Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oxidative Stress Tolerance in Toxin-Conducive Media
Isolate | Toxin | Hydrogen Peroxide Concentrations (mM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | ||
Tox4 | + | 1.08 | 1.10 | 1.13 | 1.09 | 1.07 | 1.05 | 1.05 | 1.06 | 1.09 | 0 | 0 |
A9 | + | 1.14 | 1.12 | 1.12 | 1.10 | 1.14 | 1.15 | 0.80 | 0.99 | 0.49 | 0 | 0 |
AF13 | + | 1.15 | 1.13 | 1.12 | 1.14 | 1.08 | 1.09 | 1.11 | 1.19 | 0 | nt | nt |
NRRL3357 | + | 1.17 | 1.14 | 1.12 | 1.11 | 0.64 | 0.34 | 0 | nt | nt | nt | nt |
NRRL2999 | + | 1.12 | 1.11 | 1.21 | 1.06 | 1.03 | 1.19 | 0 | nt | nt | nt | nt |
K49 | − | 1.12 | 1.11 | 1.09 | 1.11 | 0.88 | 0.90 | 0.47 | nt | nt | nt | nt |
AF36 | − | 1.19 | 1.17 | 1.14 | 1.11 | 0.95 | 1.07 | 0 | nt | nt | nt | nt |
Aflaguard | − | 1.16 | 1.12 | 1.15 | 1.19 | 0.79 | 0.38 | 0 | nt | nt | nt | nt |
A1 | − | 1.15 | 1.15 | 1.13 | 1.21 | 0.82 | 0 | 0 | nt | nt | nt | nt |
K54A | − | 1.12 | 1.16 | 1.11 | 0.81 | 0 | 0 | 0 | nt | nt | nt | nt |
2.2. Effects of Carbon Source on Aflatoxin Production and Isolate Oxidative Stress Tolerance
Isolate | Toxin | Hydrogen Peroxide Concentrations (mM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | ||
Tox4 | + | 1.55 | nt | nt | nt | 1.18 | 1.21 | 1.18 | 1.03 | 1.50 | 1.28 | 1.04 |
A9 | + | 2.21 | nt | nt | nt | 1.18 | 1.19 | 1.09 | 1.14 | 1.42 | 1.31 | 1.33 |
AF13 | + | 1.38 | 1.35 | 1.38 | 1.4 | 1.37 | 1.41 | 1.32 | 1.29 | 1.24 | 1.39 | 1.28 |
NRRL3357 | + | 1.39 | 1.35 | 1.52 | 1.33 | 1.30 | 1.04 | 0.80 | 0.78 | 0.83 | 0 | nt |
NRRL2999 | + | 1.70 | nt | nt | nt | 1.15 | 0.98 | 0.71 | 0 | 0 | 0 | nt |
K49 | − | 1.09 | 1.06 | 1.09 | 1.08 | 1.16 | 0.74 | 0.65 | 0.73 | 0 | 0 | nt |
AF36 | − | 1.40 | nt | nt | nt | 1.34 | 1.02 | 0.80 | 0.62 | 0 | 0 | nt |
Aflaguard | − | 1.65 | nt | nt | nt | 1.14 | 0.98 | 0.75 | 0.58 | 1.36 | 1.13 | nt |
A1 | − | 1.53 | nt | nt | nt | 1.01 | 0.93 | 0.77 | 0.30 | 0.76 | 0 | nt |
K54A | − | 1.05 | 1.07 | 1.04 | 1.06 | 1.05 | 1.00 | 0.74 | 0 | 0 | 0 | nt |
2.3. Isolate Responses in Reduced Carbon Source Media
Isolate | Toxin | Hydrogen Peroxide Concentrations (mM) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ||
AF13 | + | 0.52 | 0.54 | 0.56 | 0.51 | 0.55 | 0.54 | 0.50 | 0.38 | 0 | 0 | 0 | 0 | 0 |
NRRL3357 | + | 0.45 | 0.47 | 0.53 | 0.46 | 0.12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Aflaguard | − | 0.56 | 0.55 | 0.55 | 0.49 | 0.30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
K54A | − | 0.30 | 0.33 | 0.40 | 0.16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Isolate | Toxin | Hydrogen Peroxide Concentrations (mM) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ||
AF13 | + | 0.27 | 0.28 | 0.25 | 0.27 | 0.28 | 0.29 | 0.26 | 0 | 0 | 0 | 0 | 0 | 0 |
NRRL3357 | + | 0.24 | 0.25 | 0.33 | 0.28 | 0.08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Aflaguard | − | 0.27 | 0.31 | 0.28 | 0.29 | 0.22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
K54A | − | 0.12 | 0.15 | 0.16 | 0.15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2.4. Summary and Future Directions
3. Experimental Section
3.1. Isolate Collection
3.2. Culture Conditions and Biomass Measurement
3.3. Aflatoxin Measurement
3.4. Hydrogen Peroxide Degradation Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Williams, J.H.; Grubb, J.A.; Davis, J.W.; Wang, J.S.; Jolly, P.E.; Ankrah, N.A.; Ellis, W.O.; Afriyie-Gyawu, E.; Johnson, N.M.; Robinson, A.G.; et al. HHIV and hepatocellular and esophageal carcinomas related to consumption of mycotoxin-prone foods in sub-Saharan Africa. Am. J. Clin. Nutr. 2010, 92, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [PubMed]
- Wogan, G.N. Chemical nature and biological effects of the aflatoxins. Bacteriol. Rev. 1966, 30, 460. [Google Scholar] [PubMed]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore, A.; DeCock, K.; et al. Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ. Health Perspect. 2005, 113, 1779–1783. [Google Scholar] [CrossRef] [PubMed]
- Diener, U.L.; Cole, R.J.; Sanders, T.H.; Payne, G.A.; Lee, L.S.; Klich, M.A. Epidemiology of aflatoxin formation by Aspergillus flavus. Annu. Rev. Phytopathol. 1987, 25, 249–270. [Google Scholar] [CrossRef]
- Guo, B.Z.; Chen, Z.Y.; Lee, R.D.; Scully, B.T. Drought stress and preharvest aflatoxin contamination in agricultural commodity: Genetics, genomics and proteomics. J. Int. Plant Biol. 2008, 50, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.Z.; Yu, J.; Ni, X.; Lee, R.D.; Kemerait, R.C.; Scully, B.T. Crop stress and aflatoxin contamination: Perspectives and prevention strategies. In Crop Stress and its Management: Perspectives and Strategies; Venkateswarlu, B., Shankerk, A.K., Shanker, C., Makeswari, M., Eds.; Springer: New York, NY, USA, 2012; pp. 399–427. [Google Scholar]
- Amaike, S.; Keller, N.P. Aspergillus flavus. Ann. Rev. Phytopathol. 2011, 4, 695–717. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chang, P.K.; Ehrlich, K.C.; Cary, J.W.; Bhatnager, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, A.; Fanelli, C.; Panfili, G.; Passi, S.; Fasella, P. Lipoperoxidation and aflatoxin biosynthesis by Aspergillus parasiticus and A. flavus. J. Gen. Microbiol. 1983, 129, 3447–3452. [Google Scholar] [CrossRef]
- Gao, X.; Kolomiets, M.V. Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi. Toxin Rev. 2009, 28, 79–88. [Google Scholar] [CrossRef]
- Jayashree, T.; Subramanyam, C. Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Rad. Biol. Med. 2000, 29, 981–985. [Google Scholar] [CrossRef]
- Reverberi, M.; Punelli, M.; Smith, C.A.; Zjalic, S.; Scarpari, M.; Scala, V.; Cardinali, G.; Aspite, N.; Pinzari, F.; Payne, G.A. How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus. PLoS ONE 2012, 7, e48097. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, M.; Zjalic, S.; Ricelli, A.; Punelli, F.; Camera, E.; Fabbri, C.; Picardo, M.; Fanelli, C.; Fabbri, A.A. Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: A role for the ApyapA gene. Eukaryotic Cell 2008, 7, 988–1000. [Google Scholar] [CrossRef] [PubMed]
- Roze, L.V.; Chanda, A.; Wee, J.; Awad, D.; Linz, J.E. Stress-related transcription factor AtfB integrates secondary metabolism with oxidative stress response in Aspergilli. J. Biol. Chem. 2011, 286, 35137–35148. [Google Scholar] [CrossRef] [PubMed]
- Roze, L.V.; Hong, S.Y.; Linz, J.E. Aflatoxin biosynthesis: Current frontiers. Annu. Rev. Food Sci. Technol. 2013, 4, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Grintzalis, K.; Vernardis, S.I.; Klapa, M.I.; Georgiou, C.D. Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl. Environ. Microbiol. 2014, 80, 5561–5571. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.C.; Khera, P.; Yang, L.; Nayak, S.N.; Scully, B.T.; Lee, R.D.; Chen, Z.Y.; Kemerait, R.C.; Varshney, R.K.; Guo, B.Z. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives. Crop J. 2015, 3, 229–237. [Google Scholar] [CrossRef]
- Fountain, J.C.; Scully, B.T.; Ni, X.; Kemerait, R.C.; Lee, R.D.; Chen, Z.Y.; Guo, B.Z. Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production. Front. Microbiol. 2014, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Narasaiah, K.V.; Sashidhar, R.B.; Subramanyam, C. Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathologia 2006, 162, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Kebede, H.; Abbas, H.K.; Fisher, D.K.; Bellaloui, N. Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. Toxins 2012, 4, 1385–1403. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fountain, J.C.; Ni, X.; Ji, P.; Lee, R.D.; Scully, B.T.; Kemerait, R.C.; Guo, B.Z. Maize sensitivity to drought stress is associated with differential responses to reactive oxygen species. Phytopathology 2015, 105 (Suppl. S2), 13. [Google Scholar]
- Probst, C.; Bandyopadhyay, R.; Price, L.E.; Cotty, P.J. Identification of atoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Dis. 2011, 95, 212–218. [Google Scholar] [CrossRef]
- Desikan, R.; Reynolds, A.; Hancock, J.T.; Neill, S.J. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in Arabidopsis suspension cultures. Biochem. J. 1998, 330, 115–120. [Google Scholar] [PubMed]
- Neill, S.J.; Desikan, R.; Clarke, A.; Hurst, R.D.; Hancock, J.T. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J. Exp. Bot. 2002, 53, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Roze, L.V.; Laivenieks, M.; Hong, S.Y.; Wee, J.; Wong, S.S.; Vanos, B.; Awad, D.; Ehrlich, K.C.; Linz, J.E. Aflatoxin biosynthesis is a novel source of reactive oxygen species — A potential redox signal to initiate resistance to oxidative stress? Toxins. 2015, 7, 1411–1430. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.K.; Abbas, H.K.; Weaver, M.A.; Ehrlich, K.C.; Scharfenstein, L.L.; Cotty, P.J. Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations. Int. J. Food Microbiol. 2012, 154, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Dorner, J.W.; Lamb, M.C. Development and commercial use of afla-Guard®, an aflatoxin biocontrol agent. Mycotoxin Res. 2006, 22, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Garber, R.K.; Cotty, P.J. Formation of sclerotia and aflatoxins in developing cotton bolls infected by the S strain of Aspergillus flavus and potential for biocontrol with an atoxigenic strain. Phytopathology 1997, 87, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Atehnkeng, J.; Ojiambo, P.S.; Cotty, P.J.; Bandyopadhyay, R. Field efficacy of a mixture of atoxigenic Aspergillus flavus Link: Fr vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biol. Control 2014, 72, 62–70. [Google Scholar] [CrossRef]
- Atehnkeng, J.; Ojiambo, P.S.; Ikotun, T.; Sikorad, R.A.; Cotty, P.J.; Bandyopadhyay, R. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Addit. Contam. 2008, 25, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Degola, F.; Berni, E.; Restivo, F.M. Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus strains as biocontrol agents. Int. J. Food Microbiol. 2011, 146, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought: Effects, mechanisms, and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Davis, N.D.; Diener, U.L.; Eldridge, D.W. Production of aflatoxins B1 and G1 by Aspergillus flavus in a semisynthetic medium. Appl. Microbiol. 1966, 14, 378–380. [Google Scholar] [PubMed]
- Chang, P.K.; Scharfenstein, L.L.; Luo, M.; Mahoney, N.; Molyneux, R.J.; Yu, J.; Brown, R.L.; Campbell, B.C. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid. Toxins 2010, 3, 82–104. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, A.; Buchanan, R.L. Regulation of aflatoxin biosynthesis: Induction of aflatoxin production by various carbohydrates. J. Food Sci. 1981, 46, 633–635. [Google Scholar] [CrossRef]
- Guo, B.Z.; Russin, J.S.; Brown, R.L.; Cleveland, T.E.; Widstrom, N.W. Resistance to aflatoxin contamination in corn as influenced by relative humidity and kernel germination. J. Food Protect. 1996, 59, 276–281. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fountain, J.C.; Scully, B.T.; Chen, Z.-Y.; Gold, S.E.; Glenn, A.E.; Abbas, H.K.; Lee, R.D.; Kemerait, R.C.; Guo, B. Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus. Toxins 2015, 7, 2985-2999. https://doi.org/10.3390/toxins7082985
Fountain JC, Scully BT, Chen Z-Y, Gold SE, Glenn AE, Abbas HK, Lee RD, Kemerait RC, Guo B. Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus. Toxins. 2015; 7(8):2985-2999. https://doi.org/10.3390/toxins7082985
Chicago/Turabian StyleFountain, Jake C., Brian T. Scully, Zhi-Yuan Chen, Scott E. Gold, Anthony E. Glenn, Hamed K. Abbas, R. Dewey Lee, Robert C. Kemerait, and Baozhu Guo. 2015. "Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus" Toxins 7, no. 8: 2985-2999. https://doi.org/10.3390/toxins7082985
APA StyleFountain, J. C., Scully, B. T., Chen, Z.-Y., Gold, S. E., Glenn, A. E., Abbas, H. K., Lee, R. D., Kemerait, R. C., & Guo, B. (2015). Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus. Toxins, 7(8), 2985-2999. https://doi.org/10.3390/toxins7082985