Temperature-Dependent Phase Transition in Orthorhombic [011]c Pb(Mg1/3Nb2/3) O3-0.35PbTiO3 Single Crystal
1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Dielectric and Piezoelectric Properties

3.2. X-ray Diffraction (XRD) Analysis

3.3. Variable Temperature Bipolar Ferroelectric Hysteresis Loops Analysis

3.4. Variable Temperature Bipolar S-E Hysteresis Loops Analysis

3.5. Variable Temperature Unipolar Suni-E Hysteresis Loops Analysis
) is shown in Figure 5d. The change mechanism of
is similar to that of the maximum strain shown in the inset of Figure 5a.
).
).
4. Conclusions
are in good accordance with phase transition deduced from variable temperature dielectric properties and XRD analysis. Variable temperature unipolar Suni-E hysteresis loops avail additional evidence for the microstructure change in the as-measured single crystal.Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, S.-J.; Luo, J.; Xia, R.; Rehrig, P.-W.; Randall, C.-A.; Shrout, T.-R. Field-induced piezoelectric response in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Solid State Commun. 2006, 137, 16–20. [Google Scholar] [CrossRef]
- Luo, H.-S.; Xu, G.-S.; Wang, P.-C.; Yin, Z.-W. Growth and Characterization of Relaxor Ferroelectric PMNT Single Crystals. Ferroelectrics 1999, 231, 685–690. [Google Scholar]
- Hou, Y.-D.; Wu, N.-N.; Wang, C.; Zhu, M.-K.; Song, X.-M. Effect of Annealing Temperature on Dielectric Relaxation and Raman Scattering of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 System. J. Am. Ceram. Soc. 2010, 93, 2748–2754. [Google Scholar] [CrossRef]
- Joe, K.; Mark, L.; Chutima, T.; Ahmad, S. Effect of Composition on the Electromechanical Properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 Ceramics. J. Am. Ceram. Soc. 1997, 80, 957–964. [Google Scholar]
- Ye, Z.-G.; Dong, M.; Yamashita, Y. Thermal stability of the Pb(Zn1/3Nb2/3)O3-PbTiO3 [PZNT91/9] and Pb(Mg1/3Nb2/3)O3-PbTiO3 [PMNT68/32] single crystals. J. Cryst. Growth 2000, 211, 247–251. [Google Scholar]
- Saitoh, S.; Kobayashi, T.; Harada, K.; Shimanuki, S.; Yamashita, Y. Simulation and Fabrication Process for a Medical Phased Array Ultrasonic Probe Using a 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystal. Jpn. J. Appl. Phys. 1998, 37, 3053–3057. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Chan, H.-L.-W.; Choy, C.-L.; Yin, Q.-R.; Luo, H.-S.; Yin, Z.-W. Single crystal PMN-0.33PT/epoxy 1–3 composites for ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1177–1183. [Google Scholar] [CrossRef]
- Hana, U.; Franck, L.; Janez, H.; Marc, L.; Marija, K. 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Thick Films for High-Frequency Piezoelectric Transducer Applications. Jpn. J. Appl. Phys. 2013, 52, 055502:1–055502:6. [Google Scholar]
- Zhang, S.-J.; Li, F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 2012, 111, 031301:1–031301:50. [Google Scholar]
- Liu, T.; Lynch, C.-S. Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: Measurements and modeling. Acta Mater. 2003, 51, 407–416. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, B.; Cao, W.-W. Superior d*32 and k*32 coefficients in 0.95Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 and 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystals poled along [011]. J. Phys. Chem. Solids 2004, 65, 1083–1086. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, B.; Jiang, W.; Cao, W.-W. Complete set of elastic, dielectric, and piezoelectric coefficents of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 single crystal poled along [011]. Appl. Phys. Lett. 2006, 89, 242908:1–242908:3. [Google Scholar]
- Rajan, K.-K.; Shanthi, M.; Chang, W.-S.; Jin, J.; Lim, L.-C. Dielectric and piezoelectric properties of [001] and [011]-poled relaxor ferroelectric PZN-PT and PMN-PT single crystals. Sens. Actuators 2007, A133, 110–116. [Google Scholar]
- Shanthi, M.; Chia, S.M.; Lim, L.C. Overpoling resistance of [011]-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Appl. Phys. Lett. 2005, 87, 202902:1–202902:3. [Google Scholar]
- Li, F.; Zhang, S.-J.; Xu, Z.; Wei, X.-Y.; Luo, J.; Shrout, T.-R. Temperature independent shear piezoelectric response in relaxor-PbTiO3 based crystals. Appl. Phys. Lett. 2010, 97, 252903:1–252903:3. [Google Scholar]
- Tu, C.-S.; Huang, L.-W.; Chien, R.; Schmidt, V.-H. E-Field and Temperature Dependent Transformation in <102>-Cut PMN-PT Crystal. Fundam. Phys. Ferroelectr. 2003, 677, 152–159. [Google Scholar] [CrossRef]
- Shanthi, M.; Lim, L.-C. Combined electric field and stress-induced R-O phase transitionin [011]-poled Pb(Mg1/3Nb2/3)O3-(28–32)%PbTiO3 single crystals of [011] length cut. Appl. Phys. Lett. 2009, 95, 102901:1–102901:3. [Google Scholar]
- Tu, C.-S.; Schmidt, V.H.; Chien, R.R.; Tsai, S.-H.; Lee, S.-C.; Luo, H.-S. Field-induced intermediate orthorhombic phase in (110)-cut Pb(Mg1/3Nb2/3)0.70Ti0.30O3 single crystal. J. Appl. Phys. 2008, 104, 094105:1–094105:6. [Google Scholar]
- Luo, N.-N.; Li, Y.-Y.; Xia, Z.-G.; Li, Q. Progress in lead- based ferroelectric and antiferroelectric single crystals: Composition modification, crystal growth and properties. Cryst. Eng. Commun. 2012, 14, 4547–4556. [Google Scholar] [CrossRef]
- Uchino, K.; Nomura, S. Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr. Lett. 1982, 44, 55–61. [Google Scholar]
- Noheda, B.; Cox, D.E.; Shirane, G.; Gao, J.; Ye, Z.-G. Phase diagram of the ferroelectric relaxor (1−x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 2002, 66, 054104:1–054104:10. [Google Scholar]
- Breval, E.; Wang, C.; Dougherty, J.P.; Gachigi, K.W. PLZT Phases Near Lead Zirconate: 1. Determination by X-ray Diffraction. J. Am. Ceram. Soc. 2005, 88, 437–442. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Xue, L.-H.; Zhang, Y.L. Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate ceramics on microstructure and electric properties. J. Phys. Chem. Solids 2007, 68, 2008–2013. [Google Scholar] [CrossRef]
- Li, X.-Y.; Lu, S.-G.; Chen, X.-Z.; Gu, H.-M.; Qian, X.-S.; Zhang, Q.-M. Pyroelectric and electrocaloric materials. J. Mater. Chem. C 2013, 1, 23–37. [Google Scholar] [CrossRef]
- Yimnirun, R.; Wongsaenmai, S.; Wongmaneerung, R.; Wongdamnern, N.; Ngamjarurojana, A.; Ananta, S.; Laosiritaworn, Y. Stress- and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics. Phys. Scr. 2007, 129, 184–189. [Google Scholar]
- Zhang, S.-J.; Xia, R.; Hao, H.; Liu, H.-X.; Shrout, T.-R. Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics. Appl. Phys. Lett. 2008, 92, 152904:1–152904:3. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
He, W.; Li, Q.; Yan, Q.; Luo, N.; Zhang, Y.; Chu, X.; Shen, D. Temperature-Dependent Phase Transition in Orthorhombic [011]c Pb(Mg1/3Nb2/3) O3-0.35PbTiO3 Single Crystal. Crystals 2014, 4, 262-272. https://doi.org/10.3390/cryst4030262
He W, Li Q, Yan Q, Luo N, Zhang Y, Chu X, Shen D. Temperature-Dependent Phase Transition in Orthorhombic [011]c Pb(Mg1/3Nb2/3) O3-0.35PbTiO3 Single Crystal. Crystals. 2014; 4(3):262-272. https://doi.org/10.3390/cryst4030262
Chicago/Turabian StyleHe, Wenhui, Qiang Li, Qingfeng Yan, Nengneng Luo, Yiling Zhang, Xiangcheng Chu, and Dezhong Shen. 2014. "Temperature-Dependent Phase Transition in Orthorhombic [011]c Pb(Mg1/3Nb2/3) O3-0.35PbTiO3 Single Crystal" Crystals 4, no. 3: 262-272. https://doi.org/10.3390/cryst4030262
APA StyleHe, W., Li, Q., Yan, Q., Luo, N., Zhang, Y., Chu, X., & Shen, D. (2014). Temperature-Dependent Phase Transition in Orthorhombic [011]c Pb(Mg1/3Nb2/3) O3-0.35PbTiO3 Single Crystal. Crystals, 4(3), 262-272. https://doi.org/10.3390/cryst4030262
