Recent Microdevice-Based Aptamer Sensors
Abstract
:1. Introduction
2. The SELEX Method (In-Vitro Selection)
3. Classification of Microdevices
3.1. Microfludic Devices
3.1.1. Microfluidic SELEX Devices
3.1.2. Microfluidic Chip Aptasensors
3.2. Paper-Based Microdevice Aptasensors
4. Detection Methods and Assay Formats
4.1. Electrochemical Detection Methods
4.2. Optical Detection Methods
4.2.1. Fluorescence Methods
4.2.2. Colorimetry Methods
4.3. Miscellaneous Methods
4.3.1. Surface Plasmon Resonance (SPR) Methods
4.3.2. Surface Acoustic Wave (SAW) Methods
4.3.3. Chemiluminescence and Electrochemiluminescence Methods
5. Target Analytes
5.1. Disease Markers
5.2. Viruses and Bacteria
5.3. Antibiotics
5.4. Toxins
6. Conclusions and Future Perspectives
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Detection Method | Substrate | Aptamer | Target | Matrix Sample | LOD or Linear Range | Device Features | Reference |
---|---|---|---|---|---|---|---|
Electrochemical | |||||||
Chronoamperometry | Glass | Peptide | Thrombin | - | 10 fg·mL−1 to 1 μg·mL−1 | Plasma-functionalized SWCNT | [43] |
DPV | PDMS | Biotin-Aptamer-Ferrocene | Norovirus | Bovine Blood | 100 pM 100 pM to 3.5 nM | Integrated PDMS-SPCE Graphene-Au composite Switch-off signal | [31] |
SWV | Glass | Competitive aptamer | Cortisol | Saliva glucocorticoids in serum | 10 pg·mL−1 30 pg·mL−1 to 10 µg·mL−1 | Sample volume (<1 μL) Graphene modified electrode | [40] |
SWV | Glass | MB-labeled Aptamer | TGF-β1 | Human hepatic stellate cell | 1 ppb | PDMS layer with microcup Comparing with ELISA | [44] |
Digital multimeter | Chromatography paper | - | Adenosine | - | 11.8 µM | Origami paper device Attractive design | [80] |
DPV | Paper | Peptide | Renin | - | 300 ng·mL−1 | DEP (disposable electrochemical printed) Uses SPR to check binding affinity | [85] |
EIS | Poly-imide film | - | Bisphenol A (BPA) | Food (canned) | 152.93 aM 1 fM to 10 pM | Printed circuit board material Rapid detection (20 s) | [32] |
EIS | Glass | - | Avian Influenza Virus | Virus culture | 0.0128 hemagglutinin units (HAU) | Interdigitated electrode On site detection SELEX on Chip | [35] |
Resistance | Si-Wafer | Amine-functionalized aptamer | Salmonella typhimurium | Fresh beef | 10 CFU·mL−1 | Carbon nanowire sensors C-MEMS Rapid detection (5 min) | [72] |
EIS | Glass | - | Tetracycline | Milk | 1 pM | Multi-walled carbon nanotubes Interdigital array microelectrode | [86] |
Photoelectrochemical | Indium Tin Oxide (ITO) | S6 aptamer | SK-BR-3 | - | 58 cell·mL−1 102 to 106 cells·mL−1 | ITO-based SPEs device Disposable ITO device | [87] |
EIS | Cyclic olefin copolymer | Short strand aptamer | Ampicillin Kanamycin A | UHT low fatm milk | 10 pM A = 100 pM to 1 mM K = 10 nM to 1 mM | PEDOT-OH:TsO All polymer substrate | [88] |
Detection Method | Substrate | Aptamer | Target | Matrix Sample | LOD or Linear Range | Device Features | Reference |
EIS | Glass | Sgc8 TD05 | CCRF-CEM Ramos cells | T-cell acute lymphoblastic leukemia (ALL) | - | Logic aptamer sensor (LAS) Simple detection with digital multimeter | [89] |
Optical | |||||||
Fluorescence | Glass | Aptamer-antibody sandwich | Cancer stem-like cells | - | - | Cell-SELEX Automatic device Heater—cooling chip | [13] |
Fluorescence | Glass | Aptamer sandwich with magnetic beads | Human immunoglobulin A (IgA) | Random oligonucleotides | - | Microfludic SELEX Fully integrated platform | [17] |
Fluorescence | Glass | - | Malaria parasite | Red blood cells | - | I-SELEX Only requires syringe pump | [19] |
Fluorescence | Glass | - | - | Mixed cells | - | Cell-SELEX Dielectrophoresis and electrophoresis | [21] |
Fluorescence | PDMS | Hair pin aptamer | Protein tyrosine kinase-7 | Cell culture | 0.4 nM | Laser-induced fluorescence detector (LIFD) Microfluidic droplet | [28] |
Fluorescence | Glass | FAM-aptamer | Carcinoembryonic antigen (CEA) | Human serum | 68 ng·mL−1 130 pg·mL−1 to 8 ng·mL−1 | Micro chip electrophoresis (MCE) | [37] |
Fluorescence | Glass | Cy3-aptamer | Thrombin | Human serum | 0.4 fM | Avidin-biotin interaction Use 2 kinds of aptamer | [38] |
Fluorescence | Glass | Photoluminescent GOQD-aptamer | Lead ion (Pb2+) | Drinking water Tap water Lake water | 0.64 nM 1 to 1000 nM | Packed with cation exchange resins Peristaltic PDMS Micropump | [42] |
Fluorescence | Glass | G-quadruplex | VEGF-165 protein | DMEM cell media | 0.17 pM 0.52 to 52.00 pM | Label-free In the presence of Ir(III) no signal | [45] |
Fluorescence | Glass | FAM-aptamer universal | Influenza virus | Random oligonucleotides | 3.2 HAU | Automatic process Rapid detection | [46] |
Fluorescence | Glass | FAM-aptamer sandwich | Influenza A (InfA/H1N1) | 0.032 HAU | Magnet external Rapid detection | [47] | |
Fluorescence | Glass | Fluorescence-labeled | 17β-estradiol | Estradiol solution | 0.07 pM | Microfluidic droplet Turn-on signal | [48] |
Fluorescence | Glass | G-quadruplex structure | Ochratoxin A | - | - | Fluorescence polarization | [50] |
Fluorescence | Glass | Multivalent DNA aptamer nanospheres | Human acute leukemia cells | Human blood | - | Flow cytometry analysis Rapid detection | [53] |
Detection Method | Substrate | Aptamer | Target | Matrix Sample | LOD or Linear Range | Device Features | Reference |
Fluorescence | Glass | FAM-aptamer | Thrombin Prostate specific antigen (PSA) | - | - | FRET Longer spacer gives good sensitivity | [54] |
Fluorescence | Glass | FAM-aptamer | Thrombin Prostate specific antigen (PSA) Hemagglutinin | - | - | FRET Multiple target Aptamer immobilize on GO flakes | [55] |
Fluorescence | Glass | Sandwich aptamer FITC | Glycated hemoglobins (HbA1c) & Total hemoglobin (Hb) | Blood | - | Automated microfluidic system Low reagent consumption | [56] |
Fluorescence | Glass | Sandwich aptamer | Thrombin | - | 27 pM | Gold nanohole array Nanoimprinting technology | [60] |
Fluorescence | Glass | Aptamer functionalize QD | Lysozyme, OA, Brevetoxin, ß-conglutin lupine | Fresh egg white Mussel tissue Sausage | Lysozyme (343 ppb); OA (0.4 ppb); Brevetoxin (0.56 ppb); ß-cl(2.5 ppb) | Quantum Dots (QD) GO-quencher Comparing with ELISA | [61] |
Fluorescence | Si-nanowire | Cocktail aptamer | Non-small cell lung cancer | Blood | - | PDMS chaotic mixer Aptamer grafted Si-nano wire substrate | [68] |
Fluorescence | Glass | FAM-aptamer | ss-DNA | - | - | Isolating ssDNA from dsDNA PC membrane | [69] |
Fluorescence | Chromatography paper | Aptamer-functionalized GO | Staphylococcus aureus | Buffer (Bacterial colonies) | 11.0 CFU·mL−1 | PDMS/paper/glass microfludic device Fast detection | [90] |
Fluorescence | Paper | - | Cancer cells | Cell culture | MCF-7: 6270 cell·mL−1 HL-60: 65 cell·mL−1 | Mesoporous silica nanoparticles (MSNs) Naked-eye detection | [91] |
Fluorescence | Paper | FAM-aptamer | Norovirus | Spiked mussel sample | MWCNT: 4.4 ng·mL−1 GO: 3.3 ng·mL−1 13 ngmL−1 to 13 µg·mL−1 | Multi-walled carbon nanotubes Graphene oxide | [92] |
Fluorescence | Printed circuit board (PCB) | - | Cocaine Adenosine | Human blood serum | Cocaine: 0.1 pM Adenosine: 0.5 | MECAS-chip Simultaneous detection | [93] |
Fluorescence | Glass | FAM-aptamer | Lysozyme | - | - | Electrophoresis frontal mode FACME method | [94] |
Fluorescence | - | Amine-aptamer | Tetrodotoxin (TTX) | Human blood Urine | 0.06 ng·mL−1 0.1 ng·mL−1 to mg·mL−1 | Marine toxin Fe3O4/apt/CD composite | [95] |
Detection Method | Substrate | Aptamer | Target | Matrix Sample | LOD or Linear Range | Device Features | Reference |
Colorimetry | |||||||
Colorimetry | Glass | Sandwich aptamer | Thrombin | - | 20 pM | Naked-eye & Flatbed detection Micro pump | [25] |
Colorimetry | Si-wafer | G-quadruplex structure | Thrombin | Human blood | 0.083 pg·mL−1 0.1 to 50.000 pg·mL−1 | Rolling circle amplification Micro channel | [64] |
Colorimetry | Paper | Cross-linking aptamer | Cocaine | Urine | 7.3 µM | Utilizes ImageJ software Hydrogel-µPAD | [74] |
Colorimetry | Paper | Hybridization chain reaction | Adenosine | Human serum | 1.5 µM 1.5 µM to 19.3 mM | Naked eyes detection Uses superparamagnetism | [77] |
Colorimetry | Paper | Aptamer attached microbeads | Adenosine | Urine | - | Rubik’s cube stamp Stamping method | [78] |
Colorimetry | Paper Cellulose fiber | Sandwich aptamer | Vaspin | Buffer & serum | Buffer: 0.137 nM Serum: 0.105 nM | Lateral strip assay Naked-eye detection | [82] |
Colorimetry | Paper Cellulose fiber | Biotin modified aptamer | E. coli O157: H7 | Culture E.coli | 10 CFU·mL−1 | Lateral strip assay Naked-eye detection | [83] |
Colorimetry | Paper Cellulose fiber | Competitive aptamer | Ochratoxin A | - | 1 ppb | Lateral strip assay Naked-eye detection Rapid detection | [84] |
Colorimetry | Clear resin | Biotinylated aptamer | PfLDH enzyme (Malaria) | Human blood serum | 0.01% | Telemedicine Ipad - Iphone detection 3D printing resin | [97] |
Colorimetry | Paper | Hydrogel-aptamer | Cocaine Adenosine Pt +2 | Urine | - | Naked-eye detection Signal off-on by interaction apt-target | [98] |
Miscellaneous | |||||||
Surface Plasmon Resonance | Hairpin RNA aptamer | Aptamer candidate | Random library | KD = 8 nM | SPR-SELEX SELEX on chip | [23] | |
Surface Acoustic Wave | PDMS | Polystyrene aptamer conjugate | Thrombin | Buffer | - | Acoustic wave driven Interdigitated transducer | [100] |
Surface Acoustic Wave | LiTaO3 substrate with SiO2 film | Aptamer beacon | Prostate specific antigen (PSA) ATP | - | PSA = 10 ppb 10 ppb to 1 ppm ATP = 0.1 pM 0.5 pM to 7 nM | Interdigitated transducer Utilized AuNPs | [101] |
Chemiluminescence | PDMS | Aptamer-antibody sandwich | free prostate specific antigen (fPSA) | Human semen | 0.5 ng·mL−1 | Performed in parallel Antibody labeled HRP | [27] |
Chemiluminescence | PDMS | Thiolated aptamer | Lysozyme | Human serum | 44.6 fM | Droplet microfluidic Digital microfluidic Low sample volume | [33] |
Detection Method | Substrate | Aptamer | Target | Matrix Sample | LOD or Linear Range | Device Features | Reference |
Chemiluminescence | Glass | Aptamer-antibody sandwich | HbA1c | Blood | 0.65 g·dL−1 | Three-layer chips Detection time 25 min Utilizes magnetic beads | [36] |
Chemiluminescence | Glass | - | Ochratoxin A | Beer | 0.82 mg·L−1 | Polymer brush ALISA | [58] |
Electrochemiluminescence | Paper | Sandwich aptamer | ATP | - | 0.1 pM 0.5 pM to 7 nM | Origami design Modified porous paper | [79] |
References
- Ansari, M.I.H.; Hassan, S.; Qurashi, A.; Khanday, F.A. Microfluidic-integrated DNA nanobiosensors. Biosens. Bioelectron. 2016, 85, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Hung, L.Y.; Wu, H.W.; Hsieh, K.; Lee, G.B. Microfluidic platforms for discovery and detection of molecular biomarkers. Microfluid. Nanofluid. 2014, 16, 941–963. [Google Scholar] [CrossRef]
- Jayasena, S.D. Aptamers: An emering class of molecules that rival antibodies. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W.M.; Hashim, U. Aptamer-based “point-of-care testing”. Biotechnol. Adv. 2016, 34, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Ye, M.; Zhou, Z. Aptamers: Novel diagnostic and therapeutic tools for diabetes mellitus and metabolic diseases. J. Mol. Med. 2016, 95, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Chen, C.; Wang, W.; Que, L. An aptamer nanopore-enabled microsensor for detection of theophylline. Biosens. Bioelectron. 2018, 105, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 2015, 71, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Dembowski, S.K.; Bowser, M.T. Microfluidic methods for aptamer selection and characterization. Analyst 2018, 143, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.P.; Szita, N. Bioprocess microfluidics: Applying microfluidic devices for bioprocessing. Curr. Opin. Chem. Eng. 2017, 18, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; Derosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors (Switzerland) 2015, 15, 30011–30031. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.H.; Hsieh, I.S.; Hung, L.Y.; Lin, H.I.; Shiesh, S.C.; Chen, Y.L.; Lee, G.B. An automatic microfluidic system for rapid screening of cancer stem-like cell-specific aptamers. Microfluid. Nanofluid. 2013, 14, 753–765. [Google Scholar] [CrossRef]
- Olsen, T.; Zhu, J.; Kim, J.; Pei, R.; Stojanovic, M.N.; Lin, Q. An integrated microfluidic selex approach using combined electrokinetic and hydrodynamic manipulation. SLAS TECHNOL Transl. Life Sci. Innov. 2017, 22, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.J.; Lin, H.I.; Shiesh, S.C.; Lee, G.B. An integrated microfluidic system for rapid screening of alpha-fetoprotein-specific aptamers. Biosens. Bioelectron. 2012, 35, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Lee, S.W.; Ahn, J.Y.; Laurell, T.; Kim, S.Y.; Jeong, O.C. Fabrication of microfluidic platform with optimized fluidic network toward on-chip parallel systematic evolution of ligands by exponential enrichment process. Jpn. J. Appl. Phys. 2011, 50, 06GL05. [Google Scholar] [CrossRef]
- Olsen, T.R.; Tapia-Alveal, C.; Yang, K.-A.; Zhang, X.; Pereira, L.J.; Farmakidis, N.; Pei, R.; Stojanovic, M.N.; Lin, Q. Integrated Microfluidic Selex Using Free Solution Electrokinetics. J. Electrochem. Soc. 2017, 164, B3122–B3129. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-C.; Wang, C.-H.; Liou, T.-M.; Lee, G.-B. Influenza A virus-specific aptamers screened by using an integrated microfluidic system. Lab Chip 2014, 14, 2002–2013. [Google Scholar] [CrossRef] [PubMed]
- Birch, C.M.; Hou, H.W.; Han, J.; Niles, J.C. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX). Sci. Rep. 2015, 5, 11347. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.S.; Ahmad, K.M.; Cho, M.; Kim, S.; Xiao, Y.; Soh, H.T. Improving aptamer selection efficiency through volume dilution, magnetic concentration, and continuous washing in microfluidic channels. Anal. Chem. 2011, 83, 6883–6889. [Google Scholar] [CrossRef] [PubMed]
- Stoll, H.; Kiessling, H.; Stelzle, M.; Wendel, H.P.; Schütte, J.; Hagmeyer, B.; Avci-Adali, M. Microfluidic chip system for the selection and enrichment of cell binding aptamers. Biomicrofluidics 2015, 9, 034111. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Duan, N.; Wu, S.; Hao, L.; Xia, Y.; Ma, X.; Wang, Z. Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci. Rep. 2016, 6, 21665. [Google Scholar] [CrossRef] [PubMed]
- Dausse, E.; Barré, A.; Aimé, A.; Groppi, A.; Rico, A.; Ainali, C.; Salgado, G.; Palau, W.; Daguerre, E.; Nikolski, M.; et al. Aptamer selection by direct microfluidic recovery and surface plasmon resonance evaluation. Biosens. Bioelectron. 2016, 80, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Handy, S.M.; Yakes, B.J.; DeGrasse, J.A.; Campbell, K.; Elliott, C.T.; Kanyuck, K.M.; DeGrasse, S.L. First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin. Toxicon 2013, 61, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liu, X.; Li, J.; Qiang, W.; Sun, L.; Li, H.; Xu, D. Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta 2016, 150, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Loo, J.F.C.; Lau, P.M.; Kong, S.K.; Ho, H.P. An assay using localized surface plasmon resonance and gold nanorods functionalized with aptamers to sense the cytochrome-c released from apoptotic cancer cells for anti-cancer drug effect determination. Micromachines 2017, 8, 338. [Google Scholar] [CrossRef]
- Jolly, P.; Damborsky, P.; Madaboosi, N.; Soares, R.R.G.; Chu, V.; Conde, J.P.; Katrlik, J.; Estrela, P. DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens. Bioelectron. 2016, 79, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, Q.; Feng, J.; Tong, L.; Tang, B. Highly sensitive and homogeneous detection of membrane protein on a single living cell by aptamer and nicking enzyme assisted signal amplification based on microfluidic droplets. Anal. Chem. 2014, 86, 5101–5107. [Google Scholar] [CrossRef] [PubMed]
- Uddin, R.; Burger, R.; Donolato, M.; Fock, J.; Creagh, M.; Hansen, M.F.; Boisen, A. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads. Biosens. Bioelectron. 2016, 85, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, Y.; Liu, C.; Huang, J.; Yang, P.; Liu, B. Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochem. Commun. 2010, 12, 258–261. [Google Scholar] [CrossRef]
- Chand, R.; Neethirajan, S. Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus. Biosens. Bioelectron. 2017, 98, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, H.; Cheng, C.; Wu, J.; Chen, J.; Eda, S.; Najafi Aghdam, E.; Badri Ghavifekr, H. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods. Biosens. Bioelectron. 2017, 89, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, M.C.; Cigliana, G.; Spoto, G. Ultrasensitive detection of lysozyme in droplet-based microfluidic devices. Biosens. Bioelectron. 2018, 104, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Mazaafrianto, D.N.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Label-free electrochemical sensor for ochratoxin A using microfabricated electrode with an immobilized aptamer. 2018. submitted. [Google Scholar]
- Lum, J.; Wang, R.; Hargis, B.; Tung, S.; Bottje, W.; Lu, H.; Li, Y. An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus. Sensors 2015, 15, 18565–18578. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.W.; Li, J.; Yang, C.H.; Shiesh, S.C.; Lee, G.B. An integrated microfluidic system for measurement of glycated hemoglobin Levels by using an aptamer-antibody assay on magnetic beads. Biosens. Bioelectron. 2015, 68, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Zhao, J.; Huang, Y.; Zhao, S.; Liu, Y.M. Aptamer-based microchip electrophoresis assays for amplification detection of carcinoembryonic antigen. Clin. Chim. Acta 2015, 450, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.Y.; Wang, Z.; Li, P.; Lian, H.Z.; Chen, H.Y. Aptamer-based thrombin assay on microfluidic platform. Electrophoresis 2013, 34, 3260–3266. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Chen, T.; Kamath, R.; Xiong, X.; Tan, W.; Fan, Z.H. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 2012, 84, 4199–4206. [Google Scholar] [CrossRef] [PubMed]
- Sanghavi, B.J.; Moore, J.A.; Chávez, J.L.; Hagen, J.A.; Kelley-Loughnane, N.; Chou, C.F.; Swami, N.S. Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens. Bioelectron. 2016, 78, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, Q.; Liu, W.; Yi, L.; Li, H.; Wang, Z.; Lin, J.M. Assay of multiplex proteins from cell metabolism based on tunable aptamer and microchip electrophoresis. Biosens. Bioelectron. 2015, 63, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Ha, H.D.; Kim, Y.T.; Jung, J.H.; Kim, S.H.; Kim, D.H.; Seo, T.S. Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection. Anal. Chem. 2015, 87, 10969–10975. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jin, J.H.; Lee, J.Y.; Park, E.J.; Min, N.K. Covalent attachment of biomacromolecules to plasma-patterned and functionalized carbon nanotube-based devices for electrochemical biosensing. Bioconj. Chem. 2012, 23, 2078–2086. [Google Scholar] [CrossRef] [PubMed]
- Matharu, Z.; Patel, D.; Gao, Y.; Haque, A.; Zhou, Q.; Revzin, A. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics. Anal. Chem. 2014, 86, 8865–8872. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Leung, K.H.; Lin, L.; Lin, L.; Lin, S.; Leung, C.H.; Ma, D.L.; Lin, J.M. Determination of cell metabolite VEGF165and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens. Bioelectron. 2016, 79, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Chang, C.P.; Lee, G.B. Integrated microfluidic device using a single universal aptamer to detect multiple types of influenza viruses. Biosens. Bioelectron. 2016, 86, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.T.; Wang, C.H.; Chang, C.P.; Lee, G.B. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay. Biosens. Bioelectron. 2016, 82, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Dou, M.; Mireles Garcia, J., Jr.; Zhan, S.; Li, X. Interfacial nano-biosensing in microfluidic droplets for high-sensitivity detection of low-solubility molecules. Chem. Commun. 2016, 52, 3470–3473. [Google Scholar] [CrossRef] [PubMed]
- Hilton, J.P.; Olsen, T.; Kim, J.; Zhu, J.; Nguyen, T.H.; Barbu, M.; Pei, R.; Stojanovic, M.; Lin, Q. Isolation of thermally sensitive protein-binding oligonucleotides on a microchip. Microfluid. Nanofluid. 2015, 19, 795–804. [Google Scholar] [CrossRef]
- Galarreta, B.C.; Tabatabaei, M.; Guieu, V.; Peyrin, E.; Lagugné-Labarthet, F. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Anal. Bioanal. Chem. 2013, 405, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Chen, C.; Zhou, M.; Dong, S.; Wang, E. Microfluidic electrochemical aptameric assay integrated on-chip: A potentially convenient sensing platform for the amplified and multiplex analysis of small molecules. Anal. Chem. 2011, 83, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, J.; Howland, M.C.; Kwa, T.; Revzin, A. Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes. Anal. Chem. 2011, 83, 8286–8292. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Chen, T.; Tan, W.; Fan, Z.H. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano 2013, 7, 7067–7076. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Furukawa, K.; Tin, A.; Hibino, H. On-chip FRET Graphene Oxide Aptasensor: Quantitative Evaluation of Enhanced Sensitivity by Aptamer with a Double-stranded DNA Spacer. Anal. Sci. 2015, 31, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Furukawa, K.; Matsuo, K.; Inoue, S.; Hayashi, K.; Hibino, H. On-chip graphene oxide aptasensor for multiple protein detection. Anal. Chim. Acta 2015, 866, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chang, K.W.; Wang, C.H.; Yang, C.H.; Shiesh, S.C.; Lee, G.B. On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens. Bioelectron. 2016, 79, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Kawano, R.; Osaki, T.; Sasaki, H.; Takinoue, M.; Yoshizawa, S.; Takeuchi, S. Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip. J. Am. Chem. Soc. 2011, 133, 8474–8477. [Google Scholar] [CrossRef] [PubMed]
- Costantini, F.; Sberna, C.; Petrucci, G.; Reverberi, M.; Domenici, F.; Fanelli, C.; Manetti, C.; De Cesare, G.; Derosa, M.; Nascetti, A.; et al. Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sens. Actuators B Chem. 2016, 230, 31–39. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, J.; Pei, R.; Oliver, J.A.; Landry, D.W.; Stojanovic, M.N.; Lin, Q. Integrated microfluidic aptasensor for mass spectrometric detection of vasopressin in human plasma ultrafiltrate. Anal. Methods 2016, 8, 5190–5196. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Y.; Wong, T.I.; Guo, S.; Deng, J.; Tan, C.; Gorelik, S.; Zhou, X. Nanoimprinted thrombin aptasensor with picomolar sensitivity based on plasmon excited quantum dots. Sens. Actuators B Chem. 2015, 221, 207–216. [Google Scholar] [CrossRef]
- Weng, X.; Neethirajan, S. Paper-based microfluidic aptasensor for food safety. J. Food Saf. 2018, 38, e12412. [Google Scholar] [CrossRef]
- Ma, Y.; Mao, Y.; Huang, D.; He, Z.; Yan, J.; Tian, T.; Shi, Y.; Song, Y.; Li, X.; Zhu, Z.; et al. Portable visual quantitative detection of aflatoxin B1 using a target-responsive hydrogel and a distance-readout microfluidic chip. Lab Chip 2016, 16, 3097–3104. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Chen, C.; Che, X.; Wang, W.; Que, L. Detection of plant hormone abscisic acid (ABA) using an optical aptamer-based sensor with a microfluidics capillary interface. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 370–373. [Google Scholar] [CrossRef]
- Lin, X.; Chen, Q.; Liu, W.; Li, H.; Lin, J.M. A portable microchip for ultrasensitive and high-throughput assay of thrombin by rolling circle amplification and hemin/G-quadruplex system. Biosens. Bioelectron. 2014, 56, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.C.; Kouzani, A.Z.; Duan, W.; Dai, X.J.; Kaynak, A.; Mair, D. A surface-stress-based microcantilever aptasensor. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Chand, R.; Han, D.; Neethirajan, S.; Kim, Y.S. Detection of protein kinase using an aptamer on a microchip integrated electrolyte-insulator-semiconductor sensor. Sens. Actuators B Chem. 2017, 248, 973–979. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, Q.; Zhang, Q.; Xu, H.; Tong, J.; Zhu, C.; Wan, Y. Detection of single tumor cell resistance with aptamer biochip. Oncol. Lett. 2012, 4, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tang, C.; Xu, L.; Zhang, Z.; Li, X.; Hu, H.; Cheng, S.; Zhou, W.; Huang, M.; Fong, A.; et al. Enhanced and Differential Capture of Circulating Tumor Cells from Lung Cancer Patients by Microfluidic Assays Using Aptamer Cocktail. Small 2016, 12, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Bowser, M.T. Isolating single stranded DNA using a microfluidic dialysis device. Analyst 2014, 139, 215–224. [Google Scholar] [CrossRef] [PubMed]
- White, S.P.; Sreevatsan, S.; Frisbie, C.D.; Dorfman, K.D. Rapid, Selective, Label-Free Aptameric Capture and Detection of Ricin in Potable Liquids Using a Printed Floating Gate Transistor. ACS Sens. 2016, 1, 1213–1216. [Google Scholar] [CrossRef]
- Pasquardini, L.; Pancheri, L.; Potrich, C.; Ferri, A.; Piemonte, C.; Lunelli, L.; Napione, L.; Comunanza, V.; Alvaro, M.; Vanzetti, L.; et al. SPAD aptasensor for the detection of circulating protein biomarkers. Biosens. Bioelectron. 2015, 68, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Thiha, A.; Ibrahim, F.; Muniandy, S.; Dinshaw, I.J.; Teh, S.J.; Thong, K.L.; Leo, B.F.; Madou, M. All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform. Biosens. Bioelectron. 2018, 107, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wan, Z.; Zhong, L.; Li, X.; Wu, Q.; Wang, J.; Wang, P. Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag. Biomed. Microdevices 2017, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wei, X.; Jia, S.; Zhang, R.; Li, J.; Zhu, Z.; Zhang, H.; Ma, Y.; Lin, Z.; Yang, C.J. Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (μPADs) for point-of-care testing (POCT). Biosens. Bioelectron. 2016, 77, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned Paper as a Platform for Inexpensive, Low Volume, Portable Bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, D.; Fan, J.; Nie, J.; Le, S.; Zhu, W.; Yang, J.; Li, J. Naked-eye quantitative aptamer-based assay on paper device. Biosens. Bioelectron. 2016, 78, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Yang, J.; Guo, L.; Nie, J.; Yin, Q.; Zhang, L.; Zhang, Y. Using the Rubik’s Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays. Biosens. Bioelectron. 2017, 96, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yan, M.; Ge, L.; Yu, J.; Ge, S.; Huang, J. A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. Chem. Commun. 2013, 49, 1383–1385. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiang, Y.; Lu, Y.; Crooks, R.M. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. 2012, 51, 6925–6928. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, H.; Zhang, L.; Li, L.; Yan, M.; Yu, J.; Song, X. Microfluidic Paper-Based Analytical Device for Sensitive Detection of Peptides Based on Specific Recognition of Aptamer and Amplification Strategy of Hybridization Chain Reaction. ChemElectroChem 2017, 4, 1744–1749. [Google Scholar] [CrossRef]
- Ahmad Raston, N.H.; Nguyen, V.T.; Gu, M.B. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosens. Bioelectron. 2017, 93, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhao, S.; Mao, Y.; Fang, Z.; Lu, X.; Zeng, L. A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta 2015, 861, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Kong, W.; Dou, X.; Zhao, M.; Ouyang, Z.; Yang, M. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1022, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Biyani, M.; Kawai, K.; Kitamura, K.; Chikae, M.; Biyani, M.; Ushijima, H.; Tamiya, E.; Yoneda, T.; Takamura, Y. PEP-on-DEP: A competitive peptide-based disposable electrochemical aptasensor for renin diagnostics. Biosens. Bioelectron. 2016, 84, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Shi, Z.; Guo, Y.; Sun, X.; Wang, X. An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline. Bioprocess Biosyst. Eng. 2017, 40, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Y.; Yu, J.; Wang, S.; Ge, S.; Song, X. Application of ZnO/graphene and S6 aptamers for sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin oxide device. Biosens. Bioelectron. 2014, 51, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Daprà, J.; Lauridsen, L.H.; Nielsen, A.T.; Rozlosnik, N. Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor. Biosens. Bioelectron. 2013, 43, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Lou, B.; Zhou, Z.; Du, Y.; Dong, S. Resistance-based logic aptamer sensor for CCRF-CEM and Ramos cells integrated on microfluidic chip. Electrochem. Commun. 2015, 59, 64–67. [Google Scholar] [CrossRef]
- Zuo, P.; Li, X.; Dominguez, D.C.; Ye, B.-C. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 2013, 13, 3921–3928. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Su, M.; Li, L.; Lan, F.; Yang, G.; Ge, S.; Yu, J.; Song, X. Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens. Actuators B Chem. 2016, 229, 347–354. [Google Scholar] [CrossRef]
- Weng, X.; Neethirajan, S. Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim. Acta 2017, 184, 4545–4552. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, X.; Fu, X. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels. Biosens. Bioelectron. 2014, 57, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Girardot, M.; D’Orlyé, F.; Descroix, S.; Varenne, A. Aptamer-conjugated nanoparticles: Preservation of targeting functionality demonstrated by microchip electrophoresis in frontal mode. Anal. Biochem. 2013, 435, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Gui, R.; Sun, J.; Wang, Y. Facilely self-assembled magnetic nanoparticles/aptamer/carbon dots nanocomposites for highly sensitive up-conversion fluorescence turn-on detection of tetrodotoxin. Talanta 2018, 176, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Xia, B.; Wang, L.; Ye, J.; Du, G.; Feng, H.; Zhou, X.; Zhang, T.; Wang, W. Fluorescent aptasensor for 17β-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B. Anal. Biochem. 2017, 523, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.A.; Kinghorn, A.B.; Dirkzwager, R.M.; Liang, S.; Cheung, Y.W.; Lim, B.; Shiu, S.C.C.; Tang, M.S.L.; Andrew, D.; Manitta, J.; et al. A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis. Biosens. Bioelectron. 2018, 100, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang, C.J. Target-responsive DNA hydrogel mediated stop-flow microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. Anal. Chem. 2015, 87, 4275–4282. [Google Scholar] [CrossRef] [PubMed]
- Chuang, T.-L.; Chang, C.-C.; Chu-Su, Y.; Wei, S.-C.; Zhao, X.; Hsueh, P.-R.; Lin, C.-W. Disposable surface plasmon resonance aptasensor with membrane-based sample handling design for quantitative interferon-gamma detection. Lab Chip 2014, 14, 2968–2977. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Destgeer, G.; Afzal, M.; Park, J.; Ahmed, H.; Jung, J.H.; Park, K.; Yoon, T.S.; Sung, H.J. Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation. Anal. Chem. 2017, 89, 13313–13319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, S.; Cao, K.; Wang, P.; Su, Y.; Zhu, X.; Wan, Y. A microfluidic love-wave biosensing device for PSA detection based on an aptamer beacon probe. Sensors (Switzerland) 2015, 15, 13839–13850. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gan, N.; Zhou, Y.; Li, T.; Hu, F.; Cao, Y.; Chen, Y. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens. Bioelectron. 2017, 97, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Gan, N.; Zhou, Y.; Li, T.; Cao, Y.; Chen, Y. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes. Talanta 2017, 167, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.Y.; Lin, C.; Yu, S.Y.; Gong, S.; Hu, P.; Li, Y.S.; Wu, Z.C.; Gao, Y.; Zhou, Y.; Liu, Z.S.; et al. Preparation of a specific ssDNA aptamer for brevetoxin-2 using SELEX. J. Anal. Methods Chem. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hu, B.; Zheng, X.; Cao, Y.; Liu, D.; Sun, M.; Jiao, B.; Wang, L. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application. Biosens. Bioelectron. 2016, 79, 938–944. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazaafrianto, D.N.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Recent Microdevice-Based Aptamer Sensors. Micromachines 2018, 9, 202. https://doi.org/10.3390/mi9050202
Mazaafrianto DN, Maeki M, Ishida A, Tani H, Tokeshi M. Recent Microdevice-Based Aptamer Sensors. Micromachines. 2018; 9(5):202. https://doi.org/10.3390/mi9050202
Chicago/Turabian StyleMazaafrianto, Donny Nugraha, Masatoshi Maeki, Akihiko Ishida, Hirofumi Tani, and Manabu Tokeshi. 2018. "Recent Microdevice-Based Aptamer Sensors" Micromachines 9, no. 5: 202. https://doi.org/10.3390/mi9050202
APA StyleMazaafrianto, D. N., Maeki, M., Ishida, A., Tani, H., & Tokeshi, M. (2018). Recent Microdevice-Based Aptamer Sensors. Micromachines, 9(5), 202. https://doi.org/10.3390/mi9050202