Pro- and Synbiotics to Prevent Sepsis in Major Surgery and Severe Emergencies
Abstract
:1. Introduction: A Pandemic of Critical Illness
2. Sepsis: Often a Product of So Called Auxiliary/Supportive Measures
3. Gut and Chest Infections Dominate
4. Preceding Uncontrolled Exuberant Systemic Inflammation
5. Mental and Physical Stress Potentiates the Response
6. Deranged and Dysfunctioning Microbiota
7. Overreacting Neutrophils
8. Personal Experience with Pro- and Synbiotics
8.1. Early Treatment in Major Trauma
8.2. Early Treatment in Severe Acute Pancreatitis
8.3. Effects on “Mind Clarity”: Encephalopathy
9. Studies by Others
10. Studies with No, or Adverse, Effects
10.1. Ecologic 641™
10.2. Lactobacillus plantarum 299™: ProViva™
10.3. Lactobacillus rhamnosus GG™
10.4. Synbiotic 2000™/Synbiotic 2000 Forte™
10.5. Trevis™
10.6. VSL#3™
11. Why do Studies Fail?
12. Choice of Lactic Acid Bacteria as Probiotics
13. Discussion: The Future “Designer Probiotics”?
References
- Dombrovskiy, V.Y.; Martin, A.A.; Sunderram, J.; Paz, H.L. Facing the challenge: decreasing case fatality rates in severe sepsis despite increasing hospitalizations. Crit. Care Med. 2005, 33, 2555–2562. [Google Scholar]
- Dombrovskiy, V.Y.; Martin, A.A.; Sunderram, J.; Paz, H.L. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit. Care Med. 2007, 35, 1244–1250. [Google Scholar]
- Vogel, T.R.; Dombrovskiy, V.Y.; Carson, J.L.; Graham, A.M.; Lowry, S.F. Postoperative sepsis in the United States. Ann. Surg. 2010, 252, 1065–1071. [Google Scholar] [CrossRef]
- Arias, E.; Smith, B.L. Deaths: preliminary data for 2001. Natl. Vital Stat. Rep. 2003, 51, 1–44. [Google Scholar]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef]
- Wunsch, H.; Linde-Zwirble, W.T.; Angus, D.C.; Hartman, M.E.; Milbrandt, E.B.; Kahn, J.M. The epidemiology of mechanical ventilation use in the United States. Crit. Care Med. 2010, 38, 1947–1953. [Google Scholar]
- Beghetto, M.G.; Victorino, J.; Teixeira, L.; de Azevedo, M.J. Parenteral nutrition as a risk factor or central venous catheter-related infection. JPEN J. Parenter. Enteral Nutr. 2005, 29, 367–373. [Google Scholar] [CrossRef]
- Roszkowski, K.; Ko, K.L.; Beuth, J.; Ohshima, Y.; Roszkowski, W.; Jeljaszewicz, J.; Pulverer, G. Intestinal microflora of BALB/c-mice and function of local immune cells. Zeitschr. Bakteriol. Hygiene 1988, 270, 270–279. [Google Scholar]
- Wren, S.M.; Ahmed, N.; Jamal, A.; Safadi, B.Y. Preoperative oral antibiotics in colorectal surgery increase the rate of Clostridium difficile colitis. Arch. Surg. 2005, 140, 752–756. [Google Scholar] [CrossRef]
- Bucher, P.; Gervaz, P.; Soravia, C.; Mermillod, B.; Erne, M.; Morel, P. Randomized clinical trial of mechanical bowel preparation versus no preparation before elective left-sided colorectal surgery. Br. J. Surg. 2005, 92, 409–414. [Google Scholar] [CrossRef]
- Bucher, P.; Gervaz, P.; Egger, J.F.; Soravia, C.; Morel, P. Morphologic alterations associated with mechanical bowel preparation before elective colorectal surgery: A randomized trial. Dis. Colon Rectum 2006, 49, 109–112. [Google Scholar] [CrossRef]
- Barie, P.S.; Williams, M.D.; McCollam, J.S.; Bates, B.M.; Qualy, R.L.; Lowry, S.F.; Fry, D.E. PROWESS Surgical Evaluation Committee. Benefit/risk profile of drotrecogin alfa (activated) in surgical patients with severe sepsis. Am. J. Surg. 2004, 188, 212–220. [Google Scholar] [CrossRef]
- Brandtzaeg, P.; Halstensen, T.S.; Kett, K.; Krajci, P.; Kvale, D.; Rognum, T.O.; Scott, H.; Sollid, L.M. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 1989, 97, 1562–1584. [Google Scholar]
- Marshall, J.C.; Christou, N.V.; Meakins, J.L. The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann. Surg. 1993, 218, 111–119. [Google Scholar] [CrossRef]
- Faist, E.; Baue, A.E.; Dittmer, H.; Heberer, G. Multiple organ failure in polytrauma patients. J. Trauma 1983, 23, 775–787. [Google Scholar] [CrossRef]
- Goris, R.J.; Boekholtz, W.K.; van Bebber, I.P.; Nuytinck, J.K.; Schillings, P.H. Multiple-organ failure and sepsis without bacteria. An experimental model. Arch. Surg. 1986, 121, 897–901. [Google Scholar] [CrossRef]
- Bengmark, S. Nutritional modulation of acute and “chronic” phase response. Nutrition 2001, 17, 489–495. [Google Scholar] [CrossRef]
- Biffl, W.L.; Moore, E.E.; Moore, F.A.; Barnett, C.C. Interleukin-6 delays neutrophil apoptosis via a mechanism involving platelet-activating factor. J. Trauma 1996, 40, 575–579. [Google Scholar] [CrossRef]
- Alessi, M.C.; Peiretti, F.; Morange, P.; Henry, M.; Nalbone, G.; Juhan-Vague, I. Production of plasminogen activator inhibitor 1 by human adipose tissue. Possible link between visceral fat accumulation and vascular disease. Diabetes 1997, 46, 860–867. [Google Scholar]
- Thomas, E.L.; Saed, N.; Hajnal, J.V.; Brynes, A.; Goldstone, A.P.; Frost, G.; Bell, J.D. Magnetic resonance imaging of total body fat. J. Appl. Physiol. 1998, 85, 1778–1785. [Google Scholar]
- Lyte, M. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 2004, 12, 14–20. [Google Scholar] [CrossRef]
- Groves, A.C.; Griffiths, J.; Leung, F.; Meek, R.N. Plasma catecholamines in patients with serious postoperative infection. Ann. Surg. 1973, 178, 102–107. [Google Scholar] [CrossRef]
- Kinney, K.S.; Austin, C.E.; Morton, D.S.; Sonnenfeld, G. Norepinephrine as a growth stimulating factor in bacteria: Mechanistic studies. Life Sci. 2000, 67, 3075–3085. [Google Scholar] [CrossRef]
- Alverdy, J.C.; Laughlin, R.S.; Wu, L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit. Care Med. 2003, 31, 598–607. [Google Scholar] [CrossRef]
- Cooper, E.V. Gas gangrene following injection of adrenaline. Lancet 1946, 247, 459–461. [Google Scholar] [CrossRef]
- Finegold, S.M.; Sutter, V.L.; Mathisen, G.E. Normal Indigenous Intestinal Flora. In Human Intestinal Microflora in Health and Disease; Hentges, D.J., Ed.; Academic Press: London, UK, 1983; pp. 3–31. [Google Scholar]
- Ahrné, S.; Nobaek, S.; Jeppsson, B.; Adlerberth, I.; Wold, A.E.; Molin, G. The normal Lactobacillus flora in healthy human rectal and oral mucosa. J. Appl. Microbiol. 1998, 85, 88–94. [Google Scholar] [CrossRef]
- Serino, M.; Luche, E.; Chabo, C.; Amar, J.; Burcelin, R. Intestinal microflora and metabolic diseases. Diabetes Metab. 2009, 35, 262–272. [Google Scholar] [CrossRef]
- Pachikian, B.D.; Neyrinck, A.M.; Deldicque, L.; De Backer, F.C.; Catry, E.; Dewulf, E.M.; Sohet, F.M.; Bindels, L.B.; Everard, A.; Francaux, M.; et al. Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-deficient mice. J. Nutr. 2010, 140, 509–514. [Google Scholar] [CrossRef]
- Soliman, H.M.; Mercan, D.; Lobo, S.S.; Mélot, C.; Vincent, J.L. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit. Care Med. 2003, 31, 1082–1087. [Google Scholar] [CrossRef]
- Shimizu, K.; Ogura, H.; Goto, M.; Asahara, T.; Nomoto, K.; Morotomi, M.; Yoshiya, K.; Matsushima, A.; Sumi, Y.; Kuwagata, Y.; et al. Altered gut flora and environment in patients with severe SIRS. J. Trauma 2006, 60, 126–133. [Google Scholar] [CrossRef]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481. [Google Scholar]
- Menges, T.; Engel, J.; Welters, I.; Wagner, R.M.; Little, S.; Ruwoldt, R.; Wollbrueck, M.; Hempelmann, G. Changes in blood lymphocyte populations after multiple trauma. Crit. Care Med. 1999, 27, 733–740. [Google Scholar]
- Zahorec, R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy 2001, 102, 5–14. [Google Scholar]
- Kalff, C.; Carlos, T.M.; Schraut, W.H.; Billiar, T.R.; Simmons, R.L.; Bauer, A.J. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology 1999, 117, 378–387. [Google Scholar] [CrossRef]
- De Jonge, W.J.; Van den Wungaard, R.M.; The, F.O.; Ter Bek, M.L.; Bennink, R.J.; Tytgat, G.N.J.; Buijs, R.M.; Reitsma, P.H.; van Deventer, S.J.; Boeckxstaens, G.E. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology 2003, 125, 1137–1147. [Google Scholar]
- Steinberg, K.P.; Milberg, J.A.; Martin, T.A.; Maunder, R.J.; Cockrill, B.A.; Hudson, L.D. Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am. J. Respir.Crit. Care Med. 1994, 150, 113–122. [Google Scholar]
- Sookhai, S.; Wang, J.H.; McCourt, M.; Di Wu, Q.; Kirwan Hayes, D.; Redmond, H.P. A novel mechanism for attenuating neutrophil-mediated lung injury in vivo. Surg. Forum 1999, 50, 205–208. [Google Scholar]
- Wei, L.; Wei, H.; Frenkel, K. Sensitivity to tumor promotion of SENCAR and C57BL/6J mice correlates with oxidative events and DNA damage. Carcinogenesis 1993, 14, 841–847. [Google Scholar] [CrossRef]
- Kubes, P.; Hunter, J.; Granger, D.N. Ischemia/reperfusion induced feline intestinal dysfunction: importance of granulocyte recruitment. Gastroenterology 1992, 103, 807–812. [Google Scholar]
- Ho, J.S.; Buchweitz, J.P.; Roth, R.A.; Ganey, P.E. Identification of factors from rat neutrophil responsible for cytotoxicity to isolated hepatocytes. Leuk. Biol. 1996, 59, 716–724. [Google Scholar]
- Lowell, C.A.; Bertin, G. Resistance to endotoxic shock and reduced neutrophil migration in mice deficient for the Src-family kinases Hck and Fgr. Proc. Natl. Acad. Sci. USA 1998, 95, 7580–7584. [Google Scholar] [CrossRef]
- Wilson, M.R.; Choudhury, S.; Takata, M. Pulmonary inflammation induced by high-stretch ventilation is mediated by tumor necrosis factor signaling in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, 288, L599–L607. [Google Scholar]
- Rassias, A.J.; Marrin, C.A.S.; Arruda, J.; Whalen, P.K.; Beach, M.; Yeager, M.P. Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anaesth. Analg. 1999, 88, 1011–1016. [Google Scholar]
- O’Brien, G.; Shields, C.J.; Winter, D.C.; Dillin, J.P.; Kirwan, W.O.; Redmont, H.P. Cyclooxygenase-2 plays a central role in the genesis of pancreatitis and associated lung injury. Hepatobiliary Pancreat. Dis. Int. 2005, 4, 126–129. [Google Scholar]
- Bengmark, S. Curcumin: An atoxic antioxidant and natural NF-κB, COX-2, LOX and iNOS inhibitor-a shield against acute and chronic disease. JPEN J. Parenter. Enteral Nutr. 2006, 30, 45–51. [Google Scholar] [CrossRef]
- Bengmark, S. Control of Systemic Inflammation and Chronic Disease-the Use of Turmeric and Curcumenoids. In Nutrigenomics and Proteonomics in Health and Disease. Food Factors and Gene Interaction; Mine, Y., Miyashita, K., Shahidi, F., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 161–180. [Google Scholar]
- Lee, J.C.; Kinniry, P.A.; Arguiri, E.; Serota, M.; Kanterakis, S.; Chatterjee, S.; Solomides, C.C.; Javvadi, P.; Koumenis, C.; Cengel, K.A.; et al. Dietary curcumin increases antioxidant defenses in lung, ameliorates radiation-induced pulmonary fibrosis, and improves survival in mice. Radiat. Res. 2010, 173, 590–601. [Google Scholar] [CrossRef]
- Bengmark, S. Synbiotics in human Medicine. In Therapeutic Microbiology: Probiotics and Related Strategies; Versalovic, J., Wilson, M., Eds.; ASM Press: Washington, DC, USA, 2008; pp. 307–321. [Google Scholar]
- Tok, D.; Ilkgul, O.; Bengmark, S.; Aydede, H.; Erhan, Y.; Taneli, F.; Ulman, C.; Vatansever, S.; Kose, C.; Ok, G. Pretreatment with pro- and synbiotics reduces peritonitis-induced acute lung injury in rats. J. Trauma 2007, 62, 880–885. [Google Scholar] [CrossRef]
- Ilkgul, O.; Aydede, H.; Erhan, Y.; Surucuoglu, S.; Gazi, H.; Vatansever, S.; Taneli, F.; Ulman, C.; Kose, C.; Bengmark, S. Subcutaneous administration of live lactobacillus prevents sepsis-induced lung organ failure in rats. Br. J. Int. Care 2005, 15, 52–57. [Google Scholar]
- Ekberg, H. Colorectal liver cancer, resection and regional chemotherapy. Bull. Dep. Surg. Lund Univ. 1986, 61, 1–76. [Google Scholar]
- Ekberg, H.; Tranberg, K.G.; Andersson, R.; Jeppsson, B.; Bengmark, S. Major liver resection: perioperative course and management. Surgery 1986, 100, 1–8. [Google Scholar]
- Gustafsson, B.E. The physiological importance of the colonic microflora. Scand. J. Gastroenterol. Suppl. 1982, 77, 117–131. [Google Scholar]
- Gilliland, S.E.; Speck, M.L. Antagonistic action of Lactobacillus acidophilus towards intestinal and food-borne pathogens in associative cultures. J. Food Prot. 1977, 40, 820–823. [Google Scholar]
- Molin, G.; Andersson, R.; Ahrné, S.; Lönner, C.; Marklinder, I.; Johansson, M.L.; Jeppsson, B.; Bengmark, S. Effect of fermented oatmeal soup on the cholesterol level and the Lactobacillus colonization of rat intestinal mucosa. Antonie Van Leeuwenhoek 1992, 61, 167–173. [Google Scholar] [CrossRef]
- Molin, G.; Jeppsson, B.; Johansson, M.L.; Ahrné, S.; Nobaek, S.; Ståhl, M.; Bengmark, S. Numerical taxonomy of Lactobacillus spp. associated with healthy and diseased mucosa of the human intestines. J. Appl. Bacteriol. 1993, 74, 314–323. [Google Scholar]
- Johansson, M.L.; Molin, G.; Jeppsson, B.; Nobaek, S.; Ahrné, S.; Bengmark, S. Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl. Environ. Microbiol. 1993, 59, 15–20. [Google Scholar]
- Lan, J.G.; Yamagisawa, N. Isolation, selection and characteristics of Lactobacillus paracasei subs. paracasei F19. Microb. Ecol. Health Dis. 2002, 14, 4–6. [Google Scholar]
- Kruszewska, K.; Lan, J.; Lorca, G.; Yanagisawa, N.; Marklinder, I.; Ljungh, Å. Selection of lactic acid bacteria as probiotic strains by in vitro tests. Microecol. Ther. 2002, 29, 37–51. [Google Scholar]
- Spindler-Vesel, A.; Bengmark, S.; Vovk, I.; Cerovic, O.; Kompan, L. Synbiotics, prebiotics, glutamine, or peptide in early enteral nutrition: A randomized study in trauma patien. JPEN J. Parenter. Enteral Nutr. 2007, 31, 119–126. [Google Scholar]
- Kotzampassi, K.; Giamerellos-Bourboulis, E.J.; Voudouris, A.; Kazamias, P.; Eleftheriadis, E. Benefits of Synbiotic 2000 Forte in critically ill trauma patients—early results of a randomized controlled trial. World J. Surg. 2006, 30, 1848–1855. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Bengmark, S.; Kanellakopoulou, K.; Kotzampassi, K. Pro-andsynbiotics to control inflammation and infection in patients with multipleinjuries. J. Trauma 2009, 67, 815–821. [Google Scholar]
- Koutelidakis, I.M.; Bezirtzoglou, E.; Giamarellos-Bourboulis, E.J.; Grosomanidis, V.; Kotzampassi, K. Impact of synbiotics on the intestinal flora of critically ill patients with multiple injuries. Int. J. Antimicrob. Agents 2010, 36, 90–91. [Google Scholar]
- Oláh, A.; Belágyi, T.; Issekutz, Á.; Gamal, M.E.; Bengmark, S. Early enteral nutrition with specific lactobacillus and fibre reduces sepsis in severe acute pancreatitis. Br. J. Surg. 2002, 89, 1103–1107. [Google Scholar] [CrossRef]
- Oláh, A.; Belágyi, T.; Pótó, L.; Romics, L., Jr.; Bengmark, S. Synbiotic control of inflammation and infection in severe acute pancreatitis, a randomized double blind studies. Hepatogastroenterology 2007, 54, 36–41. [Google Scholar]
- Bengmark, S. Bio-ecological control of chronic liver disease and encephalopathy. Metab. Brain Dis. 2009, 24, 223–236. [Google Scholar] [CrossRef]
- Gareau, M.G.; Jury, J.; MacQueen, G.; Sherman, P.M.; Perdue, M.H. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 2007, 56, 1522–1528. [Google Scholar]
- Eutamene, H.; Bueno, L. Role of probiotics in correcting abnormalities of colonic flora induced by stress. Gut 2007, 56, 1495–1497. [Google Scholar]
- Liu, Q.; Duan, Z.P.; Ha, D.K.; Bengmark, S.; Kurtovic, J.; Riordan, S.M. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 2004, 39, 1441–1449. [Google Scholar]
- Riordan, S.M.; Skinner, N.A.; McIver, C.J.; Liu, Q.; Bengmark, S.; Bihari, D.; Visvanathan, K. Synbiotic-associated improvement in liver function in cirrhotic patients: Relation to changes in circulating cytokine messenger RNA and protein levels. Microb. Ecol. Health Dis. 2007, 19, 7–16. [Google Scholar]
- Shimizu, K.; Ogura, H.; Goto, M.; Asahara, T.; Nomoto, K.; Morotomi, M.; Matsushima, A.; Tasaki, O.; Fujita, K.; Hosotsubo, H.; et al. Synbiotics decrease the incidence of septic complications in patients with severe SIRS: A preliminary report. Dig. Dis. Sci. 2009, 54, 1071–1078. [Google Scholar] [CrossRef]
- Besselink, M.G.; van Santvoort, H.C.; Buskens, E.; Boermeester, M.A.; van Goor, H.; Timmerman, H.M.; Nieuwenhuijs, V.B.; Bollen, T.L.; van Ramshorst, B.; Witteman, B.J.; et al. Dutch Acute Pancreatitis Study Group. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 2008, 371, 651–659. [Google Scholar]
- McNaught, C.E.; Woodcock, N.P.; Anderson, A.D.; MacFie, J. A prospective randomised trial of probiotics in critically ill patients. Clin. Nutr. 2005, 24, 211–219. [Google Scholar]
- Woodcock, N.P.; McNaught, C.E.; Morgan, D.R.; Gregg, K.L.; MacFie, J. An investigation into the effect of a probiotic on gut immune function in surgical patients. Clin. Nutr. 2004, 23, 1069–1073. [Google Scholar]
- Honeycutt, T.C.; El Khashab, M.; Wardrop, R.M., III; McNeal-Trice, K.; Honeycutt, A.L.; Christy, C.G.; Mistry, K.; Harris, B.D.; Meliones, J.N.; Kocis, K.C. Probiotic administration and the incidence of nosocomial infection in pediatric intensive care: A randomized placebo-controlled trial. Pediatr. Crit. Care Med. 2007, 8, 452–458. [Google Scholar] [CrossRef]
- Gomersall, C.D.; Joynt, G.M.; Leung, P.; Tan, P.; Bengmark, S. Does routine administration of probiotics improve outcome of critically ill patients? Anaesth. Intensive Care 2006, 34, 544. [Google Scholar]
- Knight, D.; Girling, K.; Banks, A.; Snape, S.; Weston, W.; Bengmark, S. The effect of enteral synbiotics on the incidence of ventilator associated pneumonia in mechanically ventilated critically ill patients. Br. J. Anaesth. 2004, 92, 307–308. [Google Scholar]
- Jain, P.K.; McNaught, C.E.; Anderson, A.D.; MacFie, J.; Mitchell, C.J. Influence of synbiotic containing Lactobacillus acidophilus La5, Bifidobacterium lactis Bb 12, Streptococcus thermophilus, Lactobacillus bulgaricus and oligofructose on gut barrier function and sepsis in critically ill patients: a randomised controlled trial. Clin. Nutr. 2004, 23, 467–475. [Google Scholar] [CrossRef]
- Alberda, C.; Gramlich, L.; Meddings, J.; Field, C.; McCargar, L.; Kutsogiannis, D.; Fedorak, R.; Madsen, K. Effects of probiotic therapy in critically ill patients: a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2007, 85, 816–823. [Google Scholar]
- Deitch, E.A.; Xu, D.; Naruhn, M.B.; Deitch, D.C.; Lu, Q.; Marino, A.A. Elemental diet and IV-TPN-induced bacterial translocation is associated with loss of intestinal mucosal barrier function against bacteria. Ann. Surg. 1995, 221, 299–307. [Google Scholar]
- Haskel, Y.; Xu, D.; Lu, Q.; Deitch, E. Elemental diet-induced bacterial translocation can be hormonally modulated. Ann. Surg. 1993, 217, 634–642. [Google Scholar]
- Haskel, Y.; Xu, D.; Lu, Q.; Deitch, E. Bombesin protects against bacterial translocation induced by three commercially available liquid enteral diets: a prospective, randomized, multigroup trial. Crit. Care Med. 1994, 22, 108–113. [Google Scholar]
- Haskel, Y.; Xu, D.; Lu, Q.; Deitch, E. The modulatory role of gut hormones in elemental diet and intravenous total parenteral nutrition-induced bacterial translocation in rats. JPEN J. Parenter. Enteral Nutr. 1994, 18, 159–166. [Google Scholar]
- Slotwinski, R.; Olszewski, W.L.; Slotkowski, M.; Lech, G.; Zaleska, M.; Slotwinska, S.M.; Krasnodebski, W.I. Can the interleukin-1 receptor antagonist (IL-1ra) be a marker of anti-inflammatory response to enteral immunonutrition in malnourished patients after pancreaticoduodenectomy? JOP J. Pancreas 2007, 8, 759–769. [Google Scholar]
- Suzuki, C.; Kimoto-Nira, H.; Kobayashi, M.; Nomura, M.; Sasaki, K.; Mizumachi, K. Immunomodulatory and cytotoxic effects of various Lactococcus strains on the murine macrophage cell line J774.1. Int. J. Food Microbiol. 2008, 123, 159–165. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 2002, 82, 279–289. [Google Scholar]
- Von der Weid, T.; Bulliard, C.; Schiffrin, E.J. Induction by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clin. Diagn. Lab. Immunol. 2001, 8, 695–701. [Google Scholar]
- Ibnou-Zekri, N.; Blum, S.; Schiffrin, E.J.; von der Weid, T. Divergent patterns of colonization and immune response elicited from two intestinal Lactobacillus strains that display similar properties in vitro. Infect. Immun. 2003, 71, 428–436. [Google Scholar] [CrossRef]
- Nagler-Andersson, C. Tolerance and immunity in the intestinal immune system. Crit. Rev. Immunol. 2000, 20, 103–120. [Google Scholar]
- Prioult, G.; Fliss, I.; Pecquet, S. Effect of probiotic bacteria on induction and maintenance of oral tolerance to beta-lactoglobulin in gnotobiotic mice. Clin. Diagn. Lab. Immunol. 2003, 10, 787–792. [Google Scholar]
- Fujiwara, D.; Inoue, S.; Wakabayashi, H.; Fujii, T. The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. Int. Arch. Allergy Immunol. 2004, 135, 205–215. [Google Scholar]
- Verdú, E.F.; Bercík, P.; Bergonzelli, G.E.; Huang, X.X.; Blennerhasset, P.; Rochat, F.; Fiaux, M.; Mansourian, R.; Corthésy-Theulaz, I.; Collins, S.M. Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Gastroenterology 2004, 127, 826–837. [Google Scholar]
- Eutamene, H.; Lamine, F.; Chabo, C.; Theodorou, V.; Rochat, F.; Bergonzelli, G.E. Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats. J. Nutr. 2007, 137, 1901–1907. [Google Scholar]
- Naaber, P.; Smidt, I.; Stsepetova, J.; Brilene, T.; Annuk, H.; Mikelsaar, M. Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J. Med. Microbiol. 2004, 53, 551–554. [Google Scholar] [CrossRef]
- Müller, M.; Lier, D. Fermentation of fructans by epiphytic lactic acid bacteria. J. Appl. Bacteriol. 1994, 76, 406–411. [Google Scholar]
- van Baarlen, P.; Troost, F.J.; van Hemert, S.; van der Meer, C.; de Vos, W.M.; de Groot, P.J.; Hooiveld, G.J.; Brummer, R.J.; Kleerebezem, M. Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc. Natl. Acad. Sci. USA 2009, 106, 2371–2376. [Google Scholar]
- van Baarlen, P.; Troost, F.; van der Meer, C.; Hooiveld, G.; Boekschoten, M.; Brummer, R.J.; Kleerebezem, M. Microbes and Health Sackler Colloquium: Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc. Natl. Acad. Sci. USA 2011, 108, 4562–4569. [Google Scholar]
- Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006, 71, 1397–1421. [Google Scholar]
- Afman, L.; Müller, M. Nutrigenomics: From molecular nutrition to prevention of disease. J. Am. Diet. Assoc. 2006, 106, 569–576. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bengmark, S. Pro- and Synbiotics to Prevent Sepsis in Major Surgery and Severe Emergencies. Nutrients 2012, 4, 91-111. https://doi.org/10.3390/nu4020091
Bengmark S. Pro- and Synbiotics to Prevent Sepsis in Major Surgery and Severe Emergencies. Nutrients. 2012; 4(2):91-111. https://doi.org/10.3390/nu4020091
Chicago/Turabian StyleBengmark, Stig. 2012. "Pro- and Synbiotics to Prevent Sepsis in Major Surgery and Severe Emergencies" Nutrients 4, no. 2: 91-111. https://doi.org/10.3390/nu4020091
APA StyleBengmark, S. (2012). Pro- and Synbiotics to Prevent Sepsis in Major Surgery and Severe Emergencies. Nutrients, 4(2), 91-111. https://doi.org/10.3390/nu4020091