Forests 2024, 15(5), 809; https://doi.org/10.3390/f15050809 - 03 May 2024
Viewed by 132
Abstract
In this study, the qualitative changes in raw birch sap after freezing and thawing were determined. Ten-liter bottles and one-ton plastic containers with six replications were used for the freezing of birch sap and thawing of frozen sap. During and after the thawing, [...] Read more.
In this study, the qualitative changes in raw birch sap after freezing and thawing were determined. Ten-liter bottles and one-ton plastic containers with six replications were used for the freezing of birch sap and thawing of frozen sap. During and after the thawing, the physical and physical–chemical properties of the sap were measured. According to the results, as the ice melts, the concentration of acids and other soluble substances in the sap decreases, but changes in qualitative indicators indicate the beginning of fermentation processes through color changes and pH as the temperature of the melting sap becomes positive. As a result, to freeze raw sap in large-volume containers, it is necessary to develop fast thawing technology using auxiliary means—circulation, external energy sources, and mechanical ice crushing. Full article
(This article belongs to the Special Issue Non-timber Forest Products: Beyond the Wood)
Show Figures

Figure 1

10 pages, 2135 KiB  
Article
Pre-Commercial Thinning Increases Tree Size and Reduces Western Gall Rust Infections in Lodgepole Pine
by Francis Scaria and Bradley D. Pinno
Forests 2024, 15(5), 808; https://doi.org/10.3390/f15050808 - 03 May 2024
Viewed by 130
Abstract
Alberta’s forest industry is predicted to be impacted by a medium-term decline in timber supply. Intensive silviculture tools, such as pre-commercial thinning, have been shown to increase individual tree growth, shorten rotation lengths, and improve stand merchantability in important commercial species such as [...] Read more.
Alberta’s forest industry is predicted to be impacted by a medium-term decline in timber supply. Intensive silviculture tools, such as pre-commercial thinning, have been shown to increase individual tree growth, shorten rotation lengths, and improve stand merchantability in important commercial species such as lodgepole pine. However, lodgepole pine stands are susceptible to western gall rust infections, and thinning at an early stage may increase infection rates. This study collected tree and stand level data from 33 operational harvest origin lodgepole pine stands consisting of 11 stands thinned at age 17–19 years (PCT_18), 11 stands thinned at age 23–25 (PCT_24), and 11 unthinned stands. Approximately 40 years after pre-commercial thinning, merchantable volume is similar in all stands but thinned stands, regardless of timing, had greater individual tree size (~15% higher) compared to unthinned stands. Pre-commercially thinned stands also had a higher potential for commercial thinning since they have lower variability in tree size and longer live crown lengths. In addition, delayed thinning (PCT_24) reduced western gall rust infections and the severity of infections compared to both PCT_18 and unthinned stands. In conclusion, pre-commercial thinning should be considered for lodgepole pine stands in order to address timber supply issues in Alberta. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 2923 KiB  
Article
Nutrient Contribution and Carbon Sequestration of an Agroforestry System of Coffea canephora Cultivated by Conventional and Organic Management in the Ecuadorian Amazon
by Leider Tinoco-Jaramillo, Yadira Vargas-Tierras, Fernando Paredes-Arcos, William Viera, Alfonso Suárez-Tapia, Tannia Vargas-Tierras, Sandra Suárez-Cedillo, Vanessa Morales-León and Wilson Vásquez-Castillo
Forests 2024, 15(5), 807; https://doi.org/10.3390/f15050807 - 03 May 2024
Viewed by 191
Abstract
Agroforestry systems (AFSs) seek synergies that improve productivity, sustainability, and environmental benefits. This is achieved through the supplying of nutrients to the soil, carbon storage, and sequestration. In the Ecuadorian Amazon, Coffea canephora is planted together with leguminous, woody, forest, and secondary forest [...] Read more.
Agroforestry systems (AFSs) seek synergies that improve productivity, sustainability, and environmental benefits. This is achieved through the supplying of nutrients to the soil, carbon storage, and sequestration. In the Ecuadorian Amazon, Coffea canephora is planted together with leguminous, woody, forest, and secondary forest species, where the continuous incorporation of vegetative residues from shade species represents a substantial addition of nutrients within these systems. This study was carried out from 2018 to 2022 to determine the contribution of nutrients contained in the biomass and C sequestration in agroforestry systems of coffee with conventional (high use of agrochemicals) and organic (without the use of chemicals) management. The study was carried out with a randomized complete block design, using a factorial arrangement (2 × 4 with three replications). This arrangement included two types of systems (agroforestry and monoculture) and four agronomic management practices (high and medium for conventional, and intensive and low organic). The biomass and nutrient content were measured twice a year (every 180 days); in addition, the yield was also recorded. A multivariate and univariate analysis was used for data analysis through R and SAS software. After five years of evaluation, it was determined that the N, K, Ca, and Mg contents were higher in the agroforestry systems than the monocultures. In the AFSs, the highest nutrient content was obtained with the medium conventional and low organic agronomic management, while in the monocultures, it was obtained with the high and medium conventional management. In addition, at a soil depth of 20 cm, the total storage and CO2 were 38.12 and 139.8 t ha−1, respectively. The highest yields were obtained with conventional management in AFSs (1599 kg ha−1) and monoculture (1789.45 kg ha−1). Overall, AFSs showed a significant contribution of nutrients, such as N, K, Ca, and Mg, for coffee cultivation; moreover, yields were similar in the AFS and monoculture with both conventional and organic management, which is positive, since AFSs also contribute environmental benefits. Full article
(This article belongs to the Special Issue Planted Forests: A Path towards Sustainable Development)
Show Figures

Figure 1

13 pages, 3995 KiB  
Article
Root Respiration–Trait Relationships Are Influenced by Leaf Habit in Tropical Plants
by Danting Deng, Yanfei Sun and Meiqiu Yang
Forests 2024, 15(5), 806; https://doi.org/10.3390/f15050806 - 02 May 2024
Viewed by 259
Abstract
Root respiration is a critical physiological trait that significantly influences root system activity. Recent studies have associated root respiration with the economic functioning of roots; however, research on root respiration in tropical plants remains limited. This study examined the fine root respiration and [...] Read more.
Root respiration is a critical physiological trait that significantly influences root system activity. Recent studies have associated root respiration with the economic functioning of roots; however, research on root respiration in tropical plants remains limited. This study examined the fine root respiration and the relationship between root respiration and root chemical and morphological traits in 16 tropical plant species, including both evergreen and deciduous species. Findings revealed that deciduous species exhibited higher root respiration compared to evergreen species. Root respiration positively correlated with root nitrogen concentration and specific root length and correlated negatively with root diameter and root tissue density across all species. The root respiration patterns in evergreen species aligned with those seen in all tree species, while deciduous species showed a distinct negative correlation with root tissue density and no significant correlations with other root traits. Principal component analysis revealed that the patterns of root variation in both evergreen and deciduous trees were multidimensional, with deciduous trees exhibiting acquisitive traits and evergreen trees displaying conservative traits. Random forest and multiple regression analysis showed that specific root length exerted the most significant influence on root respiration in both evergreen and deciduous trees. These findings are ecologically significant, enhancing our understanding of root respiration in tropical plants and its impact on ecosystem functions. They contribute valuable insights and support the conservation and management of tropical vegetation. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

11 pages, 2474 KiB  
Article
First Report of Fusarium vanettenii Causing Fuarium Root Rot in Fatsia japonica in China
by Xiaoqiao Xu, Tingting Dai and Cuiping Wu
Forests 2024, 15(5), 805; https://doi.org/10.3390/f15050805 - 02 May 2024
Viewed by 249
Abstract
Fatsia japonica plays an important role as a commonly used plant in urban landscaping. From 2022 to 2023, a root rot infestation was observed that caused extensive wilting of Fatsia japonica without leaf shedding and eventual death of the plant, severely reducing the [...] Read more.
Fatsia japonica plays an important role as a commonly used plant in urban landscaping. From 2022 to 2023, a root rot infestation was observed that caused extensive wilting of Fatsia japonica without leaf shedding and eventual death of the plant, severely reducing the ornamental qualities of the plant as well as the vigor of its growth. Fusarium species were isolated from the roots of the affected plants, exhibiting abundant and dense yellow mycelial colonies that proliferated radially from the center of the Petri dishes. Morphological examinations revealed the presence of falciform macro- and microconidia consistent with Fusarium, as well as chlamydospores characterized by their thick walls. For further identification, the amplification and sequencing of the ITS, TEF1 alpha, and RPB2 alpha genes were performed. Finally, healthy Fatsia japonica plants were inoculated with a spore suspension of the pathogen, to confirm that the disease symptoms were compatible with naturally occurring infection. Fusarium vanettenii was identified as the causative agent of Fatsia japonica root rot. To the best of our knowledge, this is the first report of F. vanettenii causing root rot of Fatsia japonica in China. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

16 pages, 8621 KiB  
Article
Extracting the DBH of Moso Bamboo Forests Using LiDAR: Parameter Optimization and Accuracy Evaluation
by Longwei Li, Linjia Wei, Nan Li, Shijun Zhang, Zhicheng Wu, Miaofei Dong and Yuyun Chen
Forests 2024, 15(5), 804; https://doi.org/10.3390/f15050804 - 02 May 2024
Viewed by 252
Abstract
The accurate determination of the Diameter at Breast Height (DBH) of Moso bamboo is crucial for estimating biomass and carbon storage in Moso bamboo forests. In this research, we utilized handheld LiDAR point cloud data to extract the DBH of Moso bamboo and [...] Read more.
The accurate determination of the Diameter at Breast Height (DBH) of Moso bamboo is crucial for estimating biomass and carbon storage in Moso bamboo forests. In this research, we utilized handheld LiDAR point cloud data to extract the DBH of Moso bamboo and enhanced the accuracy of diameter fitting by optimizing denoising parameters. Specifically, we fine-tuned two denoising parameters, neighborhood point number and standard deviation multiplier, across five gradient levels for denoising. Subsequently, DBH fitting was conducted on data processed with varying denoising parameters, followed by a precision evaluation to investigate the key factors influencing the accuracy of Moso bamboo DBH fitting. The research results indicate that a handheld laser was used to scan six plots, from which 132 single Moso bamboo trees were selected. Out of these, 122 single trees were successfully segmented and identified, achieving an accuracy rate of 92.4% in identifying single Moso bamboo trees, with an average accuracy of 95.64% in extracting DBH for individual plants; the mean error was ±1.8 cm. Notably, setting the minimum neighborhood point to 10 resulted in the highest fitting accuracy for DBH. Moreover, the optimal standard deviation multiplier threshold was found to be 1 in high-density forest plots and 2 in low-density forest plots. Forest condition and slope were identified as the primary factors impacting the accuracy of Moso bamboo DBH fitting. Full article
(This article belongs to the Special Issue LiDAR Remote Sensing for Forestry)
Show Figures

Figure 1

25 pages, 2346 KiB  
Article
The Significance of Tree Height as a Predictor of Tree Mortality during Bark Beetle Outbreaks in a Small Catchment
by Susanne I. Schmidt, Hana Fluksová, Stanislav Grill and Jiří Kopáček
Forests 2024, 15(5), 803; https://doi.org/10.3390/f15050803 - 30 Apr 2024
Viewed by 309
Abstract
Bark beetle outbreaks damage forests and kill trees worldwide, but many aspects of their dynamics remain unexplained. Our aim was to identify predictors for individual tree deaths within the small (0.7 km2) Plešné Lake catchment in the Šumava National Park in [...] Read more.
Bark beetle outbreaks damage forests and kill trees worldwide, but many aspects of their dynamics remain unexplained. Our aim was to identify predictors for individual tree deaths within the small (0.7 km2) Plešné Lake catchment in the Šumava National Park in southwestern Czechia. Within this area, >60,000 trees were geo-referenced and categorized from ten aerial images (20 cm spatial resolution) between 2000 and 2015. For each year for which aerial images were available, we calculated tree densities of different categories and diameters. Tree height was evaluated by means of LiDAR in two terrestrial campaigns (2010 and 2011). A machine learning technique was then used to evaluate the most important variables. The resulting relationships were largely nonlinear and differed among years; however, individual trait tree height proved to be the most influential variable in each year. Higher trees were more likely to have died during either the undisturbed phase (2000 and 2003), the disturbed phase (2005–2011), or the recovery phase (2013). Our results indicate that salvage logging may not be the most effective measure for protecting trees in small catchments. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
16 pages, 1027 KiB  
Article
Physical and Mechanical Properties of Fiberboard Made of MDF Residues and Phase Change Materials
by Gustavo E. Rodríguez, Cecilia Bustos Ávila and Alain Cloutier
Forests 2024, 15(5), 802; https://doi.org/10.3390/f15050802 - 30 Apr 2024
Viewed by 293
Abstract
The wood-based panel industry is experiencing an excessive accumulation of solid residues from the production of medium-density fiberboard (MDF) panels and moldings. It is possible to create new MDF products with acceptable physical and mechanical properties by revaluing MDF residues. Additionally, those products’ [...] Read more.
The wood-based panel industry is experiencing an excessive accumulation of solid residues from the production of medium-density fiberboard (MDF) panels and moldings. It is possible to create new MDF products with acceptable physical and mechanical properties by revaluing MDF residues. Additionally, those products’ thermal properties can be improved by incorporating phase change materials (PCMs). This study aims to develop a wood-based fiberboard made of MDF residues, capable of storing thermal energy. Two types of PCMs (liquid and microencapsulated), two PCM ratios (2% and 6%), and two types of adhesives (urea-formaldehyde and phenol-formaldehyde) were used to produce eight different types of panels. The vertical density profile, thickness swelling, water absorption, internal bond (IB), and static bending properties—modulus of elasticity (MOE) and modulus of rupture (MOR)—were determined for each panel type. The specific heat of the panels was also determined. The results show the panels’ densities were greater than 700 kg/m3. Thickness swelling in water improved by 23% compared to the reference value of the control panel PCMs after PCM incorporation. The highest IB value was 1.30 MPa, which is almost three times the minimum required by regulation standards. The incorporation of PCMs reduced the panels’ bending properties compared to the properties of the control panels. Even though the values obtained are sufficient to comply with the minimum values set out in ANSI standard A208.2 with an MOE value of 2072.4 MPa and the values obtained are sufficient to comply with the minimum standards with an MOE value of 2072.4 MPa and an MOR value of 16.4 MPa, when microencapsulated PCM is used, the specific heat of the panels is increased by more than 100% over that of the control panels. This study developed fiberboards with adequate physical and mechanical properties and capable of storing thermal energy. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
23 pages, 1885 KiB  
Article
Temporal Dynamics of Canopy Properties and Carbon and Water Fluxes in a Temperate Evergreen Angiosperm Forest
by Alexandre A. Renchon, Vanessa Haverd, Cathy M. Trudinger, Belinda E. Medlyn, Anne Griebel, Daniel Metzen, Jürgen Knauer, Matthias M. Boer and Elise Pendall
Forests 2024, 15(5), 801; https://doi.org/10.3390/f15050801 - 30 Apr 2024
Viewed by 315
Abstract
The forest–atmosphere exchange of carbon and water is regulated by meteorological conditions as well as canopy properties such as leaf area index (LAI, m2 m−2), photosynthetic capacity (PC μmol m−2 s−1), or surface conductance in optimal conditions [...] Read more.
The forest–atmosphere exchange of carbon and water is regulated by meteorological conditions as well as canopy properties such as leaf area index (LAI, m2 m−2), photosynthetic capacity (PC μmol m−2 s−1), or surface conductance in optimal conditions (Gs, opt, mmol m−2 s−1), which can vary seasonally and inter-annually. This variability is well understood for deciduous species but is poorly characterized in evergreen forests. Here, we quantify the seasonal dynamics of a temperate evergreen eucalypt forest with estimates of LAI, litterfall, carbon and water fluxes, and meteorological conditions from measurements and model simulations. We merged MODIS Enhanced Vegetation Index (EVI) values with site-based LAI measurements to establish a 17-year sequence of monthly LAI. We ran the Community Atmosphere Biosphere Land Exchange model (CABLE-POP (version r5046)) with constant and varying LAI for our site to quantify the influence of seasonal canopy dynamics on carbon and water fluxes. We observed that the peak of LAI occurred in late summer–early autumn, with a higher and earlier peak occurring in years when summer rainfall was greater. Seasonality in litterfall and allocation of net primary productivity (FNPP) to leaf growth (af, 0–1) drove this pattern, suggesting a complete renewal of the canopy before the timing of peak LAI. Litterfall peaked in spring, followed by a high af in summer, at the end of which LAI peaked, and PC and Gs,opt reached their maximum values in autumn, resulting from a combination of high LAI and efficient mature leaves. These canopy dynamics helped explain observations of maximum gross ecosystem production (FGEP) in spring and autumn and net ecosystem carbon loss in summer at our site. Inter-annual variability in LAI was positively correlated with Net Ecosystem Production (FNEP). It would be valuable to apply a similar approach to other temperate evergreen forests to identify broad patterns of seasonality in leaf growth and turnover. Because incorporating dynamic LAI was insufficient to fully capture the dynamics of FGEP, observations of seasonal variation in photosynthetic capacity, such as from solar-induced fluorescence, should be incorporated in land surface models to improve ecosystem flux estimates in evergreen forests. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
15 pages, 28178 KiB  
Article
Forecasting Dendrolimus sibiricus Outbreaks: Data Analysis and Genetic Programming-Based Predictive Modeling
by Ivan Malashin, Igor Masich, Vadim Tynchenko, Vladimir Nelyub, Aleksei Borodulin, Andrei Gantimurov, Guzel Shkaberina and Natalya Rezova
Forests 2024, 15(5), 800; https://doi.org/10.3390/f15050800 - 30 Apr 2024
Viewed by 269
Abstract
This study presents an approach to forecast outbreaks of Dendrolimus sibiricus, a significant pest affecting taiga ecosystems. Leveraging comprehensive datasets encompassing climatic variables and forest attributes from 15,000 taiga parcels in the Krasnoyarsk Krai region, we employ genetic programming-based predictive modeling. Our [...] Read more.
This study presents an approach to forecast outbreaks of Dendrolimus sibiricus, a significant pest affecting taiga ecosystems. Leveraging comprehensive datasets encompassing climatic variables and forest attributes from 15,000 taiga parcels in the Krasnoyarsk Krai region, we employ genetic programming-based predictive modeling. Our methodology utilizes Random Forest algorithm to develop robust forecasting model through integrated data analysis techniques. By optimizing hyperparameters within the predictive model, we achieved heightened accuracy, reaching a maximum precision of 0.9941 in forecasting pest outbreaks up to one year in advance. Full article
(This article belongs to the Special Issue Machine Learning and Big Data Analytics in Forestry)
15 pages, 1087 KiB  
Article
Incredible Host Diversity and Regional Potential Distribution of an Oriental Parasitic Plant (Taxillus yadoriki)
by Cheolho Lee, Byoungki Choi, Eunha Park and Eunyoung Yim
Forests 2024, 15(5), 799; https://doi.org/10.3390/f15050799 - 30 Apr 2024
Viewed by 210
Abstract
This study investigates the host diversity and characteristics of the rare parasitic plant Silverberry-like taxillus (Taxillus yadoriki). Seogwipo, Jeju Island, where T. yadoriki grows naturally, was examined to clarify the diversity of host species, their location, and the part of the [...] Read more.
This study investigates the host diversity and characteristics of the rare parasitic plant Silverberry-like taxillus (Taxillus yadoriki). Seogwipo, Jeju Island, where T. yadoriki grows naturally, was examined to clarify the diversity of host species, their location, and the part of the tree where T. yadoriki is attached. A total of 687 host trees were found. Taxillus yadoriki was intensively distributed in the lowlands below 200 m a.s.l. The host trees belonged to 40 species, four varieties, three cultivars, and two hybrids from 32 genera and 21 families, of which 23 taxa were identified as host plants for the first time in this study. Incredibly, this plant was found to be able to parasitize a variety of plants from 12 orders. Taxillus yadoriki was found to be parasitic in three orders of Gymnosperms, Ginkgoales, Cupressales, and Pinales, as well as nine orders of Angiosperms, including Magnoliales, Rosales, and Ericales. Rosaceae was the most diverse at 18.0%, and most species were broad-leaved and arboreal. Among them, Cryptomeria japonica and Litsea japonica had the highest frequency of parasitization and T. yadoriki was mainly attached to the upper part of the main tree and the main branch; as a result, T. yadoriki was distributed and showed specificity in the position of disturbance on the host. T. yadoriki’s specific distribution model was built as a Maxent program. The area under the curve of the receiver operation characteristic was 0.948 ± 0.026 (mean ± standard deviation), and the performance of the constructed model was excellent. Of the total eight environmental factors, density of artistic forest and meant temperature of coldest quarter accounted for 75.3% of the total importance, which was the main distribution determinant of species. In the average distribution probability map of T. yadoriki, the critical probability for determining distribution was calculated to be 0.2898 ± 0.1018. Accordingly, the distribution of species is predicted to expand from Jeju Island to the entire southern and southeastern coasts. Full article
(This article belongs to the Section Forest Biodiversity)
15 pages, 789 KiB  
Article
Time Composition, Efficiency, Workload, and Noise Exposure during Tree Felling and Processing with Petrol and Battery-Powered Chainsaws in Mixed High Forest Stands
by Anton Poje, Benjamin Lipužič, Ivan Bilobrk and Zdravko Pandur
Forests 2024, 15(5), 798; https://doi.org/10.3390/f15050798 - 30 Apr 2024
Viewed by 158
Abstract
This study presents the effects of using a battery-powered chainsaw on work efficiency and ergonomics under real conditions during timber harvesting. The study was conducted during the felling and processing of coniferous and deciduous trees with a diameter at breast height (DBH) of [...] Read more.
This study presents the effects of using a battery-powered chainsaw on work efficiency and ergonomics under real conditions during timber harvesting. The study was conducted during the felling and processing of coniferous and deciduous trees with a diameter at breast height (DBH) of 13 cm to 78 cm using both a petrol-powered and battery-powered chainsaw. The results include comparisons of time composition, work efficiency, psychophysical workload, and noise exposure. Heart rate and noise exposure were measured over ten days as part of a time study using the Husqvarna 543 XP petrol-powered chainsaw and the Husqvarna 540i HP battery-powered chainsaw. The comparison of the time composition between the chainsaws used showed 3%–4% differences in the duration of productive time operations and 16% in service time. The difference in work efficiency during the productive time between the two chainsaws was statistically insignificant, but generally higher when working with the battery-powered chainsaw than with the petrol-powered chainsaw. During the main productive time, the work efficiency was 9.89 min/t for the petrol-powered chainsaw and 9.44 min/t for the battery-powered chainsaw. The psychophysical workload of the feller was lower when using the battery-powered chainsaw than when using the petrol-powered chainsaw as the relative working heart rates during the entire productive time was 32.5% for the battery-powered chainsaw and 35.0% for the petrol-powered chainsaw. The noise exposure of the workers was lower when using a battery-powered chainsaw, namely 6.0 dB(A) and 0.4 dB(C) compared to the use of a petrol-powered chainsaw. The results of this paper indicate that battery-powered chainsaws can compete with petrol chainsaws in harvesting conditions that are currently considered unsuitable due to the large volume of trees. Full article
(This article belongs to the Special Issue Addressing Forest Ergonomics Issues: Laborers and Working Conditions)
17 pages, 801 KiB  
Article
The Influence of Forest Litter Characteristics on Bacterial and Fungal Community Diversity in the Picea crassifolia Ecosystem on the Qinghai–Tibet Plateau
by Yahui Chen, Haijia Li, Shiyang Zhang, Min Zhang, Hui Pan, Fangwei Zhou and Lei Wang
Forests 2024, 15(5), 797; https://doi.org/10.3390/f15050797 - 30 Apr 2024
Viewed by 177
Abstract
The biodiversity and activity of microorganisms are crucial for litter decomposition, but how litter traits at different stages of decomposition drive changes in microbial communities has yet to be thoroughly explored. In the typical alpine hilly area of the Qinghai–Tibet Plateau, three types [...] Read more.
The biodiversity and activity of microorganisms are crucial for litter decomposition, but how litter traits at different stages of decomposition drive changes in microbial communities has yet to be thoroughly explored. In the typical alpine hilly area of the Qinghai–Tibet Plateau, three types of litter at different decomposition stages were selected under a natural Picea crassifolia (Picea crassifolia Kom.) forest: undecomposed (A-1), partially decomposed (A-2), and fully decomposed (A-3). By measuring physicochemical indicators, microbial diversity, and the composition of the litter at different decomposition stages, this study investigates the community changes and responses of bacteria to litter characteristic changes at different decomposition levels. The results show that with the increase in decomposition level, bacterial diversity increases, community structure changes, and network complexity gradually increases, while the changes in fungal communities are insignificant. Structural equation modeling indicates that the first principal component (PC1) of litter properties is significantly negatively correlated with bacterial diversity and positively correlated with bacterial community composition. There is no significant correlation between fungal diversity and community composition, indicating a closer relationship between bacteria and litter characteristics than fungi. In summary, with an increase in litter decomposition level, the diversity and network complexity of bacterial and fungal communities will significantly increase, which is related to the changes in various litter characteristics. This study provides a scientific basis for the regulatory mechanism of litter decomposition and turnover in the alpine hilly area of the Qinghai–Tibet Plateau, specifically in Picea crassifolia forests. Full article
(This article belongs to the Section Forest Soil)
18 pages, 1081 KiB  
Article
Exploring the Relationship between the Sentiments of Young People and Urban Green Space by Using a Check-In Microblog
by Jing Zhang, Liwen Liu, Jianwu Wang, Dubing Dong, Ting Jiang, Jian Chen and Yuan Ren
Forests 2024, 15(5), 796; https://doi.org/10.3390/f15050796 - 30 Apr 2024
Viewed by 172
Abstract
Green spaces have a positive impact on the mood of urban residents. However, previous studies have focused primarily on parks or residential areas, neglecting the influence of green spaces in different socioeconomic locations on public sentiment. This oversight fails to acknowledge that most [...] Read more.
Green spaces have a positive impact on the mood of urban residents. However, previous studies have focused primarily on parks or residential areas, neglecting the influence of green spaces in different socioeconomic locations on public sentiment. This oversight fails to acknowledge that most young individuals are exposed to places beyond their homes and parks throughout the day. Using web crawlers, we collected 105,214 Sina Weibo posts from 14,651 geographical check-in points in Hangzhou, Zhejiang Province. We developed a mixed ordered logistic regression model to quantify the relationship between public sentiment (negative/neutral/positive) and the surrounding green space. The findings are as follows: (1) the correlation between GVI and public sentiment is stronger than that between public sentiment and NDVI; (2) among different socioeconomic regions, residential areas are associated with lower levels of public sentiment, while parks are associated with higher levels; and (3) at a scale of 1000 m, an increase of 1% in GVI significantly improves public sentiment regarding transportation hubs, with a regression coefficient of 0.0333. The relationship between green space and public sentiment is intricate and nuanced, and it is influenced by both public activities and spatiotemporal contexts. Urban green space planners should consider additional factors to enhance the effectiveness of green space in improving public sentiment. Full article
18 pages, 2615 KiB  
Article
Comparative Study of Single-Wood Biomass Model at Plot Level Based on Multi-Source LiDAR
by Ying Zhang, Siyu Xue, Shengqiu Liu, Xianliang Li, Qijun Fan, Nina Xiong and Jia Wang
Forests 2024, 15(5), 795; https://doi.org/10.3390/f15050795 - 30 Apr 2024
Viewed by 187
Abstract
Forests play an important role in promoting carbon cycling and mitigating the urban heat island effect as one of the world’s major carbon storages. Scientifically quantifying tree biomass is the basis for assessing tree carbon storage and other ecosystem functions. In this study, [...] Read more.
Forests play an important role in promoting carbon cycling and mitigating the urban heat island effect as one of the world’s major carbon storages. Scientifically quantifying tree biomass is the basis for assessing tree carbon storage and other ecosystem functions. In this study, a sample plot of Populus tomentosa plantation in the Olympic Forest Park in Beijing was selected as the research object. Point cloud data from three types of laser scanners, including terrestrial laser scanner (TLS), backpack laser scanner (BLS), and handheld laser scanner (HLS), were used to estimate the biomass of single tree trunks, branches, leaves, and aboveground total biomass based on the Allometric Biomass Model (ABM) and Advanced Quantitative Structure Model (AdQSM). The following conclusions were drawn from the estimation results: (1) For the three types of laser scanner point clouds, the biomass estimation values obtained using the AdQSM model were generally higher than those obtained using the Allometric Biomass Model. However, the estimation values obtained using the two models were similar, especially for tree trunks and total biomass. (2) For total biomass and individual biomass components of single trees, the results obtained from handheld and terrestrial laser scanner point clouds are consistent; however, they show some differences from the results obtained from backpack-mounted point clouds. This study further enriches the methodological system for estimating forest biomass, providing a theoretical basis and reference for more accurate estimates of forest biomass and more sustainable forest management. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
10 pages, 1188 KiB  
Article
Assessing the Residual Stand Damage after Thinning with Different Levels of Mechanization
by Eunjai Lee, Sang-Tae Lee, Ho-Seong Mun, Sanghoon Chung and Jae-Heun Oh
Forests 2024, 15(5), 794; https://doi.org/10.3390/f15050794 - 30 Apr 2024
Viewed by 171
Abstract
Thinning is a silvicultural process in which trees are both harvested selectively and systematically removed from a stand to enhance forest management and ecosystem dynamics. However, this practice is challenged by the mechanical damage to residual trees, and the nature of this damage, [...] Read more.
Thinning is a silvicultural process in which trees are both harvested selectively and systematically removed from a stand to enhance forest management and ecosystem dynamics. However, this practice is challenged by the mechanical damage to residual trees, and the nature of this damage, particularly on stand damage during mechanized row-thinning and manual selective thinning, in South Korea is unknown. Therefore, objectives of this study were to compare stand damage levels and wound characteristics between three different thinning operations: manual selective, manual row-, and mechanized row-thinning. After thinning, 12%, 15%, and 10% of the residual damaged trees were observed in manual selective, manual row-, and mechanized row-thinning, respectively. Both types of row-thinning predominantly demonstrated damages at the stem and butt region, whereas in manual selective thinning, the most of the damages occurred on the roots. Manual selective thinning exhibited a slightly larger average wound size (207 cm2) compared to mechanized row- (181 cm2) and manual row-thinning (165 cm2). The wound sizes on the stem in mechanized row-thinning were significantly higher than manual selective (p < 0.05). These results may be helpful in understanding exposure to damage among different thinning types and in managing its occurrence in future practices. Full article
(This article belongs to the Special Issue Sustainable Forest Operations Planning and Management)
13 pages, 3496 KiB  
Article
Analysis of the Genetic Diversity and Mating System of the Endangered Plant Keteleeria davidiana var. calcarea
by Xinfeng Pan, Huizhen Qin, Haidu Jiang, Lihui Peng, Yishan Yang, Jianmin Tang, Rong Zou, Zongyou Chen, Xiao Wei and Shengfeng Chai
Forests 2024, 15(5), 793; https://doi.org/10.3390/f15050793 - 30 Apr 2024
Viewed by 150
Abstract
Keteleeria davidiana var. calcarea is an endangered plant endemic to China. It is mainly distributed in the karst areas of the Guangxi and Guizhou Provinces. It is characterized by small populations and intermittent distribution. This study aimed to explore the genetic diversity and [...] Read more.
Keteleeria davidiana var. calcarea is an endangered plant endemic to China. It is mainly distributed in the karst areas of the Guangxi and Guizhou Provinces. It is characterized by small populations and intermittent distribution. This study aimed to explore the genetic diversity and mating system of wild populations of Keteleeria davidiana var. calcarea in fragmented habitats. To achieve this, we genotyped 46 maternal trees and 214 progenies from four fragmented populations of Keteleeria davidiana var. calcarea using nine pairs of microsatellite primers. The genetic diversity of Keteleeria davidiana var. calcarea (Ho = 0.68, He = 0.63) was lower than that of the species overall but higher than that of other Keteleeria plants. The incidence of unbiased expected heterozygosity (uHe) and allelic richness (Ar) was higher in the maternal generation than in the progeny. This suggests that the genetic diversity of the progeny was lower than that of the maternal generation. Keteleeria davidiana var. calcarea is divided into four populations, but there is significant genetic exchange between the populations according to STRUCTURE and gene flow analyses. The multilocus mating system analysis (MLTR) results indicate that the multilocus outcrossing rate (tm) was 0.902, the single-locus outcrossing rate (ts) was 0.606, the bimaternal inbreeding coefficient (tm-ts) was 0.295, and the coefficient of inbreeding depression(δ) was 0.904. These results suggest a certain degree of selfing and inbreeding in Keteleeria davidiana var. calcarea. To prevent problems associated with inbreeding and conserve the genetic diversity of Keteleeria davidiana var. calcarea, we recommend establishing seed gardens, using artificial pollination, and employing asexual propagation techniques for conservation intervention. Full article
Show Figures

Figure 1

17 pages, 2596 KiB  
Article
Ecological Niche Studies on Hylurgus ligniperda and Its Co-Host Stem-Boring Insects
by Lihong Bi, Jing Tao, Lili Ren, Chuanzhen Wang and Kai Zhong
Forests 2024, 15(5), 792; https://doi.org/10.3390/f15050792 - 30 Apr 2024
Viewed by 182
Abstract
Hylurgus ligniperda (Fabricius), a significant quarantine pest, has recently invaded China, marking a new spread outside its known global distribution. This study aims to clarify the invasion and colonization mechanisms of H. ligniperda in Shandong Province, a primary colonization site. This study employed [...] Read more.
Hylurgus ligniperda (Fabricius), a significant quarantine pest, has recently invaded China, marking a new spread outside its known global distribution. This study aims to clarify the invasion and colonization mechanisms of H. ligniperda in Shandong Province, a primary colonization site. This study employed sampling surveys and analysis of damaged wood, discovering that the wood-boring insects sharing the same host as H. ligniperda mainly include Cryphalus sp., Arhopalus rusticus, and Shirahoshizo sp. Through ecological niche theory, the study analyzed the ecological niche relationships between H. ligniperda and these three wood-boring insects, from the perspectives of temporal and spatial resource utilization. The results reveal that these insects could cause damage to P. thunbergii trees at different health levels, with H. ligniperda being the most destructive. The ecological niches of insect populations varied significantly by tree vigor and height. Cryphalus sp. occupied the entire trunk, whereas A. rusticus and Shirahoshizo sp. were concentrated in the lower-middle trunk and the root section up to a depth of 1 m. Notably, H. ligniperda primarily targeted tree roots. Due to the differences in spatial distribution, there was no intense competition between H. ligniperda and other wood-boring insects. With a decline in the health of the host tree, Cryphalus sp. ascended the trunk, whereas H. ligniperda spread deeper into the roots and A. rusticus moved towards the base of the trunk and the top of the roots. Shirahoshizo sp. showed a less defined distribution pattern. Therefore, H. ligniperda was more dominant during the later stage of damage. The position occupied by each insect on the trunk was relatively stable, and the ecological niche overlap value with H. ligniperda was low in terms of temporal resources. Therefore, H. ligniperda and other stem-boring pests exhibit coexisting populations mainly through the allocation and utilization of spatial resources, eventually promoting the successful colonization of H. ligniperda. Full article
(This article belongs to the Section Forest Health)
17 pages, 4776 KiB  
Article
Revealing the Effect of Typhoons on the Stability of Residual Soil Slope by Wind Tunnel Test
by Zizheng Guo, Yuanbo Liu, Taili Zhang, Juehao Zhang, Haojie Wang, Jun He, Guangming Li and Bixia Tian
Forests 2024, 15(5), 791; https://doi.org/10.3390/f15050791 - 30 Apr 2024
Viewed by 168
Abstract
Typhoon-induced slope failure is one of the most important geological hazards in coastal areas. However, the specific influence of typhoons on the stability of residual soil slopes still remains an open issue. In this study, the Feiyunjiang catchment in Zhejiang Province of SE [...] Read more.
Typhoon-induced slope failure is one of the most important geological hazards in coastal areas. However, the specific influence of typhoons on the stability of residual soil slopes still remains an open issue. In this study, the Feiyunjiang catchment in Zhejiang Province of SE China was chosen as the study area, and a downscaling physical model of residual soil slopes in the region was used to carry out the wind tunnel test. Our aim was to answer the question, How does the vegetation on the slope and slope stability respond during a typhoon event? For this purpose, multiple aspects were monitored and observed under four different wind speeds (8.3 m/s, 10.3 m/s, 13.3 m/s, and 17 m/s), including vegetation damage on the slope, macrocracks on the slope surface, wind pressure, wind load, permeability coefficient of the soil layer, and slope stability. The results showed that the plants on the slope could restore to their original states when the wind speeds ranged from 8.3 m/s to 13.3 m/s, but were damaged to the point of toppling when the wind speed increased to 17 m/s. Meanwhile, evident cracks were observed on the ground under this condition, which caused a sharp increase in the soil permeability coefficient, from 1.06 × 10−5 m/s to 6.06 × 10−4 m/s. The monitored wind pressures were larger at the canopy than that at the trunk for most of the trees, and generally larger at the crown of the slope compared with the toe of the slope. Regarding the wind load to the slope ground, the total value increased significantly, from 35.4 N under a wind speed of 8.3 m/s to 166.5 N under a wind speed of 17 m/s. However, the wind load presented different vector directions at different sections of the slope. The quantitative assessment of slope stability considering the wind load effect revealed that the safety factor decreased by 0.123 and 0.1 under the natural state and saturated state, respectively, from no wind to a 17 m/s strong wind. Overall, the present results explained the mechanism of slope failure during typhoon events, which provided theoretical reference for revealing the characteristics of residual soil slope stability under typhoon conditions. Full article
(This article belongs to the Special Issue Impacts of Extreme Climate Events on Forests)
15 pages, 1921 KiB  
Article
New Data on Phytochemical and Morphophysiological Characteristics of Platycladus orientalis L. Franco and Thuja occidentalis L. Conifer Trees in Polluted Urban Areas of Kazakhstan
by Nurgul Yerezhepova, Meruyert Kurmanbayeva, Nina Terletskaya, Moldir Zhumagul, Marko Kebert, Milena Rašeta, Yusufjon Gafforov, Roza Jalmakhanbetova and Medeu Razhanov
Forests 2024, 15(5), 790; https://doi.org/10.3390/f15050790 - 30 Apr 2024
Viewed by 240
Abstract
The adaptive potential of plants in urban environments, responding to factors like air pollution, electromagnetic radiation, and specific microclimates, remains insufficiently understood. Our study focused on two evergreen Cupressaceae family species, Thuja occidentalis L. and Platycladus orientalis L. Franco, which are commonly found [...] Read more.
The adaptive potential of plants in urban environments, responding to factors like air pollution, electromagnetic radiation, and specific microclimates, remains insufficiently understood. Our study focused on two evergreen Cupressaceae family species, Thuja occidentalis L. and Platycladus orientalis L. Franco, which are commonly found in Kazakhstan’s urban landscapes. Conducted in Almaty, one of Kazakhstan’s most polluted cities, our comparative analysis examined the anatomical features, photosynthetic activity, and secondary metabolite composition of these conifers. Both species exhibited xeromorphic traits, such as submerged stomata, resin passages, and a prominent leaf cuticle. T. occidentalis displayed higher photosynthetic activity values (quantum yield of photosystem II (YII), electron transport rate (ETR), and quantum yield of non-photochemical quenching (Y(NPQ))) than P. orientalis, while P. orientalis exhibited a higher quantum yield of non-regulated energy dissipation in PSII (Y(NO)) values. Chemical analysis revealed 31 components in T. occidentalis and 33 in P. orientalis, with T. occidentalis containing three times more thujone (16.42% and 5.18%, respectively) and a higher monosaccharide content (17.33% and 6.98%, respectively). T. occidentalis also contained 14.53% steroids, whereas P. orientalis showed no steroid presence. The cytotoxic activity of essential oils was determined by the survival of Artemia salina aquatic crustaceans, whereas tested essential oils from both species exhibited acute lethal toxicity to A. salina aquatic crustaceans across all tested concentrations. The connection between physiological traits, adaptation strategies, and cytotoxic effects offers a comprehensive view of the ecological and pharmacological importance of these two observed conifer species, highlighting their diverse roles in urban environments, as well as their potential medical uses. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

16 pages, 2941 KiB  
Article
Reforestation Will Lead to a Long-Term Downward Trend in the Water Content of the Surface Soil in a Semi-Arid Region
by Junjun Yang, Lingxia Guo, Yufeng Liu, Pengfei Lin and Jun Du
Forests 2024, 15(5), 789; https://doi.org/10.3390/f15050789 - 30 Apr 2024
Viewed by 165
Abstract
The spatial distribution of soil moisture is a critical determinant for the success of vegetation restoration initiatives in semi-arid and arid regions. The Qilian Mountains, situated within a semi-arid zone in China, have been subject to significant water-induced soil erosion, which has led [...] Read more.
The spatial distribution of soil moisture is a critical determinant for the success of vegetation restoration initiatives in semi-arid and arid regions. The Qilian Mountains, situated within a semi-arid zone in China, have been subject to significant water-induced soil erosion, which has led to extensive restoration activities, predominantly utilizing the species P. crassifolia. However, the interconnections between soil moisture and various land cover types within this region remain unclear, presenting challenges to effective woodland rehabilitation. This study examines the surface soil moisture dynamics in afforested areas with varying ages of plantation to determine the influence of tree planting on the moisture content of the upper soil layer. It investigates the characteristics and temporal patterns of surface soil moisture as the age of the plantation increases. The findings indicate that: (1) soil moisture levels follow a descending sequence from natural forest, through shrubland and grassland, to planted forest and mixed forest, with statistically significant differences observed between natural and mixed forests (p < 0.05); (2) young afforested areas (less than 50 years old) have lower soil moisture levels compared to natural forests, shrublands, or grasslands, and the ecohydrological impacts of afforestation become apparent with a temporal delay; and (3) the analysis using Generalized Additive Mixed Models (GAMM) and the application of Kriging interpolation to determine the spatial distribution of soil moisture reveals that in semi-arid and arid regions, several factors have a pronounced a non-linear relationship with the moisture content of the surface soil. These factors include the duration of afforestation, the position on the lower slope, the presence of shade on the slope, and the scale at which the study is conducted. Therefore, a comprehensive understanding of the dynamics of soil water content is essential to prevent the potential failure of artificially established forests due to inadequate soil moisture in their later stages. Full article
(This article belongs to the Special Issue Carbon, Water and Energy Fluxes in Forest Ecosystems)
Show Figures

Figure 1

18 pages, 17538 KiB  
Article
Analysis of Trends in the Distance of Wildfires from Built-Up Areas in Spain and California (USA): 2007–2015
by Manuel Marey-Perez, Óscar López-Álvarez and Luis Franco-Vázquez
Forests 2024, 15(5), 788; https://doi.org/10.3390/f15050788 - 30 Apr 2024
Viewed by 309
Abstract
Wildfires present a significant risk to societies globally due to population growth, concentrated activities, climate change, and extreme environmental conditions. To establish effective fire suppression and management policies, it is crucial to determine whether the distance between ignition points and urban areas is [...] Read more.
Wildfires present a significant risk to societies globally due to population growth, concentrated activities, climate change, and extreme environmental conditions. To establish effective fire suppression and management policies, it is crucial to determine whether the distance between ignition points and urban areas is increasing or decreasing. This study analyzes 101,597 fires in Spain and California between 2007 and 2015, where ignition points and all built-up areas were precisely geolocated in 2014. The study employs the Mann–Kendall test to determine trends and analyze the relative distance of wildfires to human buildings over time. The results indicate that wildfires are becoming statistically significantly closer in several areas. It is also observed that the majority of wildfires are moving away from buildings, although this is not a significant finding. These results suggest the possibility of further research into the reasons behind these observations and possible future developments and their consequences. Full article
(This article belongs to the Special Issue Wildfire Monitoring and Risk Management in Forests)
Show Figures

Figure 1

20 pages, 5436 KiB  
Article
FSNet: Enhancing Forest-Fire and Smoke Detection with an Advanced UAV-Based Network
by Donghua Wu, Zhongmin Qian, Dongyang Wu and Junling Wang
Forests 2024, 15(5), 787; https://doi.org/10.3390/f15050787 - 30 Apr 2024
Viewed by 203
Abstract
Forest fires represent a significant menace to both the ecological equilibrium of forests and the safety of human life and property. Upon ignition, fires frequently generate billowing smoke. The prompt identification and management of fire sources and smoke can efficiently avert the occurrence [...] Read more.
Forest fires represent a significant menace to both the ecological equilibrium of forests and the safety of human life and property. Upon ignition, fires frequently generate billowing smoke. The prompt identification and management of fire sources and smoke can efficiently avert the occurrence of extensive forest fires, thereby safeguarding both forest resources and human well-being. Although drone patrols have emerged as a primary method for forest-fire prevention, the unique characteristics of forest-fire images captured from high altitudes present challenges. These include remote distances, small fire points, smoke targets with light hues, and complex, ever-changing background environments. Consequently, traditional target-detection networks frequently exhibit diminished accuracy when handling such images. In this study, we introduce a cutting-edge drone-based network designed for the detection of forest fires and smoke, named FSNet. To begin, FSNet employs the YOCO data-augmentation method to enhance image processing, thereby augmenting both local and overall diversity within forest-fire images. Next, building upon the transformer framework, we introduce the EBblock attention module. Within this module, we introduce the notion of “groups”, maximizing the utilization of the interplay between patch tokens and groups to compute the attention map. This approach facilitates the extraction of correlations among patch tokens, between patch tokens and groups, and among groups. This approach enables the comprehensive feature extraction of fire points and smoke within the image, minimizing background interference. Across the four stages of the EBblock, we leverage a feature pyramid to integrate the outputs from each stage, thereby mitigating the loss of small target features. Simultaneously, we introduce a tailored loss function, denoted as Lforest, specifically designed for FSNet. This ensures the model’s ability to learn effectively and produce high-quality prediction boxes. We assess the performance of the FSNet model across three publicly available forest-fire datasets, utilizing mAP, Recall, and FPS as evaluation metrics. The outcomes reveal that FSNet achieves remarkable results: on the Flame, Corsican, and D-Fire datasets, it attains mAP scores of 97.2%, 87.5%, and 94.3%, respectively, with Recall rates of 93.9%, 87.3%, and 90.8%, respectively, and FPS values of 91.2, 90.7, and 92.6, respectively. Furthermore, extensive comparative and ablation experiments validate the superior performance of the FSNet model. Full article
(This article belongs to the Special Issue Artificial Intelligence and Machine Learning Applications in Forestry)
Show Figures

Figure 1

15 pages, 9273 KiB  
Article
Analysis of Spatial and Temporal Dynamics of Finland’s Boreal Forests and Types over the Past Four Decades
by Taixiang Wen, Wenxue Fu and Xinwu Li
Forests 2024, 15(5), 786; https://doi.org/10.3390/f15050786 - 30 Apr 2024
Viewed by 254
Abstract
In the context of global warming, the study of the long-term spatial change characteristics of boreal forest cover is not only important for global climate change and sustainable development research but can also provide support for further research on the response of boreal [...] Read more.
In the context of global warming, the study of the long-term spatial change characteristics of boreal forest cover is not only important for global climate change and sustainable development research but can also provide support for further research on the response of boreal forest changes to climate change. Using Landsat TM/OLI images from 1980 to 2020 as the data source and Google Earth Engine (GEE) as the platform, Finland was selected as the study area of boreal forests, and typical sample points of different features were chosen to classify forested and non-forested land using the random forest algorithm combined with spectral indices and classified feature sets of tasseled cap transform to obtain the four-phase forest cover change maps of the region. GEE test sample points and random selection points of images from the GF-2 and GF-7 satellites were used for verification. The classification accuracy was 97.17% and 88.9%. The five-phase forest cover images were segmented by a 2° latitude zone, and the spatial and temporal dynamic changes in forest cover in the whole area and each latitude zone were quantified by pixel superposition analysis. The results showed that, in the past 40 years, the boreal forest cover in Finland changed significantly, and the forest cover decreased from 75.79% to 65.36%, by 10.43%. Forest change mainly occurs in coniferous forests, whereas broadleaf forests are more stable. The forest coverage in each latitude zone decreased to varying degrees, with higher changes occurring in high-latitude areas above 64° N between 1980 and 2000, and higher and more severe changes occurring in low-latitude areas below 64° N between 2000 and 2020. Coniferous forests are the dominant type of forest in Finland, and the degradation of coniferous forests in the south is likely to become more severe, whereas the north and above is likely to become more favorable for coniferous forests. More monitoring and research are needed to follow up on the very different changes in the north and south regions. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

17 pages, 596 KiB  
Article
The Influence of Minimal Cultivation Techniques on Growth Rate of Robinia pseudacacia L. Seedlings
by Cristina Drăghici, Ioan Vasile Abrudan, Adela Hoble, Raluca Enescu, Gheorghe Spârchez and Iacob Crăciunesc
Forests 2024, 15(5), 785; https://doi.org/10.3390/f15050785 - 29 Apr 2024
Viewed by 196
Abstract
The seed provenance, the type of substrate and its properties, as well as the watering regime in the first years after sowing are among the most important characteristics affecting the production of containerized seedlings. The objective of this study was to analyse the [...] Read more.
The seed provenance, the type of substrate and its properties, as well as the watering regime in the first years after sowing are among the most important characteristics affecting the production of containerized seedlings. The objective of this study was to analyse the growth of black locust (Robinia pseudacacia L.) seedlings on different types of substrate (six mineral and two organic) with different textures and pHs under three different regimes of available water content (no-limiting, medium drought, severe drought) over a period of five months (May–October 2023), using seeds from three sources located in the southeast, south, and west of Romania. The highest seedling emergence rate (73.7%) was obtained for the medium seeds with 18.492 g weight (1000 seed weighs) (Bucharest provenance). Direct sowing in the field and containerized seedlings both showed a trend of growing in height during unlimited water and of growing in diameter during low watering. The lowest survival rate of seedlings (86.7%) occurred in the mineral substrate in the case of rendzina with additional sand (pH 8.70), and for the organic substrate, the lowest survival rate (87.0%) occurred for the peat MKS 3 substrate (pH 4.54). Full article
21 pages, 2931 KiB  
Article
Traces of Local Adaptive Acclimatization Response in the Tracheid Anatomical Traits Between Dry and Wet Mesic Norway Spruce (Picea abies) Forests in Moravia, Czech Republic?
by Dimitrios Tsalagkas, Tomáš Novák, Marek Fajstavr, Hanuš Vavrčík, Vladimír Gryc, Petr Horáček and Kyriaki Giagli
Forests 2024, 15(5), 784; https://doi.org/10.3390/f15050784 - 29 Apr 2024
Viewed by 149
Abstract
Norway spruce (Picea abies) forests in temperate zones are already reacting to short-term extreme summer heatwaves, threatening the vitality of trees and forest productivity, and can even lead to local and regional dieback events. Examining quantitative wood anatomy can provide helpful [...] Read more.
Norway spruce (Picea abies) forests in temperate zones are already reacting to short-term extreme summer heatwaves, threatening the vitality of trees and forest productivity, and can even lead to local and regional dieback events. Examining quantitative wood anatomy can provide helpful information in terms of understanding the physiology mechanisms and related responses of conifer trees to local environmental interactions in relation to tracheid adaptive capacity. This study analysed the tracheid functional anatomical traits (FATs) plasticity of six young Norway spruce trees growing in two mesic research plots with high annual precipitation (~43%) and air temperature differences during 2010–2017. The research plots are located in the sub-mountainous (Rájec Němčice) and mountainous (Bílý Kříž) belts of the Moravia region, Czech Republic. Vapour pressure deficit and cell wall reinforcement index (CWRI) were shown to be the most representative environmental parameters as proxies of dry conditions. Tracheid FATs indicated latewood phenological plasticity sensitivity, with more pronounced variability in the warmer and drier plots. Latewood tracheids of Norway spruce trees grown in the RAJ formed significantly thicker cell walls than BK during the studied period. The observed differences between the two research plots indicate additional support for tracheid cells' hydraulic safety against cavitation and potential traces of adaptive acclimatization response. Full article
21 pages, 3497 KiB  
Article
Sustainable Afforestation Strategies: Hybrid Multi-Criteria Decision-Making Model in Post-Mining Rehabilitation
by Ersin Güngör and Gökhan Şen
Forests 2024, 15(5), 783; https://doi.org/10.3390/f15050783 - 29 Apr 2024
Viewed by 205
Abstract
This article describes an effective approach for selecting suitable plant species for afforestation in post-mining rehabilitation. The research was conducted in the Western Black Sea region of Turkey. The aim of the research is to perform accurate criteria weighting and species prioritization for [...] Read more.
This article describes an effective approach for selecting suitable plant species for afforestation in post-mining rehabilitation. The research was conducted in the Western Black Sea region of Turkey. The aim of the research is to perform accurate criteria weighting and species prioritization for afforestation in post-mining degraded areas. This helps to ensure consistent conditions for the future use of the site as a forest, sustainability of nature, and selection of appropriate species adapted to the difficult post-mining conditions. In this study, which is a multi-criteria decision-making problem (MCDM), the weights of the criteria were determined by stepwise weight assessment ratio analysis (SWARA), and the priority ranking of the species was determined by the analytic hierarchy process (AHP). Analyses were carried out with 10 afforestation criteria and five tree species. According to the analysis, the top three ranked criteria are Economic Efficiency > Carbon Stock and Credit > Reducing Afforestation Cost. The five species’ priority ranking is Robinia pseudoacacia L. (0.456) > Alnus glutinosa subsp. glutinosa (0.248) > Populus nigra subsp. nigra (0.146) > Salix alba L. (0.103) > Quercus robur subs. robur (0.048). The hybrid approach is expected to increase the effectiveness of post-mining rehabilitation works. Full article
Show Figures

Figure 1

22 pages, 17359 KiB  
Article
Comparison of QRNN and QRF Models in Forest Biomass Estimation Based on the Screening of VIs Using an Equidistant Quantile Method
by Xiao Xu, Xiaoli Zhang, Shouyun Shen and Guangyu Zhu
Forests 2024, 15(5), 782; https://doi.org/10.3390/f15050782 - 29 Apr 2024
Viewed by 187
Abstract
The investigation of a potential correlation between the filtered-out vegetation index and forest aboveground biomass (AGB) using the conventional variables screening method is crucial for enhancing the estimation accuracy. In this study, we examined the Pinus densata forests in Shangri-La and utilized 31 [...] Read more.
The investigation of a potential correlation between the filtered-out vegetation index and forest aboveground biomass (AGB) using the conventional variables screening method is crucial for enhancing the estimation accuracy. In this study, we examined the Pinus densata forests in Shangri-La and utilized 31 variables to establish quantile regression models for the AGB across 19 quantiles. The key variables associated with biomass were based on their significant correlation with the AGB in different quantiles, and the QRNN and QRF models were constructed accordingly. Furthermore, the optimal quartile models yielding the minimum mean error were combined as the best QRF (QRFb) and QRNN (QRNNb). The results were as follows: (1) certain bands exhibited significant relationships with the AGB in specific quantiles, highlighting the importance of band selection. (2) The vegetation index involving the band of blue and SWIR was more suitable for estimating the Pinus densata. (3) Both the QRNN and QRF models demonstrated their optimal performance in the 0.5 quantiles, with respective R2 values of 0.68 and 0.7. Moreover, the QRNNb achieved a high R2 value of 0.93, while the QRFb attained an R2 value of 0.86, effectively reducing the underestimation and overestimation. Overall, this research provides valuable insights into the variable screening methods that enhance estimation accuracy and mitigate underestimation and overestimation issues. Full article
Show Figures

Figure 1

22 pages, 7964 KiB  
Article
The Temporal and Spatial Evolution Characteristics of the Ecosystem Service Value and Conversion Rate in China’s Key State-Owned Forest Regions
by Xianqiao Huang, Jingye Li, Yue Ren, Yukun Cao and Bo Cao
Forests 2024, 15(5), 781; https://doi.org/10.3390/f15050781 - 29 Apr 2024
Viewed by 234
Abstract
To achieve a sustainable development path that harmonizes ecological and economic considerations, China has advocated the “two mountains” concept: “lucid waters and lush mountains are invaluable assets”. This idea posits that those who protect the environment can economically benefit by selling pristine landscapes [...] Read more.
To achieve a sustainable development path that harmonizes ecological and economic considerations, China has advocated the “two mountains” concept: “lucid waters and lush mountains are invaluable assets”. This idea posits that those who protect the environment can economically benefit by selling pristine landscapes and utilizing rich ecological resources. This paper use “the equivalence factor method” to calculate ecological benefits, introduces a technical measure—the conversion rate of ecosystem service value—and analyzes its temporal and spatial evolution from 2003 to 2020 in the operational areas of 87 state-owned forestry enterprises in Northeast China. The findings show: (1) a significant improvement in ecosystem-service quality, with its value increasing from 404.7 to 850.2 billion CNY between 2003 and 2020. The restoration of the ecological environment in China’s KSFR provides a foundation for economic and social development. (2) A decrease in the economic gains derived by operators from developing protected ecosystems, with the most significant decline observed in economic benefits generated from the supply product, including timber harvesting. However, the industrial structure in KSFR shifted from being dominated by timber production to diversified development, with non-timber forest resources becoming an important part of regional economic growth. (3) Significant potential for realizing the value of ecosystem services, evidenced by an increasing trend in the conversion rates of cultural, regulatory, and supporting services. These findings underscore the effectiveness of China’s natural forest protection and restoration policies in optimizing forest ecology and realizing the “two mountains” concept through appropriate market transactions and ecological compensation mechanisms. Full article
(This article belongs to the Special Issue Changes in the Value of Forest Resources: Impacts of Human Activities)
Show Figures

Figure 1

11 pages, 1721 KiB  
Article
The Effect of Technological Progress on Yarder Productivity: An Example from the Bulgarian Mountains
by Raffaele Spinelli, Sotir Glushkov, Erik Findeisen, Dimitar Boyadzhiev and Ivailo Markoff
Forests 2024, 15(5), 780; https://doi.org/10.3390/f15050780 - 29 Apr 2024
Viewed by 230
Abstract
In recent years, a significant import of modern tower yarders has been registered in Bulgaria, where official productivity standards are routinely used for operational planning and control. Given the higher potential of the newer yarder models, the Bulgarian forestry sector has started a [...] Read more.
In recent years, a significant import of modern tower yarders has been registered in Bulgaria, where official productivity standards are routinely used for operational planning and control. Given the higher potential of the newer yarder models, the Bulgarian forestry sector has started a review of the older productivity standards dating back to the 1970s. This new endeavor has offered an ideal opportunity for gauging the effect of technological progress in yarder technology. Therefore, the authors have used the very first results achieved during the development of the new standards for conducting a preliminary quantitative comparison between older and newer yarder types. Modern yarders (e.g., Konrad Mounty 4000) are much faster than the older ones (e.g., Koller K300), and their time consumption per cubic meter is half as large, especially on longer distances. At short distances, however, their performance evens out. Regardless of the distance, the installation time of the Konrad Mounty 4000 is twice as short. As they are largely automated, the new machines can be manned by smaller crews (e.g., two workers instead of three) and are easier and safer to operate. Finally, the new machines are equipped with built-in loaders and processors, which allows them to integrate delimbing, crosscutting and stacking within the same work cycle. With older models, a separate team must be deployed for those tasks. Full article
(This article belongs to the Special Issue Forest Machinery and Mechanization)
Show Figures

Figure 1

Previous Issue
Back to TopTop