Validity of Predictive Equations for Resting Energy Expenditure Developed for Obese Patients: Impact of Body Composition Method
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Indirect Calorimetry
2.3. Body Composition
2.3.1. Dual-Energy X-ray Absorptiometry (DXA)
2.3.2. Bioelectrical Impedance Analysis (BIA)
2.4. REE Predictive Equations
2.5. Data Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seagle, H.M.; Strain, G.W.; Makris, A.; Reeves, R.S.; American Dietetic, A. Position of the American Dietetic Association: Weight management. J. Am. Diet. Assoc. 2009, 109, 330–346. [Google Scholar] [PubMed]
- Pinheiro Volp, A.C.; Esteves de Oliveira, F.C.; Duarte Moreira Alves, R.; Esteves, E.A.; Bressan, J. Energy expenditure: Components and evaluation methods. Nutr. Hosp. 2011, 26, 430–440. [Google Scholar] [PubMed]
- Matarese, L.E. Indirect calorimetry: Technical aspects. J. Am. Diet. Assoc. 1997, 97, S154–S160. [Google Scholar] [CrossRef]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Jesus, P.; Achamrah, N.; Grigioni, S.; Charles, J.; Rimbert, A.; Folope, V.; Petit, A.; Dechelotte, P.; Coeffier, M. Validity of predictive equations for resting energy expenditure according to the body mass index in a population of 1726 patients followed in a Nutrition Unit. Clin. Nutr. 2015, 34, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J.; Vansant, G.A. Validity of predictive equations for resting energy expenditure in Belgian normal weight to morbid obese women. Clin. Nutr. 2010, 29, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Madden, A.M.; Mulrooney, H.M.; Shah, S. Estimation of energy expenditure using prediction equations in overweight and obese adults: A systematic review. J. Hum. Nutr. Diet. 2016, 29, 458–476. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Control of energy expenditure in humans. Eur. J. Clin. Nutr. 2017, 71, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Wilms, B.; Schmid, S.M.; Ernst, B.; Thurnheer, M.; Mueller, M.J.; Schultes, B. Poor prediction of resting energy expenditure in obese women by established equations. Metabolism 2010, 59, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Hofsteenge, G.H.; Chinapaw, M.J.; Delemarre-van de Waal, H.A.; Weijs, P.J. Validation of predictive equations for resting energy expenditure in obese adolescents. Am. J. Clin. Nutr. 2010, 91, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Korth, O.; Bosy-Westphal, A.; Zschoche, P.; Gluer, C.C.; Heller, M.; Muller, M.J. Influence of methods used in body composition analysis on the prediction of resting energy expenditure. Eur. J. Clin. Nutr. 2007, 61, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Lemos, T.; Gallagher, D. Current body composition measurement techniques. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, A.; Scalzo, G.; Masala, S.; Tarantino, U.; Guglielmi, G. Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol. Med. 2009, 114, 286–300. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Gallagher, D. Assessment methods in human body composition. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Ellegard, L.; Bertz, F.; Winkvist, A.; Bosaeus, I.; Brekke, H.K. Body composition in overweight and obese women postpartum: Bioimpedance methods validated by dual energy X-ray absorptiometry and doubly labeled water. Eur. J. Clin. Nutr. 2016, 70, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Bosaeus, M.; Karlsson, T.; Holmang, A.; Ellegard, L. Accuracy of quantitative magnetic resonance and eight-electrode bioelectrical impedance analysis in normal weight and obese women. Clin. Nutr. 2014, 33, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Pateyjohns, I.R.; Brinkworth, G.D.; Buckley, J.D.; Noakes, M.; Clifton, P.M. Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity 2006, 14, 2064–2070. [Google Scholar] [CrossRef] [PubMed]
- Graf, S.; Karsegard, V.L.; Viatte, V.; Maisonneuve, N.; Pichard, C.; Genton, L. Comparison of three indirect calorimetry devices and three methods of gas collection: A prospective observational study. Clin. Nutr. 2013, 32, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Verdich, C.; Barbe, P.; Petersen, M.; Grau, K.; Ward, L.; Macdonald, I.; Sorensen, T.I.; Oppert, J.M. Changes in body composition during weight loss in obese subjects in the NUGENOB study: Comparison of bioelectrical impedance vs. dual-energy X-ray absorptiometry. Diabetes Metab. 2011, 37, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, R.S.; Thornton, J.C.; Yang, M.U.; Wang, J.; Redmond, A.M.; Pierson, R.N., Jr.; Pi-Sunyer, F.X.; Van Itallie, T.B. Prediction of the resting metabolic rate in obese patients. Am. J. Clin. Nutr. 1983, 37, 595–602. [Google Scholar] [PubMed]
- Huang, K.C.; Kormas, N.; Steinbeck, K.; Loughnan, G.; Caterson, I.D. Resting metabolic rate in severely obese diabetic and nondiabetic subjects. Obes. Res. 2004, 12, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Muller, B.; Merk, S.; Burgi, U.; Diem, P. Calculating the basal metabolic rate and severe and morbid obesity. Praxis 2001, 90, 1955–1963. [Google Scholar] [PubMed]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Lazzer, S.; Agosti, F.; Resnik, M.; Marazzi, N.; Mornati, D.; Sartorio, A. Prediction of resting energy expenditure in severely obese Italian males. J. Endocrinol. Investig. 2007, 30, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Lazzer, S.; Agosti, F.; Silvestri, P.; Derumeaux-Burel, H.; Sartorio, A. Prediction of resting energy expenditure in severely obese Italian women. J. Endocrinol. Investig. 2007, 30, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Horie, L.M.; Gonzalez, M.C.; Torrinhas, R.S.; Cecconello, I.; Waitzberg, D.L. New specific equation to estimate resting energy expenditure in severely obese patients. Obesity 2011, 19, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Marra, M.; Cioffi, I.; Sammarco, R.; Montagnese, C.; Naccarato, M.; Amato, V.; Contaldo, F.; Pasanisi, F. Prediction and evaluation of resting energy expenditure in a large group of obese outpatients. Int. J. Obes. 2017, 41, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Disse, E.; Ledoux, S.; Betry, C.; Caussy, C.; Maitrepierre, C.; Coupaye, M.; Laville, M.; Simon, C. An artificial neural network to predict resting energy expenditure in obesity. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Roberts, S.B.; Kehayias, J.J.; Wang, J.; Hsu, L.K.; Shikora, S.A.; Saltzman, E.; McCrory, M.A. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E1080–E1088. [Google Scholar] [CrossRef] [PubMed]
- Deurenberg, P. Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am. J. Clin. Nutr. 1996, 64, 449S–452S. [Google Scholar] [CrossRef] [PubMed]
- Waki, M.; Kral, J.G.; Mazariegos, M.; Wang, J.; Pierson, R.N., Jr.; Heymsfield, S.B. Relative expansion of extracellular fluid in obese vs. nonobese women. Am. J. Physiol. 1991, 261, E199–E203. [Google Scholar] [PubMed]
- Horie, L.M.; Barbosa-Silva, M.C.; Torrinhas, R.S.; de Mello, M.T.; Cecconello, I.; Waitzberg, D.L. New body fat prediction equations for severely obese patients. Clin. Nutr. 2008, 27, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.; Omana, W.; Flores, L.; Coves, M.J.; Bellido, D.; Perea, V.; Vidal, J. Prediction of whole-body and segmental body composition by bioelectrical impedance in morbidly obese subjects. Obes. Surg. 2012, 22, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, A.M.; Rance, K.A.; Murison, S.D.; Duncan, J.S.; Speakman, J.R. Additional anthropometric measures may improve the predictability of basal metabolic rate in adult subjects. Eur. J. Clin. Nutr. 2006, 60, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J. Validity of predictive equations for resting energy expenditure in US and Dutch overweight and obese class I and II adults aged 18–65 y. Am. J. Clin. Nutr. 2008, 88, 959–970. [Google Scholar] [PubMed]
- Thurlow, S.; Taylor-Covill, G.; Sahota, P.; Oldroyd, B.; Hind, K. Effects of procedure, upright equilibrium time, sex and BMI on the precision of body fluid measurements using bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Raimann, J.G.; Zhu, F.; Wang, J.; Thijssen, S.; Kuhlmann, M.K.; Kotanko, P.; Levin, N.W.; Kaysen, G.A. Comparison of fluid volume estimates in chronic hemodialysis patients by bioimpedance, direct isotopic, and dilution methods. Kidney Int. 2014, 85, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.P.; Bramley, P.N.; Heighton, R.; Green, J.H.; Horsman, A.; Losowsky, M.S.; Smith, M.A. Estimation of body composition from bioelectrical impedance of body segments: Comparison with dual-energy X-ray absorptiometry. Br. J. Nutr. 1993, 69, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.; Brinkworth, G.D.; Buckley, J.D.; Noakes, M.; Clifton, P.M. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clin. Nutr. 2007, 26, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Panotopoulos, G.; Ruiz, J.C.; Guy-Grand, B.; Basdevant, A. Dual X-ray absorptiometry, bioelectrical impedance, and near infrared interactance in obese women. Med. Sci. Sports Exerc. 2001, 33, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Leahy, S.; O’Neill, C.; Sohun, R.; Jakeman, P. A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults. Eur. J. Appl. Physiol. 2012, 112, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Neovius, M.; Hemmingsson, E.; Freyschuss, B.; Udden, J. Bioelectrical impedance underestimates total and truncal fatness in abdominally obese women. Obesity 2006, 14, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Marra, M.; Sammarco, R.; De Filippo, E.; Caldara, A.; Speranza, E.; Scalfi, L.; Contaldo, F.; Pasanisi, F. Prediction of body composition in anorexia nervosa: Results from a retrospective study. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mattar, L.; Godart, N.; Melchior, J.C.; Falissard, B.; Kolta, S.; Ringuenet, D.; Vindreau, C.; Nordon, C.; Blanchet, C.; Pichard, C. Underweight patients with anorexia nervosa: Comparison of bioelectrical impedance analysis using five equations to dual X-ray absorptiometry. Clin. Nutr. 2011, 30, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Gaba, A.; Kapus, O.; Cuberek, R.; Botek, M. Comparison of multi- and single-frequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of body composition in post-menopausal women: Effects of body mass index and accelerometer-determined physical activity. J. Hum. Nutr. Diet. 2015, 28, 390–400. [Google Scholar] [CrossRef] [PubMed]
Equations | Units | Factors Used for Calculation | REE Predictive Equations |
---|---|---|---|
Harris Benedict 1919 [24] | kcal/day | Sex, BW (kg), HT (cm), age (year) | M: 13.7516 × BW + 5.0033 × HT − 6.755 × age + 66.473 F: 9.5634 × BW + 1.8496 × HT − 0.6756 × age + 655.0955 |
Bernstein et al. [21] | kcal/day | Sex, BW (kg), HT (cm), age (year) | M: 11.02 × BW + 10.23 × HT − 5.8 ×age – 1032 F: 7.48 × WT − 0.42 × HT − 3 × age + 844 |
Bernstein et al. (BC) [21] | kcal/day | FM and FFM (kg), age (year) | 19.02 × FFM + 3.72 × FM − 1.55 × age + 236.7 |
Müller et al. (BMI ≥ 30 kg·m−2) [23] | MJ/day | Sex, BW (kg), HT (cm), age (year) | 0.05 × BW + 1.103 × sex + 0.01586 × age + 2.924 |
Müller et al. (BMI, BC) [23] | MJ/day | Sex, FM and FFM (kg), age (year) | 0.05685 × FFM + 0.04022 × FM + 0.808 × sex + 0.01402 × age + 2.818 |
Huang et al. [22] | kcal/day | Sex, BW (kg), HT (cm), age (year) | 10.158 × WT + 3.933 × HT − 1.44 × age + 273.821 × sex + 60.655 |
Huang et al. (BC) [22] | kcal/day | Sex, FM and FFM (kg), age (year) | 14.118 × FFM + 9.367 × FM − 1.515 × age + 220.863 × sex + 521.995 |
Lazzer et al. [25,26] | MJ/day | Sex, BW (kg), HT (m), age (year) | M: 0.048 × BW + 4.655 × HT − 0.020 × AGE − 3.605 F: 0.042 × BW + 3.619 × HT − 2.678 |
Lazzer et al. (BC) [25,26] | MJ/day | FM and FFM (kg), age(year) | M: 0.081 × FFM + 0.049 × FM − age × 0.019 − 2.194 F: 0.067 × FFM + 0.046 × FM + 1.568 |
Horie-Waitzberg et al. [27] | kcal/day | FFM (kg), BW (kg) | 560.43 + (5.39 × BW) + (14.14 × FFM) |
Overall | 30 ≤ BMI < 40 | BMI ≥ 40 | |
---|---|---|---|
n | 2588 | 1735 | 853 |
Gender (female %) | 80.1 | 76.9 | 86.6 |
Age (year) | 46.2 ± 14.2 | 47.0 ± 14.3 | 44.7 ± 13.9 |
Weight (kg) | 103.5 ± 15.7 | 96.6 ± 12.6 | 117.4 ± 11.6 |
Height (cm) | 164.8 ± 8.2 | 165.7 ± 8.3 | 163.0 ± 7.6 |
BMI (kg·m2) | 38.1 ± 5.3 | 35.1 ± 2.7 | 44.3 ± 3.7 |
FFM by DXA (kg) | 51.3 ± 9.8 | 49.8 ± 10.1 | 54.3 ± 8.3 |
FM by DXA (kg) | 48.2 ± 9.8 | 45.4 ± 7.1 | 57.7 ± 7.6 |
FFM by BIA (kg) | 58.6 ± 11.1 | 57.84 ± 11.6 | 60.3 ± 9.7 |
FM by BIA (kg) | 44.8 ± 11.8 | 38.8 ± 7.4 | 57.1 ± 9.1 |
mREE (kcal/J) | 1788 ± 321 | 1724 ± 311 | 1918 ± 294 |
Overall | 30 < BMI < 40 | BMI > 40 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
REE | AP (%) | UP (%) | OP (%) | REE | AP (%) | UP (%) | OP (%) | REE | AP (%) | UP (%) | (OP (%) | |
Measured REE | 1788 ± 321 | 1724 ± 311 | 1918 ± 294 | |||||||||
HB1919 | 1799 ± 258 | 64.5 | 13.6 | 21.9 | 1738 ± 255 | 65.4 | 12.9 | 21.7 | 1921 ± 219 | 62.7 | 15.2 | 22.1 |
Bernstein | 1869 ± 959 * | 15.6 | 64.1 | 20.3 | 1888 ± 820 * | 15.7 | 60.7 | 23.6 | 1832 ± 822 * | 15.6 | 70.9 | 13.5 |
Bernstein (DXA) | 1320 ± 196 * | 3.2 | 95.6 | 0.2 | 1273 ± 193 * | 2.9 | 96.8 | 0.3 | 1415 ± 162 * | 3.7 | 96.1 | 0.3 |
Bernstein (BIA) | 1447 ± 218 * | 15.7 a | 83.8 | 0.5 | 1408 ± 222 * | 17.1 a | 82.3 | 0.6 | 1527 ± 185 * | 12.8 a,b | 86.8 | 0.4 |
Muller | 1759 ± 202 * | 60.3 | 20.5 | 19.2 | 1674 ± 166 * | 60.3 | 23.1 | 16.6 | 1931 ± 152 * | 60.1 | 15.4 | 24.5 |
Muller (DXA) | 1716 ± 221 * | 65.9 | 23.5 | 10.6 | 1654 ± 214 * | 66.5 | 23.3 | 10.2 | 1841 ± 178 * | 64.7 | 23.9 | 11.4 |
Muller (BIA) | 1784 ± 235 | 67.1 | 14.3 | 18.6 | 1718 ± 229 | 68.1 | 14.3 | 17.6 | 1916 ± 187 | 65.1 | 14.2 | 20.7 |
Lazzer | 1854 ± 242 * | 58.2 | 10.1 | 31.7 | 1797 ± 240 * | 57.1 | 9.0 | 33.9 | 1968 ± 199 * | 59.3 | 12.3 | 28.4 |
Lazzer (DXA) | 1555 ± 324 * | 53.6 | 33.6 | 12.8 | 1451 ± 294 * | 51.7 | 36.4 | 11.9 | 1763 ± 280 * | 57.4 b | 27.7 | 14.9 |
Lazzer (BIA) | 1642 ± 309 * | 51.6 | 27.0 | 21.4 | 1535 ± 278 * | 50.4 | 30.4 | 19.2 | 1857 ± 255 * | 54.0 | 20.4 | 25.6 |
Huang | 1748 ± 241 * | 66.5 | 19.3 | 14.2 | 1689 ± 241 * | 67.4 | 18.7 | 13.9 | 1867 ± 194 * | 64.7 | 20.7 | 14.6 |
Huang (DXA) | 1671 ± 227 * | 59.7 | 33.4 | 6.9 | 1612 ± 224 * | 61.0 | 32.6 | 6.4 | 1791 ± 184 * | 57.0 b | 34.8 | 8.2 |
Huang (BIA) | 1744 ± 241 * | 67.6 a | 19.7 | 12.7 | 1682 ± 239 * | 68.7 a | 19.3 | 12.0 | 1870 ± 192 * | 65.4 a | 20.3 | 14.3 |
Horie Waitzberg (DXA) | 1844 ± 207 * | 61.1 | 9.0 | 29.9 | 1785 ± 200 * | 59.4 | 8.6 | 31.9 | 1962 ± 168 * | 64.2 b | 9.9 | 25.9 |
Horie Waitzberg (BIA) | 1947 ± 223 * | 45.9 a | 3.5 | 50.6 | 1899 ± 223 * | 41.9 a | 2.7 | 55.4 | 2046 ± 185 * | 53.9 a,b | 5.4 | 40.7 |
Overall | 30 < BMI < 40 | BMI > 40 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
REE | AP (%) | UP (%) | OP (%) | REE | AP (%) | UP (%) | OP (%) | REE | AP (%) | UP (%) | (OP (%) | |
Measured REE | 1709 ± 272 | 1617 ± 223 | 1874 ± 274 | |||||||||
HB1919 | 1706 ± 200 | 66.1 | 13.7 | 20.2 | 1629 ± 149 | 66.8 | 12.6 | 20.6 | 1845 ± 207 * | 64.9 | 15.9 | 19.2 |
Bernstein | 1393 ± 149 * | 19.5 | 78.0 | 0.5 | 1332 ± 103 * | 20.4 | 78.9 | 0.7 | 1502 ± 157 * | 18.0 | 81.7 | 0.3 |
Bernstein (DXA) | 1258 ± 171 * | 3.1 | 96.7 | 0.2 | 1194 ± 129 * | 2.9 | 96.9 | 0.2 | 1373 ± 178 * | 3.4 | 96.5 | 0.1 |
Bernstein (BIA) | 1370 ± 179 * | 14.4 a | 85.1 | 0.5 | 1315 ± 150 * | 16.1 a | 83.4 | 0.5 | 1468 ± 185 * | 11.4 a,b | 88.5 | 0.1 |
Muller | 1736 ± 202 * | 65.5 | 11.2 | 27.3 | 1635 ± 149 * | 67.2 | 11.8 | 21.0 | 1918 ± 152 * | 62.5 b | 10.2 | 27.3 |
Muller (DXA) | 1647 ± 177 * | 67.3 | 21.7 | 13.0 | 1563 ± 132 * | 68.0 | 21.1 | 10.9 | 1798 ± 143 * | 66.2 | 23.0 | 10.8 |
Muller (BIA) | 1709 ± 187 | 67.7 | 13.6 | 22.7 | 1621 ± 145 | 68.5 | 13.0 | 18.5 | 1868 ± 145 | 66.2 | 13.8 | 20.0 |
Lazzer | 1780 ± 187 * | 57.9 | 8.2 | 39.9 | 1701 ± 151 * | 56.8 | 7.1 | 36.1 | 1921 ± 159 * | 59.8 | 11.5 | 28.7 |
Lazzer (DXA) | 1685 ± 189 * | 66.9 | 17.1 | 19.0 | 1591 ± 133 * | 67.2 | 17.4 | 15.4 | 1855 ± 154 | 66.3 | 16.5 | 17.2 |
Lazzer (BIA) | 1760 ± 200 * | 64.4 | 8.7 | 31.9 | 1661 ± 144 * | 65.5 | 9.4 | 25.1 | 1938 ± 151 * | 62.4 | 8.0 | 29.6 |
Huang | 1662 ± 175 * | 67.4 | 19.9 | 15.7 | 1580 ± 133 * | 68.1 | 19.3 | 12.6 | 1821 ± 139 * | 66.2 | 21.1 | 12.7 |
Huang (DXA) | 1593 ± 169 * | 59.7 | 33.6 | 7.7 | 1510 ± 122 * | 61.3 | 32.7 | 6.0 | 1742 ± 137 * | 56.8 b | 35.7 | 7.5 |
Huang (BIA) | 1660 ± 177 * | 68.3 a | 20.8 | 13.9 | 1574 ± 134 * | 69.1 a | 19.7 | 11.2 | 1815 ± 137 * | 66.8 a | 20.7 | 12.5 |
Horie Waitzberg (DXA) | 1784 ± 172 * | 59.9 | 6.6 | 40.5 | 1705 ± 128 * | 57.3 | 5.8 | 36.9 | 1927 ± 145 * | 64.5 b | 8.1 | 27.4 |
Horie Waitzberg (BIA) | 1875 ± 170 * | 44.1 a | 2.7 | 63.2 | 1806 ± 144 * | 38.3 a | 1.6 | 60.1 | 1998 ± 142 * | 54.7 a,b | 4.7 | 40.6 |
Overall | 30 < BMI < 40 | BMI > 40 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
REE | AP (%) | UP (%) | OP (%) | REE | AP (%) | UP (%) | OP (%) | REE | AP (%) | UP (%) | (OP (%) | |
Measured REE | 2127 ± 328 | 2081 ± 297 | 2281 ± 377 | |||||||||
HB1919 | 2115 ± 360 | 57.8 | 13.5 | 28.7 | 2094 ± 238 | 60.6 | 14.2 | 25.2 | 2183 ± 604 | 48.2 b | 10.6 | 41.3 |
Bernstein | 3706 ± 533 * | 0.0 | 0.0 | 100 | 3723 ± 276 * | 0.0 | 0.0 | 100 | 3647 ± 984 * | 0.0 | 0.0 | 100 |
Bernstein (DXA) | 1529 ± 252 * | 3.7 | 95.7 | 0.6 | 1529 ± 167 * | 3.0 | 96.5 | 0.5 | 1527 ± 426 * | 6.0 | 93.0 | 0.0 |
Bernstein (BIA) | 1712 ± 273 * | 20.8 a | 78.1 | 1.1 | 1709 ± 173 * | 20.4 a | 78.9 | 0.7 | 1720 ± 473 * | 21.9 a | 75.4 | 1.7 |
Muller | 1853 ± 170 * | 39.0 | 58.2 | 2.8 | 1805 ± 152 * | 37.4 | 60.9 | 1.7 | 2021 ± 116 * | 44.7 | 48.7 | 6.6 |
Muller (DXA) | 1995 ± 152 * | 60.2 | 30.3 | 9.5 | 1959 ± 140 * | 61.6 | 30.4 | 8.0 | 2121 ± 122 * | 55.2 | 29.9 | 14.9 |
Muller (BIA) | 2082 ± 161 * | 64.8 | 18.3 | 16.9 | 2040 ± 148 * | 66.8 | 18.8 | 14.4 | 2228 ± 111 | 57.9 b | 16.5 | 25.6 |
Lazzer | 2133 ± 212 | 59.6 | 15.6 | 24.8 | 2094 ± 207 | 57.9 | 15.1 | 24.0 | 2269 ± 169 | 56.1 | 16.5 | 27.4 |
Lazzer (DXA) | 1011 ± 216 * | 0.0 | 99.8 | 0.2 | 965 ± 189 * | 0.0 | 99.7 | 0.3 | 1171 ± 165 * | 0.0 | 99.0 | 1.0 |
Lazzer (BIA) | 1148 ± 216 * | 0.0 | 99.0 | 0.0 | 1095 ± 201 * | 0.0 | 100 | 0.0 | 1335 ± 153 * | 0.0 | 99.1 | 0.9 |
Huang | 2091 ± 149 * | 62.7 | 17.1 | 20.2 | 2053 ± 138 | 64.8 | 17.0 | 18.2 | 2223 ± 103 | 55.3 | 17.4 | 27.3 |
Huang (DXA) | 1987 ± 153 * | 59.6 | 31.5 | 8.9 | 1952 ± 134 * | 60.1 | 32.2 | 7.7 | 2110 ± 114 * | 57.9 | 29.0 | 13.1 |
Huang (BIA) | 2081 ± 153 * | 64.8 a | 17.8 | 17.4 | 2040 ± 141 * | 67.3 a | 18.0 | 14.7 | 2225 ± 100 | 56.1 b | 17.6 | 26.3 |
Horie Waitzberg (DXA) | 2084 ± 158 * | 65.8 | 18.7 | 15.5 | 2054 ± 153 | 66.8 | 17.7 | 15.5 | 2189 ± 131 * | 62.3 | 21.8 | 15.9 |
Horie Waitzberg (BIA) | 2241 ± 2241 * | 53.0 a | 7.0 | 40.0 | 2208 ± 154* | 54.1 a | 6.5 | 39.4 | 2358 ± 119 * | 49.1 a | 8.8 | 42.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achamrah, N.; Jésus, P.; Grigioni, S.; Rimbert, A.; Petit, A.; Déchelotte, P.; Folope, V.; Coëffier, M. Validity of Predictive Equations for Resting Energy Expenditure Developed for Obese Patients: Impact of Body Composition Method. Nutrients 2018, 10, 63. https://doi.org/10.3390/nu10010063
Achamrah N, Jésus P, Grigioni S, Rimbert A, Petit A, Déchelotte P, Folope V, Coëffier M. Validity of Predictive Equations for Resting Energy Expenditure Developed for Obese Patients: Impact of Body Composition Method. Nutrients. 2018; 10(1):63. https://doi.org/10.3390/nu10010063
Chicago/Turabian StyleAchamrah, Najate, Pierre Jésus, Sébastien Grigioni, Agnès Rimbert, André Petit, Pierre Déchelotte, Vanessa Folope, and Moïse Coëffier. 2018. "Validity of Predictive Equations for Resting Energy Expenditure Developed for Obese Patients: Impact of Body Composition Method" Nutrients 10, no. 1: 63. https://doi.org/10.3390/nu10010063
APA StyleAchamrah, N., Jésus, P., Grigioni, S., Rimbert, A., Petit, A., Déchelotte, P., Folope, V., & Coëffier, M. (2018). Validity of Predictive Equations for Resting Energy Expenditure Developed for Obese Patients: Impact of Body Composition Method. Nutrients, 10(1), 63. https://doi.org/10.3390/nu10010063