Next Article in Journal
A Bi-Directional Out-of-Plane Actuator by Electrostatic Force
Next Article in Special Issue
Review on Impedance Detection of Cellular Responses in Micro/Nano Environment
Previous Article in Journal
Monodisperse Water-in-Oil-in-Water (W/O/W) Double Emulsion Droplets as Uniform Compartments for High-Throughput Analysis via Flow Cytometry
Previous Article in Special Issue
Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria
Micromachines 2013, 4(4), 414-430; doi:10.3390/mi4040414
Article

Hydrodynamic Cell Trapping for High Throughput Single-Cell Applications

* ,
,
 and
Department of Physics, University of Gothenburg, Gothenburg, SE-412 96, Sweden
* Author to whom correspondence should be addressed.
Received: 31 August 2013 / Revised: 15 November 2013 / Accepted: 25 November 2013 / Published: 3 December 2013
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
View Full-Text   |   Download PDF [900 KB, uploaded 3 December 2013]   |  

Abstract

The possibility to conduct complete cell assays under a precisely controlled environment while consuming minor amounts of chemicals and precious drugs have made microfluidics an interesting candidate for quantitative single-cell studies. Here, we present an application-specific microfluidic device, cellcomb, capable of conducting high-throughput single-cell experiments. The system employs pure hydrodynamic forces for easy cell trapping and is readily fabricated in polydimethylsiloxane (PDMS) using soft lithography techniques. The cell-trapping array consists of V-shaped pockets designed to accommodate up to six Saccharomyces cerevisiae (yeast cells) with the average diameter of 4 μm. We used this platform to monitor the impact of flow rate modulation on the arsenite (As(III)) uptake in yeast. Redistribution of a green fluorescent protein (GFP)-tagged version of the heat shock protein Hsp104 was followed over time as read out. Results showed a clear reverse correlation between the arsenite uptake and three different adjusted low = 25 nL min−1, moderate = 50 nL min−1, and high = 100 nL min−1 flow rates. We consider the presented device as the first building block of a future integrated application-specific cell-trapping array that can be used to conduct complete single cell experiments on different cell types.
Keywords: microfluidics; single cell; high-throughput; hydrodynamic trapping; yeast; arsenite; PDMS; fluorescence microscopy microfluidics; single cell; high-throughput; hydrodynamic trapping; yeast; arsenite; PDMS; fluorescence microscopy
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).
SciFeed

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
RIS
MDPI and ACS Style

Banaeiyan, A.A.; Ahmadpour, D.; Adiels, C.B.; Goksör, M. Hydrodynamic Cell Trapping for High Throughput Single-Cell Applications. Micromachines 2013, 4, 414-430.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

[Return to top]
Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert