Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Scenario Definition
2.3. Ecosystem Service Assessment
2.4. Identification of Tipping Points
3. Results
3.1. Biophysical Model Results of InVEST and Rubber Yield
3.2. Land Use Change and Tipping Points in ESS Supply
4. Discussion
4.1. Tipping Points in the Supply of ESS
4.2. Methodological Limits and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1-59726-040-1. [Google Scholar]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; López, A.; Elorza, F.J.; Ziv, G.; Acuña, V.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total Environ. 2013, 458–460, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liu, W.; Cao, M. Impact of land use and land cover changes on ecosystem services in Menglun, Xishuangbanna, Southwest China. Environ. Monit. Assess. 2008, 146, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Groffman, P.; Staudinger, M.; Tallis, H. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment. Clim. Chang. 2016, 135, 97–109. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.; Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Biggs, R.; Schlüter, M.; Biggs, D.; Bohensky, E.L.; BurnSilver, S.; Cundill, G.; Dakos, V.; Daw, T.M.; Evans, L.S.; Kotschy, K.; et al. Toward Principles for Enhancing the Resilience of Ecosystem Services. Annu. Rev. Environ. Resour. 2012, 37, 421–448. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; Van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-warning signals for critical transitions. Nature 2009, 461, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Milkoreit, M.; Hodbod, J.; Baggio, J.; Benessaiah, K.; Calderon Contreras, R.; Donges, J.F.; Mathias, J.-D.; Rocha, J.C.; Schoon, M.; Werners, S. Defining tipping points for social-ecological systems scholarship—An interdisciplinary literature review. Environ. Res. Lett. 2018. [Google Scholar] [CrossRef]
- Van Nes, E.H.; Arani, B.M.S.; Staal, A.; van der Bolt, B.; Flores, B.M.; Bathiany, S.; Scheffer, M. What do you mean “Tipping Point”? Trends Ecol. Evol. 2016, 31, 900–902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Dearing, J.A.; Dawson, T.P.; Dong, X.; Yang, X.; Zhang, W. Poverty alleviation strategies in eastern China lead to critical ecological dynamics. Sci. Total Environ. 2015, 506–507, 164–181. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Raworth, K. A safe and just space for humanity: Can we live within the doughnut. Oxfam Policy Pract. Clim. Chang. Resil. 2012, 8, 1–26. [Google Scholar]
- Dearing, J.A.; Wang, R.; Zhang, K.; Dyke, J.G.; Haberl, H.; Hossain, M.S.; Langdon, P.G.; Lenton, T.M.; Raworth, K.; Brown, S.; et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Chang. 2014, 28, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.C.; Peterson, G.D.; Biggs, R. Regime Shifts in the Anthropocene: Drivers, Risks, and Resilience. PLoS ONE 2015, 10, e0134639. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Harms, M.J.; Balvanera, P. Methods for mapping ecosystem service supply: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 17–25. [Google Scholar] [CrossRef]
- Häuser, I.; Martin, K.; Germer, J.; He, P.; Blagodatsky, S.; Liu, H.; Krauß, M.; Rajaona, A.; Shi, M.; Pelz, S.; et al. Environmental and socio-economic impacts of rubber cultivation in the Mekong region: Challenges for sustainable land use. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Bruun, T.B.; de Neergaard, A.; Lawrence, D.; Ziegler, A.D. Environmental Consequences of the Demise in Swidden Cultivation in Southeast Asia: Carbon Storage and Soil Quality. Hum. Ecol. 2009, 37, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, A.D.; Bruun, T.B.; Guardiola-Claramonte, M.; Giambelluca, T.W.; Lawrence, D.; Thanh Lam, N. Environmental consequences of the demise in swidden cultivation in montane mainland southeast asia: Hydrology and geomorphology. Hum. Ecol. 2009, 37, 361–373. [Google Scholar] [CrossRef]
- Dressler, W.H.; Wilson, D.; Clendenning, J.; Cramb, R.; Keenan, R.; Mahanty, S.; Bruun, T.B.; Mertz, O.; Lasco, R.D. The impact of swidden decline on livelihoods and ecosystem services in Southeast Asia: A review of the evidence from 1990 to 2015. Ambio 2017, 46, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yi, Z.-F.; Schmidt-Vogt, D.; Ahrends, A.; Beckschäfer, P.; Kleinn, C.; Ranjitkar, S.; Xu, J. Pushing the limits: The pattern and dynamics of rubber monoculture expansion in Xishuangbanna, SW China. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Y.; Liu, W.; Liu, W. Soil changes induced by rubber and tea plantation establishment: Comparison with tropical rain forest soil in Xishuangbanna, SW China. Environ. Manag. 2012, 50, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-L.; Liu, H.-M.; Liu, L.-Y. Rubber cultivation and sustainable development in Xishuangbanna, China. Int. J. Sustain. Dev. World Ecol. 2001, 8, 337–345. [Google Scholar] [CrossRef]
- Liu, H.; Blagodatsky, S.; Giese, M.; Liu, F.; Xu, J.; Cadisch, G. Impact of herbicide application on soil erosion and induced carbon loss in a rubber plantation of Southwest China. Catena 2016, 145, 180–192. [Google Scholar] [CrossRef]
- Yang, X.; Blagodatsky, S.; Lippe, M.; Liu, F.; Hammond, J.; Xu, J.; Cadisch, G. Land-use change impact on time-averaged carbon balances: Rubber expansion and reforestation in a biosphere reserve, South-West China. For. Ecol. Manag. 2016, 372, 149–163. [Google Scholar] [CrossRef]
- Li, H.; Aide, T.M.; Ma, Y.; Liu, W.; Cao, M. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers. Conserv. 2007, 16, 1731–1745. [Google Scholar] [CrossRef]
- Cotter, M.; Häuser, I.; Harich, F.K.; He, P.; Sauerborn, J.; Treydte, A.C.; Martin, K.; Cadisch, G. Biodiversity and ecosystem services-A case study for the assessment of multiple species and functional diversity levels in a cultural landscape. Ecol. Indic. 2017, 75, 111–117. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, S.; Yuan, G.; Yang, Y.; Cao, M. Evapotranspiration of a tropical rain forest in Xishuangbanna, southwest China. Hydrol. Process. 2010, 24, 2405–2416. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Aide, T.M.; Liu, W. Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. For. Ecol. Manag. 2008, 255, 16–24. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Wehner, S.; Herrmann, S.; Berkhoff, K. CLUENaban—A land use change model combining social factors with physical landscape factors for a mountainous area in Southwest China. Ecol. Indic. 2014, 36, 757–765. [Google Scholar] [CrossRef]
- Cotter, M.; Berkhoff, K.; Gibreel, T.; Ghorbani, A.; Golbon, R.; Nuppenau, E.-A.; Sauerborn, J. Designing a sustainable land use scenario based on a combination of ecological assessments and economic optimization. Ecol. Indic. 2014, 36, 779–787. [Google Scholar] [CrossRef]
- SURUMER Sustainable Rubber Cultivation in the Mekong Region: Development of an Integrative Land-Use Concept in Yunnan Province, China. Available online: https://surumer.uni-hohenheim.de/90683?&L=1 (accessed on 13 June 2018).
- Wang, J.; Aenis, T.; Hofmann-Souki, S. Triangulation in participation: Dynamic approaches for science-practice interaction in land-use decision making in rural China. Land Use Policy 2018, 72, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Aenis, T.; Wang, J. From information giving to mutual scenario definition: Stakeholder participation towards Sustainable Rubber Cultivation in Xishuangbanna, Southwest China. In Farming Systems Facing Global Challenges: Capacities and Strategies; Aenis, T., Knierim, A., Riecher, M.-C., Ridder, R., Schobert, H., Fischer, H., Eds.; Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät: Berlin, Germany, 2016; Volume 1, pp. 618–625. [Google Scholar]
- Xu, J.; Grumbine, R.E.; Beckschäfer, P. Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecol. Indic. 2014, 36, 749–756. [Google Scholar] [CrossRef]
- Nguyen, B.T. Large-scale altitudinal gradient of natural rubber production in Vietnam. Ind. Crops Prod. 2013, 41, 31–40. [Google Scholar] [CrossRef]
- Thellmann, K.; Blagodatsky, S.; Häuser, I.; Liu, H.; Wang, J.; Asch, F.; Cadisch, G.; Cotter, M. Assessing Ecosystem Services in Rubber Dominated Landscapes in South-East Asia—A Challenge for Biophysical Modeling and Transdisciplinary Valuation. Forests 2017, 8, 505. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.3.3 User’s Guide; The Natural Capital Project: Standford, CA, USA, 2016. [Google Scholar]
- Aenis, T.; Wang, J.; Hofmann-Souki, S.; Lixia, T.; Langenberger, G.; Cadisch, G.; Martin, K.; Cotter, M.; Krauss, M.; Waibel, H. Research-praxis integration in South China—The rocky road to implement strategies for sustainable rubber cultivation in the Mekong Region. In Proceedings of the 13th International Symposium on River Sedimentation (ISRS 2016), Stuttgart, Germany, 19–22 September 2016; p. 1343. [Google Scholar]
- Bhagabati, N.K.; Ricketts, T.; Sulistyawan, T.B.S.; Conte, M.; Ennaanay, D.; Hadian, O.; McKenzie, E.; Olwero, N.; Rosenthal, A.; Tallis, H.; et al. Ecosystem services reinforce Sumatran tiger conservation in land use plans. Biol. Conserv. 2014, 169, 147–156. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Global Aridity and PET Database | CGIAR-CSI. Available online: http://www.cgiar-csi.org/data/global-aridity-and-pet-database (accessed on 20 October 2017).
- Waibel, H.; Min, S.; Huang, J. Small scale rubber farming and income risk in Xishuangbanna, China. In Proceedings of the World Congress on Agroforestry, Delhi, India, 10–14 February 2014. [Google Scholar]
- Beckschäfer, P. Obtaining rubber plantation age information from very dense Landsat TM & ETM + time series data and pixel-based image compositing. Remote Sens. Environ. 2017, 196, 89–100. [Google Scholar] [CrossRef]
- Rodionov, S.N. A sequential algorithm for testing climate regime shifts: ALGORITHM FOR TESTING REGIME SHIFTS. Geophys. Res. Lett. 2004, 31, L09204. [Google Scholar] [CrossRef]
- Bai, Y.; Zheng, H.; Ouyang, Z.; Zhuang, C.; Jiang, B. Modeling hydrological ecosystem services and tradeoffs: A case study in Baiyangdian watershed, China. Environ. Earth Sci. 2013, 70, 709–718. [Google Scholar] [CrossRef]
- Cotter, M.; Martin, K.; Sauerborn, J. How do “Renewable Products” impact biodiversity and ecosystem services—The example of natural rubber in China. J. Agric. Rural Dev. Trop. Subtrop. 2009, 110, 9–22. [Google Scholar]
- Min, S.; Waibel, H.; Cadisch, G.; Langenberger, G.; Bai, J.; Huang, J. The Economics of Smallholder Rubber Farming in a Mountainous Region of Southwest China: Elevation, Ethnicity, and Risk. Mt. Res. Dev. 2017, 37, 281–293. [Google Scholar] [CrossRef]
- Hossain, M.S.; Eigenbrod, F.; Amoako Johnson, F.; Dearing, J.A. Unravelling the interrelationships between ecosystem services and human wellbeing in the Bangladesh delta. Int. J. Sustain. Dev. World Ecol. 2017, 24, 120–134. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yin, Y.; Liu, X.; Cheng, F.; Yang, J.; Li, J.; Dong, S.; Zhu, A. Ecosystem Services and landscape change associated with plantation expansion in a tropical rainforest region of Southwest China. Ecol. Model. 2017, 353, 129–138. [Google Scholar] [CrossRef]
- Laurance, W.F. Do edge effects occur over large spatial scales? Trends Ecol. Evol. 2000, 15, 134–135. [Google Scholar] [CrossRef]
- Hughes, T.P.; Linares, C.; Dakos, V.; van de Leemput, I.A.; van Nes, E.H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 2013, 28, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelinski, D.E.; Wu, J. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Hossain, M.S.; Dearing, J.A.; Eigenbrod, F.; Johnson, F.A. Operationalizing safe operating space for regional social-ecological systems. Sci. Total Environ. 2017, 584–585, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Polasky, S.; Carpenter, S.R.; Folke, C.; Keeler, B. Decision-making under great uncertainty: Environmental management in an era of global change. Trends Ecol. Evol. 2011, 26, 398–404. [Google Scholar] [CrossRef] [PubMed]
Land Cover Category | Coverage in 2015 (%) | |||
---|---|---|---|---|
NR 1 | SW1 2 | SW2 3 | SW3 4 | |
Upland forest 5 | 45.9 | 35.8 | 70.4 | 29.0 |
Lowland forest 5 | 15.6 | 7.7 | 2.6 | 17.0 |
Bamboo | 5.6 | 3.7 | 1.7 | 5.3 |
Rubber | 9.2 | 11.8 | 7.6 | 30.6 |
Rice | 4.1 | 5.4 | 5.8 | 5.3 |
Perennial crops | 1.1 | 2.4 | 1.5 | 4.0 |
Bushland/tea 6 | 11.1 | 15.2 | 6.2 | 5.0 |
Annual crops | 5.7 | 17.2 | 4.1 | 3.0 |
Water | 1.3 | 0.0 | 0.0 | 0.0 |
Urban | 0.4 | 0.9 | 0.2 | 0.9 |
Scenario/Subwatershed | Habitat Quality (10³ HQ Index) 4 | Rubber Yield (106 kg) | Sediment Export (103 kg) | Water Yield (km³) | Carbon Storage (106 kg) 5 |
---|---|---|---|---|---|
Initial state (2015) | |||||
NR 1 | 232 | 1.85 | 53,441 | 102 | 5337 |
SW1 | 5 | 0.06 | 1005 | 3 | 111 |
SW2 | 25 | 0.04 | 3185 | 12 | 589 |
SW3 | 16 | 0.42 | 2555 | 5 | 367 |
BAU2(2040) | |||||
NR | 225 | 2.98 | 60,814 | 99 | 5095 |
SW1 | 4 | 0.10 | 1128 | 3 | 106 |
SW2 | 24 | 0.15 | 3981 | 11 | 556 |
SW3 | 15 | 0.67 | 3769 | 4 | 321 |
BTO3(2040) | |||||
NR | 249 | 2.92 | 19,040 | 102 | 5693 |
SW1 | 5 | 0.09 | 519 | 3 | 129 |
SW2 | 27 | 0.07 | 1417 | 12 | 630 |
SW3 | 17 | 0.62 | 829 | 5 | 380 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thellmann, K.; Cotter, M.; Baumgartner, S.; Treydte, A.; Cadisch, G.; Asch, F. Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia. Sustainability 2018, 10, 2418. https://doi.org/10.3390/su10072418
Thellmann K, Cotter M, Baumgartner S, Treydte A, Cadisch G, Asch F. Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia. Sustainability. 2018; 10(7):2418. https://doi.org/10.3390/su10072418
Chicago/Turabian StyleThellmann, Kevin, Marc Cotter, Sabine Baumgartner, Anna Treydte, Georg Cadisch, and Folkard Asch. 2018. "Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia" Sustainability 10, no. 7: 2418. https://doi.org/10.3390/su10072418
APA StyleThellmann, K., Cotter, M., Baumgartner, S., Treydte, A., Cadisch, G., & Asch, F. (2018). Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia. Sustainability, 10(7), 2418. https://doi.org/10.3390/su10072418