Removal of Methylene Blue from Water by BiFeO3/Carbon Fibre Nanocomposite and Its Photocatalytic Regeneration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterisation of the Adsorbent Materials
2.2. The Performances of MB Adsorption of the Adsorbents
2.3. Adsorption Isotherm Study
2.4. Adsorption Kinetics Study
2.5. Effect of Initial Solution pH
2.6. Regeneration of the Adsorbent by Photocatalysis
3. Experiment Procedures
3.1. Materials
3.2. Preparation of BiFeO3/Carbon Fibre Composites
3.3. Adsorption Experiments
3.4. The Experiment of Photocatalytic Regeneration of the Adsorbent
3.5. Material Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tao, T.; Xin, K. A sustainable plan for China’s drinking water. Nature 2014, 511, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Santos, S.C.R.; Boaventura, R.A.R. Adsorption modeling of textile dyes by sepiolite. Appl. Clay Sci. 2008, 42, 137–145. [Google Scholar] [CrossRef]
- Franca, D.G.R.; Vieira, A.; Mata, A.M.T.A.; Carvalho, S.G.; Pinheiro, H.M.; Lourenço, D.N. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Water Res. 2015, 85, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; Tang, Y.P.; Kang, B.N.; Wang, B.S.; Zhou, F.; Ma, Q.; Xiao, J.; Wang, D.Z.; Liang, J. Photocatalytic degradating methyl orange in water phase by UV-irradiated CdS carried by carbon nanotubes. Sci. China Ser. E 2007, 50, 279–289. [Google Scholar] [CrossRef]
- Soltani, T.B.; Entezari, M.H. Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation. Chem. Eng. J. 2013, 223, 145–154. [Google Scholar] [CrossRef]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ma, L.M.; Chen, Y.L.; Cheng, Y.Q.; Liu, Y.; Zha, X.S. Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways. Water Res. 2016, 92, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Du, Q.J.; Liu, T.H.; Qi, Y.; Zhang, P.; Wang, Z.H.; Xia, Y.Z. Preparation of activated carbon from enteromorphaprolifera and its use on cationic red X-GRL removal. Appl. Surf. Sci. 2011, 257, 10621–10627. [Google Scholar] [CrossRef]
- Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K.E. Adsorption, structure and dynamics of benzene in ordered and disordered porous carbons. Phys. Chem. Chem. Phys. 2011, 13, 3748–3757. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.J.; Sun, J.K.; Li, Y.H.; Yang, X.X.; Wang, X.H.; Wang, Z.H.; Xia, L.H. Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 2014, 245, 99–106. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.H.; Hu, S.; Sun, J.K.; Du, Q.J.; Yang, X.X.; Ji, Q.; Wang, Z.H.; Wang, D.C.; Xia, Y.Z. Removal of methylene blue from water by cellulose/grapheme oxide fibres. J. Exp. Nanosci. 2016, 11, 1156–1170. [Google Scholar] [CrossRef]
- Sadrnourmohamadi, M.; Gorczyca, B. Removal of dissolved organic carbon (DOC) from high DOC and hardness water by chemical coagulation: Relative importance of monomeric, polymeric, and colloidal aluminum species. Sep. Sci. Technol. 2015, 50, 2075–2085. [Google Scholar] [CrossRef]
- Kumar, R.V.; Ghoshal, A.K.; Pugazhenthi, G. Fabrication of zirconia composite membrane by in situ hydrothermal technique and its application in separation of methyl orange. Ecotoxicol. Environ. Saf. 2015, 121, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gopakumar, D.A.; Pasquini, D.; Henrique, M.A.; Morais, L.C.D.; Grohens, Y.; Thomas, S. Meldrum’s Acid Modified Cellulose Nanofiber-Based Polyvinylidene Fluoride Microfiltration Membrane for Dye Water Treatment and Nanoparticle Removal. ACS Sustain. Chem. Eng. 2017, 5, 2026–2033. [Google Scholar] [CrossRef]
- Gulshan, F.; Yanagida, S.; Kameshima, Y.; Isobe, T.; Nakajima, A.; Okada, K. Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution. Water Res. 2010, 44, 2876–2884. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.M.; Tang, D.Y.; Li, C.S. Photocatalytic oxidation of methyl orange in water phase by Immobilized TiO2-carbon nanotube nanocompositephotocatalyst. Appl. Surf. Sci. 2014, 296, 1–7. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Muhtaseb, S.A.; Makhlouf, S. Biodegradation of phenol by pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J. Hazard. Mater. 2009, 164, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Termeh, Y.A.; Do, T.O. Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: Structure, kinetics and mechanism approach. Catal. Sci. Technol. 2017, 7, 4548–4569. [Google Scholar] [CrossRef]
- Singh, K.; Arora, S. Removal of Synthetic Textile Dyes from Wastewaters: A Critical Review on Present Treatment Technologies. Crit. Rev. Environ. Sci. Technol. 2011, 41, 807–878. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Mezohegyi, G.; Zee, F.P.; Font, J.; Fortuny, A.; Fabregat, A. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manag. 2012, 102, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Chuah, T.G.; Jumasiah, A.; Azni, I.; Katayon, S.; Thomas, C.S.Y. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination 2005, 175, 305–316. [Google Scholar] [CrossRef]
- Nag, A.; Gupta, N.; Biswas, M.N. Removal of chromium(VI) and arsenic(III) by chemically treated saw dust. Indian J. Environ. Prot. 1999, 19, 25–31. [Google Scholar]
- Verma, S.; Nadagouda, M.N.; Varma, R.S. Porous nitrogen-enriched carbonaceous material from marine waste: Chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid. Sci. Rep. 2017, 7, 13596. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Chen, D.M.; Zhu, Y.; Zhang, Y.M.; Zhu, Y.F. 3D-3D porous Bi2WO6/graphene hydrogel composite with excellentsynergistic effect of adsorption-enrichment and photocatalyticdegradation. Appl. Catal. B 2017, 205, 228–237. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Verma, S.; Baig, R.N.; Nadagouda, M.N.; Varma, R.S. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster. Tetrahedron 2017, 73, 5577–5580. [Google Scholar] [CrossRef]
- Gao, F.; Chen, X.Y.; Yin, K.; Dong, S.; Ren, Z.F.; Yuan, F.; Yu, T.; Zou, Z.G.; Liu, J.M. Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Adv. Mater. 2007, 19, 2889–2892. [Google Scholar] [CrossRef]
- Bai, X.F.; Wei, J.; Tian, B.; Liu, Y.; Reiss, T.; Guiblin, N.; Gemeiner, P.; Dkhil, B.; Infante, C.I. Size Effect on Optical and Photocatalytic Properties in BiFeO3 Nanoparticles. J. Phys. Chem. C 2016, 120, 3595–3601. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, L.H.; Lei, M.; She, Y.B.; Cao, M.J.; Tang, H.Q. Ligand-Induced Drastic Enhancement of Catalytic Activity of Nano-BiFeO3 for Oxidative Degradation of Bisphenol A. ACS Catal. 2011, 1, 1193–1202. [Google Scholar] [CrossRef]
- Luo, W.; Zhu, L.H.; Wang, N.; Tang, H.Q.; Cao, M.J.; She, Y.B. Efficient Removal of Organic Pollutants with Magnetic Nanoscaled BiFeO3 as a Reusable Heterogeneous Fenton-Like Catalyst. Environ. Sci. Technol. 2010, 44, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.J.; Yu, J.G.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, X.M.; Yu, Z.G.; Zeng, G.M.; Luo, Y.; Jiang, L.B.; Yang, Z.X.; Qian, Y.Y.; Wu, H.P. Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustain. Chem. Eng. 2017, 5, 5049–5058. [Google Scholar] [CrossRef]
- Wu, Y.J.; Zhang, L.J.; Gao, C.L.; Ma, J.Y.; Ma, X.H.; Han, R.P. Adsorption ofcopper ions and methylene blue in a single and binary system on wheat straw. J. Chem. Eng. Data 2009, 54, 3229–3234. [Google Scholar] [CrossRef]
- Parida, K.M.; Sahu, S.; Reddy, K.H.; Sahoo, P.C. A kinetic, thermodynamic: And mechanistic approach toward adsorption of methyleneblue over water-washed manganese nodule leached residues. Ind. Eng. Chem. Res. 2011, 50, 843–848. [Google Scholar] [CrossRef]
- Hana, R.P.; Zhang, J.J.; Han, P.; Wang, Y.F.; Zhao, Z.H.; Tang, M.S. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem. Eng. J. 2009, 145, 496–504. [Google Scholar] [CrossRef]
- Cazetta, A.L.; Pezoti, O.; Bedin, K.C.; Silva, T.L.; Junior, A.P.; Asefa, T.; Almeida, V.C. Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes. ACS Sustain. Chem. Eng. 2016, 4, 1058–1068. [Google Scholar] [CrossRef]
- Chen, B.L.; Yang, Z.X.; Ma, G.P.; Kong, D.L.; Xiong, W.; Wang, J.B.; Zhu, Y.Q.; Xia, Y.D. Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities. Microporous Mesoporous Mater. 2018, 257, 1–8. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Jiang, X.; Guo, Y.H.; Zhang, G.C.; Jiang, W.J. An ultra-high surface area mesoporous carbon prepared by a novel MnO-templated method for highly effective adsorption of methylene blue. Chemosphere 2018, 201, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah, A.; Bhat, A.H.; Naeem, A.; Isa, M.H.; Danish, M. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int. J. Biol. Macromol. 2018, 107, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; Wang, D.Z.; Liang, T.X.; Wang, X.F.; Wu, J.J.; Hu, X.Q.; Liang, J. Oxidation of multiwalled carbon nanotubes by air: Benefits for electric double layer capacitors. Powder Technol. 2004, 142, 175–179. [Google Scholar] [CrossRef]
- Li, C.S.; Wang, D.Z.; Liang, T.X.; Wang, X.F.; Liang, J. A study of activated carbon nanotubes as Double-Layer Capacitors electrode materials. Mater. Lett. 2004, 58, 3774–3777. [Google Scholar] [CrossRef]
- Körbahti, B.K. Response surface optimization of electrochemical treatment of textile dye wastewater. J. Hazard. Mater. 2007, 145, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Bulut, E.; Ozacar, M.; Sengil, I.A. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater. 2008, 154, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, Y.; Diao, G.W. Adsorption kinetics and thermodynamics of methylene blue onto p-tert-butyl-calix[4,6,8] arene-bonded silica gel. J. Chem. Eng. Data 2010, 55, 5109–5116. [Google Scholar] [CrossRef]
- Dutta, S.; Bhattacharyya, A.; Ganguly, A.; Gupta, S.; Basu, S. Application of Response Surface Methodology for preparation of low-cost adsorbent from citrus fruit peel and for removal of Methylene Blue. Desalination 2011, 275, 26–36. [Google Scholar] [CrossRef]
- Wu, X.P.; Xu, Y.Q.; Zhang, X.L.; Wu, Y.C.; Gao, P. Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite. New Carbon Mater. 2015, 30, 71–78. [Google Scholar] [CrossRef]
- Yang, J.M. A facile approach to fabricate an immobilized-phosphate zirconium-based metal-organic framework composite (UiO-66-P) and its activity in the adsorption and separation of organic dyes. J. Colloid Interface Sci. 2017, 505, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.G.; Yang, K.; Shan, R.R.; Yan, T.; Wei, J.; Yu, S.J.; Yu, H.Q.; Du, B. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance. J. Colloid Interface Sci. 2015, 448, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, F.; Auta, M.; Khanday, W.A.; Hameed, B.H. High-surface-area and nitrogen-rich mesoporous carbon material from fishery waste for effective adsorption of methylene blue. Powder Technol. 2017, 321, 428–434. [Google Scholar] [CrossRef]
- Doğan, M.; Alkan, M.; ÖDemirbaş, Ö.; Özdemir, Y.; Özmetin, C. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Eng. J. 2006, 124, 89–101. [Google Scholar] [CrossRef]
- Ho, Y.S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res. 2006, 40, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; Zhang, B.Y.; Chen, X.J.; Hu, X.Q.; Liang, J. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment. J. Univ. Sci. Technol. B 2005, 12, 38–42. [Google Scholar]
- Shen, Y.; Fang, Q.L.; Chen, B.L. Environmental applications of three-dimensional graphene-based macrostructures: Adsorption, transformation, and detection. Environ. Sci. Technol. 2015, 49, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhong, H.; Yuan, X.Z.; Wang, H.; Wang, L.L.; Chen, X.H.; Zeng, G.M.; Wu, Y. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014, 67, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zeng, G.M.; Huang, D.L.; Lai, C.; Liu, Y.; Zhang, C.; Wang, R.Z.; Qin, L.; Xue, W.J.; Song, B.; et al. High adsorption of methylene blue by salicylic acid–methanol modified steel converter slag and evaluation of its mechanism. J. Colloid Interface Sci. 2018, 515, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Qu, Y.; Chen, S.Y.; Yan, R.; Humayun, M.; Liu, Y.D.; Bai, L.L.; Jing, L.Q.; Fu, H.G. Efficient photodecomposition of 2,4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi2O3 coupled with phosphate-bridged nano-SnO2. Environ. Sci. Nano 2017, 4, 1147–1154. [Google Scholar] [CrossRef]
- Li, C.S.; Wang, D.Z.; Wang, X.F.; Liang, J. Controlled electrochemical oxidation for enhancing the capacitance of carbon nanotube composites. Carbon 2005, 43, 1557–1560. [Google Scholar] [CrossRef]
Samples | CCT-BFO | CT-BFO | CCT |
---|---|---|---|
BET specific surface area (m2/g) | 442.55 | 350.04 | 278.27 |
Volume ratio of micropores (<2 nm) (%) | 8.63 | 15.21 | 18.46 |
Dye | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|
Qmax (mg/g) | kL (L/mg) | R2 | RL | kF (L/mg) | n | R2 | |
MB | 98.1264 | 0.8001 | 0.9925 | 0.1111 | 7.9641 | 0.4669 | 0.9937 |
Adsorbent | SBET, m2/g | Qmax, mg/g | Source |
---|---|---|---|
Charred citrus fruit peel | 526 | 25.5 | Dutta et al. [49] |
Palygorskite/carbon | 46.45 | 37.79 | Xue-ping Wu, et al. [50] |
UiO-66 | 981 | 24.5 | Ji-Min Yang [51] |
Fe3O4@Zn–Al–LDH | 133 | 36.9 | Liang-guo Yan, et al. [52] |
FSAC | 1867 | 52.63 | F. Marrakchi, et al. [53] |
CCT-BFO | 442.55 | 98.12 | This Work |
Equations | Qe,exp (mg/g) | Pseudo-First-Order Equation ln(Qe − Qt) = lnQe − k1t | Pseudo-Second-Order Equation t/Qt = 1/k2Qe2 + t/Qe | ||||
---|---|---|---|---|---|---|---|
k1 (min−1) | Qe,cal (mg/g) | R2 | k2 × 102 (g/(mg·min)) | Qe,cal (mg/g) | R2 | ||
MB | 19.109 | 0.364 | 19.981 | 0.8438 | 5.417 | 18.704 | 0.9986 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, S.; Zhao, Y.; Bi, M.; Bi, S.; Li, X.; Wang, B.; Li, C.; Dong, Y. Removal of Methylene Blue from Water by BiFeO3/Carbon Fibre Nanocomposite and Its Photocatalytic Regeneration. Catalysts 2018, 8, 267. https://doi.org/10.3390/catal8070267
Jiao S, Zhao Y, Bi M, Bi S, Li X, Wang B, Li C, Dong Y. Removal of Methylene Blue from Water by BiFeO3/Carbon Fibre Nanocomposite and Its Photocatalytic Regeneration. Catalysts. 2018; 8(7):267. https://doi.org/10.3390/catal8070267
Chicago/Turabian StyleJiao, Shuang, Yiming Zhao, Meng Bi, Shuyue Bi, Xiangman Li, Binsong Wang, Chensha Li, and Yinmao Dong. 2018. "Removal of Methylene Blue from Water by BiFeO3/Carbon Fibre Nanocomposite and Its Photocatalytic Regeneration" Catalysts 8, no. 7: 267. https://doi.org/10.3390/catal8070267
APA StyleJiao, S., Zhao, Y., Bi, M., Bi, S., Li, X., Wang, B., Li, C., & Dong, Y. (2018). Removal of Methylene Blue from Water by BiFeO3/Carbon Fibre Nanocomposite and Its Photocatalytic Regeneration. Catalysts, 8(7), 267. https://doi.org/10.3390/catal8070267