Ecological Compensation in Zhijiang City Based on Ecosystem Service Value and Ecological Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Estimation of Ecosystem Service Value
2.3.2. Landscape Pattern Index Analysis
2.3.3. Spatial Autocorrelation
2.3.4. Construction of Ecological Risk Index
2.3.5. Calculation of Ecological Compensation Standard
3. Results
3.1. Spatiotemporal Characteristics of Ecosystem Service Value
3.1.1. The Time Change of Ecosystem Service Value
3.1.2. The Spatial Change of Ecosystem Service Value
3.2. Spatial Autocorrelation Analysis of Ecosystem Service Value
3.3. Changes of Landscape Pattern Index
3.4. Ecological Risk Analysis
3.5. Priority of Ecological Compensation
4. Discussion
4.1. Research Significance
4.2. Limitations
5. Conclusions
- (1)
- From 2000 to 2020, the ESV of the study area showed obvious regional characteristics in terms of the spatial distribution, and the ESVs of towns along the Yangtze River valley in the south were generally higher than those in the north. High-ESV areas are mainly distributed in the south along the Yangtze River, while low-ESV areas are mainly distributed in the central and northeastern areas, where construction land is concentrated. Overall, the ESV of the entire study area has shown a downward trend.
- (2)
- On the whole, the number and density of landscape patches in Zhijiang City decreased year by year from 2000 to 2020, indicating that the landscape pattern gradually tended towards singular integration. Among the six landscape types in the study area, cultivated land represents the largest landscape patch area, the highest landscape dominance index, and the lowest landscape loss index. From 2010 to 2020, wetland and grassland landscapes showed significant losses.
- (3)
- From 2000 to 2020, the ecological risk degree of Zhijiang City decreased, and the global average ecological risk decreased from 0.1697 in 2000 to 0.1577 in 2020. The high-risk areas and medium-high-risk areas showed gradual reductions, and were mainly distributed in western Zhijiang City, represented by grassland and forest land areas. The low-risk areas and medium-low-risk areas showed gradual increases, concentrated in Majiadian Town along the Yangtze River in the southeast.
- (4)
- We used ESV and the ecological risk index to comprehensively measure the ecological environment of the study area, and determined the priority of regional ecological compensation of each township using the ratio of GDP per unit area. The towns with the highest priority were Gujiadian Town and Baiyang Town, and the lowest priority was held by Majiadian Town. Generally speaking, the priority for ecological compensation of each township changed little during the study period.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grafius, D.R.; Corstanje, R.; Warren, P.H.; Evans, K.L.; Hancock, S.; Harris, J.A. The impact of land use/land cover scale on modelling urban ecosystem services. Landsc. Ecol. 2016, 31, 1509–1522. [Google Scholar] [CrossRef] [Green Version]
- Sutton, P.C.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Reynaud, A.; Lanzanova, D. A Global Meta-Analysis of the Value of Ecosystem Services Provided by Lakes. Ecol. Econ. 2017, 137, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Helliwell, D.R. Valuation of wildlife resources. Reg. Stud. 1969, 3, 41–47. [Google Scholar] [CrossRef]
- Reid, M.V.; Mooney, H.A.; Cropper, A. Millennium ecosystem assessment (MA). In Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Daily, G.C. Nature’s Service: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; D’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Wang, X.K.; Miao, H. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values. Acta Ecol. Sin. 1999, 19, 19–25. [Google Scholar]
- Chen, Z.X.; Zhang, X.S. The value of ecosystem benefits in China. Chin. Sci. Bull. 2000, 45, 17–22+113. [Google Scholar]
- Xie, G.D.; Zhang, Y.L.; Lu, C.X.; Zheng, D.C.; Sheng, K. Study on valuation of rangeland ecosystem services of China. J. Nat. Resour. 2001, 16, 47–53. [Google Scholar]
- Duan, R.J.; Hao, J.M.; Wang, J. Change of land use structure and ecosystem service value—A Case Study of Datong City, Shanxi Province. Ecol. Econ. 2005, 42, 60–62+64. [Google Scholar]
- Yang, Y.Y.; Dai, E.F.; Fu, H. The assessment framework of ecosystem service value based on InVEST model. J. Cap. Norm. Univ. 2012, 33, 41–47. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Wang, P.J.; Sun, H.; Hua, B.L.; Fan, S.L. Evaluation and dynamic simulation of ecosystem service value in coastal area of Fuzhou city. Trans. Chin. Soc. Agric. Mach. 2020, 51, 249–257. [Google Scholar]
- Gao, Z.B.; Wang, X.L.; Su, J.; Chen, Z.F.; Zheng, M.; Sun, Y.; Ji, D. Ecological compensation of Dongjiang River basin based on evaluation of ecosystem service value. J. Ecol. Rural. Environ. 2018, 34, 563–570. [Google Scholar]
- Zeng, M.T.; Li, Z.G. Empirical analysis of Beijing’s eco-economic coordination degree based on improved value equivalent factor. Ecol. Econ. 2021, 37, 163–169. [Google Scholar]
- Deng, Y.J.; Hou, M.Y.; Jia, L. Ecological compensation strategy of the old revolutionary base areas along the route of Long March based on ecosystem service value evaluation. Chin. J. Appl. Ecol. 2022, 33, 159–168. [Google Scholar]
- Calow, P. Ecological risk assessment: Risk for what? How do we decide? Ecotoxicol. Environ. Saf. 1998, 40, 15–18. [Google Scholar] [CrossRef]
- USEPA. Guidelines for Ecological Risk Assessment; USEPA Office of Water: Washington, DC, USA, 1998.
- Zhang, Y.; Xiao, S.M.; Hu, S.K.; Sun, L.P. Risk assessment for cryptosporidium in recreational water. Adm. Tech. Environ. Monit. 2016, 28, 1–5. [Google Scholar]
- Critto, A.; Torresan, S.; Semenzin, E.; Giove, S.; Mesman, M.; Schouten, A.J.; Rutgers, M.; Marcomini, A. Development of a site-specific ecological risk assessment for contaminated sites: Part I. A multi-criteria based system for the selection of ecotoxicological tests and ecological observations. Sci. Total Environ. 2007, 379, 16–33. [Google Scholar] [CrossRef]
- Zhu, Z.; Mei, Z.; Xu, X.; Feng, Y.; Ren, G. Landscape ecological risk assessment based on land use change in the Yellow River basin of Shaanxi, China. Int. J. Environ. Res. Public Health 2022, 19, 9547. [Google Scholar] [CrossRef]
- Peng, Y.; Mi, K.; Qing, F.T.; Liu, X.H.; Liu, L.; Chen, Q. Ecological risk assessment for key industrial development zones in the areas surrounding the Bo Sea in China. Hum. Ecol. Risk Assess. 2016, 22, 475–488. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Wang, W.; Chen, Z.; Ling, Z.; Lv, J. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2020, 117, 106677. [Google Scholar] [CrossRef]
- Liu, H.; Wang, R.Z.; Sun, H.Y.; Cao, W.J.; Song, J.; Zhang, X.F.; Wen, L.; Zhuo, Y.; Wang, L.X.; Liu, T.J. Spatiotemporal evolution and driving forces of ecosystem service value and ecological risk in the Ulan Buh Desert. Front. Environ. Sci. 2023, 10, 2659. [Google Scholar] [CrossRef]
- Chen, M.; Ma, L.Q. Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. J. Environ. Qual. 1998, 27, 1294–1300. [Google Scholar] [CrossRef]
- Zhong, L.S.; Li, P. Ecological risk assessment and management countermeasures for tourism development of Awancang wetland in Gansu Province. Prog. Geogr. 2014, 33, 1444–1451. [Google Scholar]
- Solomon, N.; Segnon, A.C.; Birhane, E. Ecosystem service values changes in response to land-use/land-cover dynamics in dry afromontane forest in northern ethiopia. Int. J. Environ. Res. Public Health 2019, 16, 4653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.L.; Yang, R.Y. Land use change and its impact on ecosystem service value in Wuhan. Res. Soil Water Conserv. 2021, 28, 177–183+193+2. [Google Scholar]
- Liu, D.; Hu, Z.T.; Jin, L.S. Review on the analysis framework of eco-compensation. Acta Ecol. Sin. 2018, 38, 380–392. [Google Scholar]
- Liu, G.H.; Ma, Y.; Wen, Y.H.; Zhu, Y.Y.; Xie, J. Comparison on eco-compensation between the domestic and international studies. J. Resour. Ecol. 2018, 9, 382–395. [Google Scholar]
- Liu, X.Y.; Feng, Q.S. Evaluation of ecological service value of alpine grassland ecosystem in northern Tibet region. J. Environ. Sci. 2012, 32, 3152–3160. [Google Scholar]
- Tan, Q.C. Eco-compensation standard and mechanism. China Popul. Resour. Environ. 2009, 19, 1–6. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the method of valuing ecosystem services based on unit area value equivalent factor. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Chen, W.X.; Li, J.F.; Li, L.J. Spatial heterogeneity and sensitivity analysis of ecosystem services value in the Middle Yangtze River region. J. Nat. Resour. 2019, 34, 325–337. [Google Scholar] [CrossRef]
- Liu, X.P.; Li, X.; Chen, Y.M.; Tan, Z.Z.; Li, S.Y.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Zhang, X.B.; Shi, P.J.; Luo, J.; Liu, H.L.; Wei, W. The Ecological Risk Assessment of Arid Inland River Basin at the Landscape Scale: A Case Study on Shiyang River Basin. J. Nat. Resour. 2014, 29, 410–419. [Google Scholar]
- Han, Z.H.; Li, J.D.; Yin, H.; Shen, T.Y.J.; Xu, C. Analysis of ecological security of wetland in Liaohe River delta based on the landscape pattern. Ecol. Environ. Sci. 2010, 19, 701–705. [Google Scholar]
- Deng, C.X.; Zhong, X.L.; Xie, B.G.; Wan, Y.L.; Song, X.W. Spatial and temporal changes of land ecosystem service value in Dongting Lake area in 1995–2015. Geogr. Res. 2019, 38, 844–855. [Google Scholar]
- Chen, X.Y.; Xie, G.Z.; Zhang, J.P. Landscape ecological risk assessment of land use changes in the coastal area of Haikou City in the past 30 years. Acta Ecol. Sin. 2021, 41, 975–986. [Google Scholar]
- Wang, N.J.; Liu, J.; Wu, D.Q.; Gao, A.; Wang, R.Q. Regional ecological compensation based on ecosystem service value-a case study of Shandong Province. J. Ecol. 2010, 30, 6646–6653. [Google Scholar]
- Ge, J.Z.; Li, T.; Qi, Z.X.; Gong, Y.B.; Wang, J.R.; Zhao, Y.P.; Wang, Z.Y. Identification and Allocation of Ecological Compensation Space Based on Ecological Risk Assessment: A Case Study of Dongting Lake Eco-economic Zone. J. Ecol. Rural. Environ. 2022, 38, 472–484. [Google Scholar]
- Peng, H.; Li, Z.Q. Evaluation of ecosystem service value of natural grassland in Xilin River Basin. J. Grass Ind. 2007, 16, 109–117. [Google Scholar]
- Zhu, Z.Z.; Zhong, Y.X. Study on the temporal and spatial evolution of land use and ecosystem service value of urban agglomerations in the Yangtze River delta. Resour. Environ. Yangtze River Basin 2019, 28, 1520–1530. [Google Scholar]
- Li, H.S.; Yang, Q.P.; Zhao, Y.M. Focusing on water eco-environment problems and sustainably promoting ecological conservation and restoration of the Yangtze River. J. Environ. Eng. Technol. 2022, 12, 336–347. [Google Scholar]
- Zhang, Y.Y.; Wang, Z.; Qiu, B.; Sun, D.Z. Analysis of water eco-environmental problems and related countermeasures for typical cities in Hubei region of the Yangtze River Basin. J. Environ. Eng. Technol. 2023, 13, 27–35. [Google Scholar]
- Luo, M.S.Y.; Tao, R.; Zhang, C.F.; Chen, X.F. Study on the ecological environment change in Yichang city based on remote sensing ecological index. Geospat. Inf. 2022, 20, 12–17. [Google Scholar]
- Peng, J.; Dang, W.X.; Liu, Y.X.; Zong, M.L.; Hu, X.X. Research progress and prospect of landscape ecological risk assessment. Acta Geogr. Sin. 2015, 70, 664–677. [Google Scholar]
- Zhang, L.J.; Bai, Y.P.; Hu, Y.C.; Deng, X.Z.; Liu, W. Valuation of ecosystem services in China under different SSP-RCP scenarios. Acta Ecol. Sin. 2023, 43, 510–521. [Google Scholar]
- An, G.Q.; Han, Y.X.; Gao, N.; Ji, L.S.; Gao, H.B.; Tan, X.Q.; Xu, Y.T. Quantity and equilibrium of ecosystem service value and their spatial distribution patterns in Shandong Province. China Popul. Resour. Environ. 2021, 31, 9–18. [Google Scholar]
- Gao, Y.M.; Wu, W.J.; Jiang, H.Q.; Duan, Y.; Zhou, X.F.; Ma, G.X. Spatiotemporal changes of water conservation services value based on global terrestrial ecosystem. Res. Environ. Sci. 2021, 34, 2696–2705. [Google Scholar]
- Yao, X.W.; Zeng, J.; Li, W.J. Spatial correlation characteristics of urbanization and land ecosystem service value in Wuhan urban agglomeration. Trans. Chin. Soc. Agric. Eng. 2015, 31, 249–256. [Google Scholar]
- Liu, H.; Yin, J.; Lin, M.; Chen, X.L. Sustainable development evaluation of the Poyang Lake Basin based on ecological service value and structure analysis. Acta Ecol. Sin. 2017, 37, 2575–2587. [Google Scholar]
- Xiong, S.G.; Wan, J.; Long, H.L.; Yu, L. Spatiotemporal dynamics and implications of ecosystem service value in the key ecological function area—Case of Yichang city, Hubei Province. Res. Soil Water Conserv. 2016, 23, 296–302. [Google Scholar]
- Hu, S.; Chen, L.Q.; Li, L.; Wang, B.Y.; Yuan, L.N.; Cheng, L.; Yu, Z.Q.; Zhang, T. Spatiotemporal dynamics of ecosystem service value determined by land-use changes in the urbanization of Anhui Province, China. Int. J. Environ. Res. Public Health 2019, 16, 5104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Xu, S.Z.; Zhou, Y.Y.; Wang, H.Z.; Ye, Y.Q. Evaluation and coupling coordination analysis of landscape ecological security of Yichang from the perspective of production-life-ecological space. Res. Soil Water Conserv. 2022, 29, 344–351. [Google Scholar]
- Tian, Y.C.; Bai, X.Y.; Huang, Y.L.; Zhang, Q.; Tao, J.; Zhang, Y.L. Ecological compensation standard accounting of Chishui River basin based on ecosystem service value. Trans. Chin. Soc. Agric. Mach. 2019, 50, 312–322. [Google Scholar]
- Mondal, B.; Sharma, P.; Kundu, D.; Bansal, S. Spatio-temporal sssessment of landscape ecological risk and associated drivers: A case study of Delhi. Environ. Urban. Asia 2021, 12, 85–106. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Wu, H.; Ding, M.H.; Li, M.; Huang, X.; Zheng, R.; Xu, L. Ecological compensation standard of a water-receiving area in an inter-basin water diversion based on ecosystem service value and public willingness: A Case Study of Beijing. Sustainability 2021, 13, 5236. [Google Scholar] [CrossRef]
Year | Statistical Type | Cultivated Land | Forest Land | Grassland | Water Area | Wetland | Construction Land | Total |
---|---|---|---|---|---|---|---|---|
2000 | ESV (108 CNY) | 14.82 | 1.00 | 0.57 | 39.92 | 0.31 | −0.95 | 55.66 |
2010 | ESV (108 CNY) | 14.56 | 1.01 | 0.48 | 33.40 | 0.86 | −1.99 | 48.31 |
2020 | ESV (108 CNY) | 13.84 | 0.95 | 0.42 | 35.69 | 0.01 | −3.36 | 47.54 |
2000–2010 | ESV dynamic degree | −0.18% | 0.18% | −1.56% | −1.63% | 17.83% | 10.89% | −1.32% |
2010–2020 | ESV dynamic degree | −0.50% | −0.66% | −1.12% | 0.69% | −9.92% | 6.88% | −0.16% |
2000–2020 | ESV dynamic degree | −0.33% | −0.24% | −1.25% | −0.53% | −4.89% | 12.63% | −0.73% |
Year | Anfusi Town | Baiyang Town | Bailizhou Town | Dongshi Town | Gudian Town | Madian street | Qixingtai Town | Wenan Town | Xiannv Town | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
High–high | 2000 | 0 | 1 | 3 | 3 | 3 | 4 | 1 | 0 | 0 | 15 |
2010 | 0 | 1 | 2 | 3 | 3 | 3 | 1 | 0 | 0 | 13 | |
2020 | 0 | 1 | 3 | 3 | 3 | 0 | 2 | 0 | 0 | 12 | |
Low–low | 2000 | 6 | 1 | 1 | 4 | 2 | 0 | 0 | 4 | 3 | 21 |
2010 | 3 | 0 | 4 | 3 | 0 | 0 | 0 | 1 | 2 | 13 | |
2020 | 0 | 0 | 9 | 5 | 0 | 1 | 0 | 1 | 5 | 21 | |
Low–high | 2000 | 0 | 1 | 1 | 1 | 3 | 1 | 2 | 0 | 0 | 9 |
2010 | 0 | 1 | 2 | 1 | 3 | 0 | 2 | 0 | 0 | 9 | |
2020 | 0 | 1 | 1 | 1 | 3 | 0 | 2 | 0 | 0 | 8 | |
High–low | 2000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
2010 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | |
2020 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 4 |
Year | Cultivated Land | Forest Land | Grassland | Water Area | Wetland | Construction Land | |
---|---|---|---|---|---|---|---|
Landscape fragmentation degree | 2000 | 0.0018 | 0.3633 | 0.6933 | 0.0340 | 0.0412 | 0.0141 |
2010 | 0.0026 | 0.2912 | 0.6366 | 0.0340 | 0.0291 | 0.0093 | |
2020 | 0.0026 | 0.2829 | 0.6751 | 0.0235 | 0.3003 | 0.0111 | |
Landscape separation degree | 2000 | 0.0236 | 2.4067 | 3.6191 | 0.2959 | 2.1996 | 0.3480 |
2010 | 0.0285 | 2.1372 | 3.7778 | 0.2959 | 1.1005 | 0.1954 | |
2020 | 0.0293 | 2.1801 | 4.1271 | 0.2382 | 39.3090 | 0.1646 | |
Landscape dominance index | 2000 | 0.6685 | 0.1267 | 0.1748 | 0.1961 | 0.0051 | 0.0508 |
2010 | 0.6723 | 0.1130 | 0.1434 | 0.1961 | 0.0154 | 0.0929 | |
2020 | 0.6484 | 0.1028 | 0.1342 | 0.1845 | 0.0005 | 0.1530 | |
Landscape disturbance Index | 2000 | 0.1417 | 0.9290 | 1.4673 | 0.1450 | 0.6815 | 0.1216 |
2010 | 0.1443 | 0.8093 | 1.4803 | 0.1450 | 0.3478 | 0.0818 | |
2020 | 0.1398 | 0.8160 | 1.6025 | 0.1201 | 11.9429 | 0.0855 | |
Landscape vulnerability Index | 2000 | 0.1905 | 0.0952 | 0.1429 | 0.2381 | 0.2857 | 0.0476 |
2010 | 0.1905 | 0.0952 | 0.1429 | 0.2381 | 0.2857 | 0.0476 | |
2020 | 0.1905 | 0.0952 | 0.1429 | 0.2381 | 0.2857 | 0.0476 | |
Landscape loss degree | 2000 | 0.1643 | 0.2974 | 0.4578 | 0.1817 | 0.4413 | 0.0761 |
2010 | 0.1658 | 0.2776 | 0.4599 | 0.1858 | 0.3152 | 0.0624 | |
2020 | 0.1632 | 0.2788 | 0.4785 | 0.1691 | 1.8472 | 0.0638 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Peng, Y. Ecological Compensation in Zhijiang City Based on Ecosystem Service Value and Ecological Risk. Sustainability 2023, 15, 4783. https://doi.org/10.3390/su15064783
Xu X, Peng Y. Ecological Compensation in Zhijiang City Based on Ecosystem Service Value and Ecological Risk. Sustainability. 2023; 15(6):4783. https://doi.org/10.3390/su15064783
Chicago/Turabian StyleXu, Xuexian, and Yuling Peng. 2023. "Ecological Compensation in Zhijiang City Based on Ecosystem Service Value and Ecological Risk" Sustainability 15, no. 6: 4783. https://doi.org/10.3390/su15064783