Analysis of the Risk of Bankruptcy of Tomato Processing Companies Operating in the Inter-Regional Interprofessional Organization “OI Pomodoro da Industria Nord Italia”
Abstract
:1. Introduction
2. Methods
2.1. Annual Account Statement (AAS) Analysis
2.2. Financial Ratio Analysis
3. Results and Discussion
3.1. Overview of Firm Characteristics in the Tomato Sector
3.2. Data Collection and Research Plan
3.3. Annual Account Data Analysis
3.4. Financial Ratio Analysis
3.5. Comparison between BSS, IS and FR Values in the Distressed and Not-Distressed Firms Sample
4. Conclusions
- The distressed firms in the sector are, on average, smaller, both for invested capital and for turnover.
- The distressed firms in the sector have higher recourse to debt capital on average and generate lower profit margins than not-distressed firms.
- The failed firms have significantly different FR compared to non-bankrupt firms, and this allows having ex ante indications of the risk level of the company, by analyzing the data of the FR.
- The FR related to the business liquidity cycle highlight the high duration of the business cycle of the firm and this raises the question of the manipulation of accounting data (particularly in inventories and commercial credit data), which could be usefully explored via further research in the sector.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- ISMEA. Available online: http://www.ismea.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/10110 (accessed on 28 February 2018).
- Branca, G. I riflessi della riforma dell’OCM ortofrutta sulla filiera del pomodoro da industria in Italia. Agriregionieuropa 2008, 4, 41–45. [Google Scholar]
- Lombardi, P.; Verneau, F. Il settore del pomodoro trasformato: Tendenze di mercato, struttura e quadro istituzionale. Econ. Agro-Aliment. 2010, 12, 105–124. [Google Scholar]
- Frascarelli, A. La politica dei mercati agricoli dell’Ue per il periodo 2014–2020: Un’analisi degli strumenti. Agriregionieuropa 2016, 12, 9–14. [Google Scholar]
- Bonazzi, G. Iotti, Comparative applications of income and financial analysis for tomato processing firms in Italy. Agroalimentaria 2015, 21, 113–131. [Google Scholar]
- Marques, R.; Berg, S. Risks, contracts and private sector participation in infrastructure. J. Constr. Eng. Manag. 2011, 137, 925–933. [Google Scholar] [CrossRef]
- Iotti, M.; Bonazzi, G. Assessment of Biogas Plant Firms by Application of Annual Accounts and Financial Data Analysis Approach. Energies 2016, 9, 713. [Google Scholar] [CrossRef]
- Dechow, P.M. Accounting Earnings and Cash Flow as Measures of Firm Performance, the Role of Accounting Accruals. J. Account. Econ. 1994, 18, 3–42. [Google Scholar] [CrossRef]
- Dechow, P.M.; Dichev, L. The Quality of Accruals and Earnings, the Role of Accruals Estimation Errors. Account. Rev. 2002, 87, 35–59. [Google Scholar] [CrossRef]
- Baños-Caballero, S.; García-Teruel, P.J.; Martínez-Solano, P. Working capital management, corporate performance, and financial constraints. J. Bus. Res. 2014, 673, 332–338. [Google Scholar] [CrossRef]
- Padachi, K. Trends in Working Capital Management and its Impact on Firms’ Performance, An Analysis of Mauritian Small Manufacturing Firms. Int. Rev. Bus. Res. Pap. 2006, 2, 45–58. [Google Scholar]
- Barnes, P. The Analysis and Use of Financial Ratios, A Review Article. J. Bus. Financ. Account. 1982, 144, 449–461. [Google Scholar] [CrossRef]
- Lewellen, J.W. Predicting Returns with Financial Ratios. J. Financ. Econ. 2004, 74, 209–235. [Google Scholar] [CrossRef]
- Horrigan, J.O. A Short History of Financial Ratio Analysis. Account. Rev. 1968, 43, 284–294. [Google Scholar]
- Stern, J.M.; Stewart, G.B.; Chew, D.H., Jr. The EVA® Financial System. J. Appl. Corp. Financ. 1995, 8, 32–46. [Google Scholar] [CrossRef]
- Forker, J.; Powell, R. Comparison of error rates for EVA, residual income, GAAP-earnings & other metric using a long-window Valuation approach. Eur. Account. Rev. 2008, 17, 471–502. [Google Scholar]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Beaver, W.H. Financial Ratios as Predictors of Failure. J. Account. Res. 1966, 4, 71–111. [Google Scholar] [CrossRef]
- Altman, E.I. Financial Ratios, Discriminant Analysis and Prediction of Corporate Bankruptcy. J. Financ. 1968, 234, 589–609. [Google Scholar] [CrossRef]
- Altman, E.I. An emerging market credit scoring system for corporate bonds. Emerg. Mark. Rev. 2005, 6, 311–323. [Google Scholar] [CrossRef]
- Johnson, R.B.; Haegn, A.R. Agricultural Loan Evaluation with Discriminant Analysis. J. Agric. Appl. Econ. 1973, 5, 57–62. [Google Scholar] [CrossRef]
- Hardy, W.E.; Weed, J.B. Objective Evaluation for Agricultural Lending. J. Agric. Appl. Econ. 1980, 12, 159–164. [Google Scholar] [CrossRef]
- Dimitras, A.I.; Zanakis, S.H.; Zopounidis, C. A survey of business failure with an emphasis on prediction methods and industrial application. Eur. J. Oper. Res. 1996, 90, 487–513. [Google Scholar] [CrossRef]
- Lufburrow, J.; Barry, P.J.; Dixon, B.L. Credit Scoring for Farm Loan Pricing. Agric. Financ. Rev. 1984, 44, 8–14. [Google Scholar]
- Miller, L.H.; LaDue, E.L. Credit Assessment Models for Farm Borrowers: A Logit Analysis. Agric. Financ. Rev. 1989, 49, 22–36. [Google Scholar]
- Lyubov, Z.; Pederson, G. Predictors of farm performance and repayment ability as factors for use in risk-rating models. Agric. Financ. Rev. 2003, 63, 41–54. [Google Scholar]
- Hofner, R.; Brewer, B.; Escalante, C. Effects of business maturity, experience, and size on farms economic vitality: A credit migration analysis of Farm Service Agency borrowers. Agric. Financ. Rev. 2017, 77, 153–163. [Google Scholar]
- Capitanio, F.; Sgroi, F.; Adinolfi, F. Misura delle performance finanziarie e patrimoniali delle aziende agricole: Proposta operativa per un nuovo modello di rating per le aziende agricole. Riv. Econ. Agrar. 2012, 67, 27–44. [Google Scholar]
- Gunther, J.W.; Moore, R.R. Early warning models in real time. J. Bank. Financ. 2003, 27, 1979–2001. [Google Scholar] [CrossRef]
- Charalambous, C.; Charitou, A.; Kaourou, F. Comparative Analysis of Artificial Neural Network Models: Application in Bankruptcy Prediction. Ann. Oper Res. 2000, 99, 403–425. [Google Scholar] [CrossRef]
- Park, C.S.; Han, I. A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction. Expert Syst. Appl. 2002, 23, 255–264. [Google Scholar] [CrossRef]
- Shin, K.S.; Lee, T.S.; Kim, H.J. An application of support vector machines in bankruptcy prediction model. Expert Syst. Appl. 2005, 28, 127–135. [Google Scholar] [CrossRef]
- Kumar, P.R.; Ravi, V. Bankruptcy prediction in banks and firms via statistical and intelligent techniques: A review. Eur. J. Oper. Res. 2007, 180, 1–28. [Google Scholar] [CrossRef]
- Chaudhuria, A.; De, K. Fuzzy support vector machine for bankruptcy prediction. Appl. Soft Comput. 2011, 11, 2472–2486. [Google Scholar] [CrossRef]
- Lee, M.C.; To, C. Comparison of support vector machine and back propagation neural network in evaluating the enterprise financial distress. Int. J. Artif. Intell. Appl. 2010, 31–43. [Google Scholar] [CrossRef]
- Sun, J.; He, K.Y.; Li, H. SFFS-PC-NN optimized by genetic algorithm for dynamic prediction of financial distress with longitudinal data streams. Knowl. Based Syst. 2011, 24, 1013–1023. [Google Scholar] [CrossRef]
- Cao, Y.; Wan, G.Y.; Wang, F.Q. Predicting financial distress of Chinese listed companies using rough set theory and support vector machine. Asia Pac. J. Oper. Res. 2011, 28, 95–109. [Google Scholar] [CrossRef]
- Iofrida, N.; De Luca, A.I.; Strano, A.; Gulisano, G. Can social research paradigms justify the diversity of approaches to social life cycle assessment? Int. J. Life Cycle Assess. 2018, 23, 464–480. [Google Scholar] [CrossRef]
- De Luca, A.I.; Iofrida, N.; Leskinen, P.; Stillitano, T.; Falcone, G.; Strano, A.; Gulisano, G. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci. Total Environ. 2017, 595, 352–370. [Google Scholar] [CrossRef] [PubMed]
- Testa, R.; Trapani, A.D.; Sgroi, F.; Tudisca, S. Economic Sustainability of Italia Greenhouse Cherry Tomato. Sustainability 2014, 6, 7967–7981. [Google Scholar] [CrossRef]
- Bonazzi, G.; Iotti, M. Evaluation of biogas plants by the application of an internal rate of return and debt service coverage approach. Am. J. Environ. Sci. 2014, 11, 35–45. [Google Scholar] [CrossRef]
- Cupo, P.; Di Domenico, M. I fattori che influiscono sul merito creditizio delle aziende agricole: Un’applicazione in Campania. Riv. Econ. Agrar. 2012, 67, 45–67. [Google Scholar]
- ISTAT. Available online: http://agri.istat.it/sag_is_pdwout/jsp/dawinci.jsp?q=plCPO0000010000012000&an=2012&ig=1&ct=418&id=15A|18A|28A (accessed on 10 February 2018).
- ISTAT. Available online: http://agri.istat.it/sag_is_pdwout/jsp/dwExcel.jsp (accessed on 10 February 2018).
- OIPOMODORONORDITALIA. Available online: http://www.oipomodoronorditalia.it/?page_id=1269 (accessed on 11 February 2018).
- LIFEPREFER. Available online: http://www.lifeprefer.it/it-it/Progetto/Prodotti/Pomodoro (accessed on 11 February 2018).
- Berryman, J. Small Business Failure and Bankruptcy, a Survey of the Literature. Eur. Small Bus. J. 1983, 1, 47–59. [Google Scholar] [CrossRef]
- Peel, M.J.; Wilson, N. Working Capital and Financial Management Practices in the Small Firm Sector. Int. Small Bus. J. 1996, 14, 52–68. [Google Scholar] [CrossRef]
- Glancey, K. Determinants of Growth and Profitability in Small Entrepreneurial Firms. Int. J. Enterp. Behav. Res. 1998, 4, 18–27. [Google Scholar] [CrossRef]
- Dunn, P.; Cheatham, L. Fundamentals of Small Business Financial Management for Start-up, Survival, Growth, and Changing Economic Circumstances. Manag. Financ. 1999, 19, 1–13. [Google Scholar] [CrossRef]
- Boschi, M.; Girardi, A.; Ventura, M. Partial credit guarantees and SMEs financing. J. Financ. Stab. 2014, 15, 182–194. [Google Scholar] [CrossRef]
- Dothan, M. Costs of Financial Distress and Interest Coverage Ratios. J. Financ. Res. 2006, 29, 147–162. [Google Scholar] [CrossRef]
- Love, I.; Preeve, L.; Sarria-Allende, V. Trade Credit and Bank Credit, Evidence from Recent Financial Crisis. J. Financ. Econ. 2007, 83, 453–469. [Google Scholar] [CrossRef]
- Hill, M.D.; Kelly, W.G.; Highfield, M.J. Net Operating Working Capital Behavior, A First Look. Financ. Manag. 2010, 2, 783–805. [Google Scholar] [CrossRef]
- Molina, C.; Preeve, L. Trade Receivable Policy of Distressed Firms and its Effects on the Cost of Financial Distress. Financ. Manag. 2009, 38, 663–686. [Google Scholar] [CrossRef]
- Rosner, R.L. Earnings Manipulation in Failing Firms. Contemp. Account. Res. 2003, 2, 361–408. [Google Scholar] [CrossRef]
- Russel, P.B. The Cash Flow Implication of Managing Working Capital and Capital Investment. J. Bus. Econ. Stud. 2009, 15, 98–108. [Google Scholar]
- Beneish, M.D. The Detection of Earnings Manipulation. Financ. Anal. J. 1999, 55, 24–36. [Google Scholar] [CrossRef]
- Beneish, M.D.; Billings, M.B.; Hodder, L.D. Internal Control Weaknesses and Information Uncertainty. Account. Rev. 2008, 83, 665–703. [Google Scholar] [CrossRef]
- Beneish, M.D.; Lee, C.M.C.; Nichols, D.C. Earnings Manipulation and Expected Returns. Financ. Anal. J. 2013, 69, 22–41. [Google Scholar] [CrossRef]
- Canali, G. Il pomodoro da industria nel nord italia: L’innovazione organizzativa per migliorare la competitività. Agriregionieuropa 2012, 8, 35–39. [Google Scholar]
Year | Tomato for Food Consumption (Ha) | Tomato for Processing Industry (Ha) | Total Tomato (Ha) |
---|---|---|---|
2007 | 23,401 | 94,346 | 117,747 |
2008 | 19,806 | 88,389 | 108,195 |
2009 | 19,314 | 96,768 | 116,082 |
2010 | 19,679 | 94,514 | 114,193 |
2011 | 19,409 | 84,449 | 103,858 |
2012 | 16,325 | 75,525 | 91,850 |
2013 | 19,384 | 68,900 | 88,284 |
2014 | 18,418 | 77,539 | 95,957 |
2015 | 18,072 | 81,669 | 99,741 |
2016 | 18,190 | 78,592 | 96,782 |
Year | Tomato for Food Consumption Production (Ton.) | Tomato for Processing Industry Production (Ton.) | Total Tomato Production (Ton.) | Tomato for Food Consumption Harvesting (Ton.) | Tomato for Processing Industry Harvesting (Ton.) | Total Tomato Harvesting (Ton.) |
---|---|---|---|---|---|---|
2007 | 757,557 | 5,420,894 | 6,178,451 | 744,027 | 5,260,753 | 6,004,780 |
2008 | 619,750 | 4,979,199 | 5,598,949 | 604,993 | 4,870,202 | 5,475,195 |
2009 | 602,084 | 6,078,048 | 6,680,132 | 576,493 | 5,918,090 | 6,494,583 |
2010 | 649,360 | 5,125,754 | 5,775,114 | 631,429 | 4,997,146 | 5,628,575 |
2011 | 635,929 | 5,471,195 | 6,107,124 | 619,385 | 5,330,830 | 5,950,215 |
2012 | 489,635 | 4,792,568 | 5,282,203 | 460,651 | 4,671,325 | 5,131,976 |
2013 | 593,535 | 4,459,833 | 5,053,368 | 567,207 | 4,321,568 | 4,888,775 |
2014 | 543,842 | 4,714,067 | 5,257,909 | 490,206 | 4,609,269 | 5,099,475 |
2015 | 576,157 | 5,528,588 | 6,104,745 | 528,276 | 5,365,683 | 5,893,959 |
2016 | 558,951 | 5,600,839 | 6,159,790 | 532,069 | 5,458,447 | 5,990,516 |
Region | Surface (Ha) | Tomato for Processing Industry Production (Ton.) | Tomato for Processing Industry Harvesting (Ton.) | Yield (Ton./Ha) |
---|---|---|---|---|
Piemonte | 1202 | 63,924 | 63,812 | 53.18 |
Valle d’Aosta | - | - | - | - |
Lombardia | 7971 | 538,755 | 538,755 | 67.59 |
Liguria | - | - | - | - |
Trentino-Alto Adige | 6 | 150 | 150 | 25.00 |
Veneto | 2007 | 124,324 | 105,674 | 61.95 |
Friuli-Venezia Giulia | 4 | 128 | 128 | 31.90 |
Emilia-Romagna | 26,456 | 2,015,616 | 2,015,616 | 76.19 |
Toscana | 2122 | 137,661 | 135,373 | 64.87 |
Umbria | 267 | 14,560 | 14,560 | 54.53 |
Marche | 25 | 1041 | 987 | 41.64 |
Lazio | 2078 | 94,100 | 84,900 | 45.28 |
Abruzzo | 1110 | 53,122 | 53,060 | 47.86 |
Molise | 600 | 36,000 | 36,000 | 60.00 |
Campania | 4083 | 265,456 | 257,389 | 65.01 |
Puglia | 20,480 | 1,907,500 | 1,811,780 | 93.14 |
Calabria | 2849 | 124,899 | 120,415 | 43.84 |
Basilicata | 2244 | 127,305 | 125,550 | 56.73 |
Sicilia | 4680 | 67,740 | 65,740 | 14.47 |
Sardegna | 408 | 28,560 | 28,560 | 70.00 |
ITALY | 78,592 | 5,600,840 | 5,458,448 | 71.26 |
Value | Mean (€) Not-Distressed Firms | Mean (% TA) Not-Distressed Firms | Mean (€) Distressed Firms | Mean (% TA) Distressed Firms |
---|---|---|---|---|
A | - | - | - | - |
Bfaint | 1,122,550 | 4.76% | 656,550 | 5.06% |
Bfatan | 9,505,952 | 40.31% | 2,132,251 | 16.42% |
Bfafin | 36,925 | 0.16% | 85,920 | 0.66% |
BFA | 10,665,427 | 45.23% | 2,874,721 | 22.14% |
Cwcar<12m | 6,285,992 | 26.66% | 5,265,321 | 40.56% |
Cwcar>12m | 432,025 | 1.83% | 69,859 | 0.54% |
Cwco<12m | 238,220 | 1.01% | 663,669 | 5.11% |
Cwco>12m | 12,501 | 0.05% | 26,336 | 0.20% |
Cwci | 5,256,005 | 22.29% | 3,982,336 | 30.68% |
Cwcql | 9824 | 0.04% | 1033 | 0.01% |
CL | 659,223 | 2.80% | 32,652 | 0.25% |
D | 23,321 | 0.10% | 65,993 | 0.51% |
TA | 23,582,538 | 100.00% | 12,981,920 | 100.00% |
AEsc | 2,320,221 | 9.84% | 510,252 | 3.93% |
AEr | 1,985,622 | 8.42% | 165,220 | 1.27% |
AEП | 2,133,221 | 9.05% | 20,552 | 0.93% |
AП | 1,203,834 | 5.10% | 112,578 | 0.87% |
E | 7,642,898 | 32.41% | 442,342 | 3.41% |
B | 252,130 | 1.07% | 23,025 | 0.18% |
C | 796,220 | 3.38% | 320,221 | 2.47% |
Df<12m | 3,521,002 | 14.93% | 1,653,200 | 12.73% |
Df>12m | 6,523,201 | 27.66% | 2,136,630 | 16.46% |
Dwcap<12m | 3,812,412 | 16.17% | 5,859,687 | 45.14% |
Dwcap>12m | 120,330 | 0.51% | 262,022 | 2.02% |
Dwco<12m | 713,647 | 3.03% | 1,663,215 | 12.81% |
Dwco>12m | 50,336 | 0.21% | 62,135 | 0.48% |
D- | 150,362 | 0.64% | 559,443 | 4.31% |
DT | 15,939,640 | 67.59% | 12,539,578 | 96.59% |
TS | 23,582,538 | 100.00% | 12,981,920 | 100.00% |
Value | Mean (€) Not-Distressed Firms | Mean (% S) Not-Distressed Firms | Mean (€) Distressed Firms | Mean (% S) Distressed Firms |
---|---|---|---|---|
S | 26,523,211 | 100.00% | 6,593,220 | 100.00% |
∆Cwci | 903,220 | 3.41% | 966,320 | 14.66% |
Cp | 12,533 | 0.05% | 32,652 | 0.50% |
Os | 423,205 | 1.60% | 105,363 | 1.60% |
Mc | 14,215,333 | 53.60% | 4,102,220 | 62.22% |
Sc | 3,862,025 | 14.56% | 956,203 | 14.50% |
Rc | 1,292,330 | 4.87% | 565,321 | 8.57% |
Lc | 3,205,630 | 12.09% | 985,622 | 14.95% |
Oc | 685,105 | 2.58% | 312,220 | 4.74% |
EBITDA | 4,601,746 | 17.35% | 775,969 | 11.77% |
Dc | 1,923,020 | −0.25% | 562,250 | 8.53% |
Ac | 130,252 | −0.49% | 98,234 | 1.49% |
EBIT | 2,548,474 | 9.61% | 115,485 | 1.75% |
SF | 432,033 | −0.63% | 262,2520 | 3.98% |
SR | 13,205 | −0.05% | 10,252 | 0.16% |
SX | 132,620 | 0.50% | 36,257 | 0.55% |
ПbT | 2,235,856 | 8.43% | 100,258 | 1.52% |
T | 1,032,022 | 3.89% | 12,320 | 0.19% |
П | 1,203,834 | 4.54% | 112,578 | 1.71% |
Value | Mean Not-Distressed Firms | Mean Distressed Firms |
---|---|---|
ROE | 15.75% | −25.45% |
ROA | 10.81% | 0.89% |
ROD | 4.60% | 6.98% |
Current ratio (CR) | 1.55 | 1.08 |
Quick ratio (QR) | 0.65 | 0.62 |
Debt equity ratio (DER) | 2.09 | 28.35 |
AR_DAYS | 92.45 | 295.36 |
AP_DAYS | 54.12 | 338.90 |
INV_DAYS | 72.33 | 220.46 |
NWC_DAYS | 110.66 | 176.92 |
Comparisons (DF Is Distressed Firms and NDF Is Not-Distressed Firms) | Type | Mann-Whitney U-Statistic | Observations (24 + 10) | Statistical Significance (2-Tailed) |
---|---|---|---|---|
Comp. 1: BFADF-BFANDF | BSS% of TS | 3.121 a | 34 | 0.000 ** |
Comp. 2: Cwcar<12m DF-Cwcar<12m NDF | BSS% of TS | −1.725 b | 34 | 0.031 * |
Comp. 3: Couple 1 Cwci DF-Cwci NDF | BSS% of TS | −1.492 b | 34 | 0.134 |
Comp. 4: DTDF-DTNDF | BSS% of TS | −3.762 b | 34 | 0.000 ** |
Comp. 5: EDF-ENDF | BSS% of TS | 8.141 a | 34 | 0.000 ** |
Comp. 6: EBITDADF-EBITDANDF | IS% of S | 1.207 a | 34 | 0.211 |
Comp. 7: EBITDF-EBITNDF | IS% of S | 3.525 a | 34 | 0.000 ** |
Comp. 8: SFDF-SFNDF | IS% of S | −0.952 b | 34 | 0.340 |
Comp. 9: ПbTDF-ПbTNDF | IS% of S | 5.140 a | 34 | 0.000 ** |
Comp. 10: ПDF-ПNDF | IS% of S | 6.190 a | 34 | 0.000 ** |
Comp. 11: ROEDF-ROENDF | FR values | 3.428 a | 34 | 0.000 ** |
Comp. 12: ROADF-ROANDF | FR values | 2.995 a | 34 | 0.000 ** |
Comp. 13: RODDF-RODNDF | FR values | 1.898 a | 34 | 0.041 * |
Comp. 14: CRDF-CRNDF | FR values | 1.019 a | 34 | 0.275 |
Comp. 15: QRDF-QRNDF | FR values | 0.395 a | 34 | 0.420 |
Comp. 16: DERDF-DERNDF | FR values | −10.290 b | 34 | 0.000 ** |
Comp. 17: AR_DAYSDF-AR_DAYSNDF | FR values | −6.341 b | 34 | 0.000 ** |
Comp. 18: AP_DAYSDF-AP_DAYSNDF | FR values | −8.380 b | 34 | 0.000 ** |
Comp. 19: INV_DAYSDF-INV_DAYSNDF | FR values | −7.221 b | 34 | 0.000 ** |
Comp. 20: WC_DAYSDF-NWC_DAYSNDF | FR values | −3.097 b | 34 | 0.000 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iotti, M.; Bonazzi, G. Analysis of the Risk of Bankruptcy of Tomato Processing Companies Operating in the Inter-Regional Interprofessional Organization “OI Pomodoro da Industria Nord Italia”. Sustainability 2018, 10, 947. https://doi.org/10.3390/su10040947
Iotti M, Bonazzi G. Analysis of the Risk of Bankruptcy of Tomato Processing Companies Operating in the Inter-Regional Interprofessional Organization “OI Pomodoro da Industria Nord Italia”. Sustainability. 2018; 10(4):947. https://doi.org/10.3390/su10040947
Chicago/Turabian StyleIotti, Mattia, and Giuseppe Bonazzi. 2018. "Analysis of the Risk of Bankruptcy of Tomato Processing Companies Operating in the Inter-Regional Interprofessional Organization “OI Pomodoro da Industria Nord Italia”" Sustainability 10, no. 4: 947. https://doi.org/10.3390/su10040947
APA StyleIotti, M., & Bonazzi, G. (2018). Analysis of the Risk of Bankruptcy of Tomato Processing Companies Operating in the Inter-Regional Interprofessional Organization “OI Pomodoro da Industria Nord Italia”. Sustainability, 10(4), 947. https://doi.org/10.3390/su10040947