Systematics of the Third Row Transition Metal Melting: The HCP Metals Rhenium and Osmium
Abstract
:1. Introduction
1.1. Rhenium
1.2. Osmium
2. Z Method Calculations
3. QMD Simulations of the EOS and the Melting Curve of Os
3.1. T = 0 Isotherm
3.2. Ratio as a Function of P
3.3. Melting Curve
4. Uncertainties in the Values of and
5. QMD Simulations of the EOS and the Phase Diagram of Re
5.1. T = 0 Isotherm
5.2. c/a Ratio as a Function of P
5.3. Melting Curve
5.4. Full Free Energy Calculations on hcp-Re and fcc-Re
5.5. Topological Equivalence of the Phase Diagrams of Re and Pt
6. 3rd-Row Transition Metal Melting Systematics
Hf Melting Curve Estimate
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dubrovinsky, L.; Dubrovinskaya, N.; Crichton, W.A.; Mikhaylushkin, A.S.; Simak, S.I.; Abrikosov, I.A.; de Almeida, J.S.; Ahuja, R.; Luo, W.; Johansson, B. Noblest of all metals is structurally unstable at high pressure. Phys. Rev. Lett. 2007, 98, 045503. [Google Scholar] [CrossRef] [PubMed]
- Burakovsky, L.; Chen, S.P.; Preston, D.L.; Sheppard, D.G. Z methodology for phase diagram studies: Platinum and tantalum as examples. J. Phys. Conf. Ser. 2014, 500, 162001. [Google Scholar] [CrossRef]
- Dubrovinsky, L.; Dubrovinskaia, N.; Prakapenka, V.B.; Abakumov, A.M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 2012, 3, 1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, C.-S.; Bassett, W.A.; Shim, S.-H. Rhenium, an in situ pressure calibrant for internally heated diamond anvil cells. Rev. Sci. Instrum. 2004, 75, 2409–2418. [Google Scholar] [CrossRef]
- Verma, A.K.; Ravindran, P.; Rao, R.S.; Godwal, B.K.; Jeanloz, R. On the stability of rhenium up to 1 TPa pressure against transition to the bcc structure. Bull. Mater. Sci. 2003, 26, 183–187. [Google Scholar] [CrossRef]
- Yang, L.; Karandikar, A.; Boehler, R. Flash heating in the diamond cell: Melting curve of rhenium. Rev. Sci. Instrum. 2012, 83, 063905. [Google Scholar] [CrossRef] [PubMed]
- Vereshchagin, L.F.; Fateeva, N.S. Melting curve of rhenium up to 80 kbar. JETP Lett. 1975, 22, 106. [Google Scholar]
- Regel’, A.R.; Glazov, V.M. Periodicheskiy zakon i fizicheskie svoistva elektronnykh rasplavov. In The Periodic Law and Physical Properties of Electronic Melts; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Gorecki, T. Vacancies and melting curves of metals at high pressure. Zeitschrift für Metallkunde 1977, 68, 231–236. [Google Scholar]
- Gorecki, T. Vacancies and a generalised melting curve of metals. High Temp. High Press. 1979, 11, 683–692. [Google Scholar]
- Decker, D.L.; Vanfleet, H.B. Melting and high-temperature electrical resistance of gold under pressure. Phys. Rev. 1965, 138, A129. [Google Scholar] [CrossRef]
- Tsuchiya, T. First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J. Geophys. Res. 2003, 108, 2462. [Google Scholar] [CrossRef]
- Pippinger, T.; Dubrovinsky, L.; Glazyrin, K.; Miletich, R.; Dubrovinskaya, N. Detection of melting by in-situ observation of spherical-drop formation in laser-heated diamond-anvil cells. Física de la Tierra 2011, 23, 2011. [Google Scholar]
- Burakovsky, L.; Burakovsky, N.; Cawkwell, M.J.; Preston, D.L.; Errandonea, D.; Simak, S.I. Ab initio phase diagram of iridium. Phys. Rev. B 2016, 94, 094112. [Google Scholar] [CrossRef]
- Dewaele, A.; Mezouar, M.; Guignot, N.; Loubeyre, P. High melting points of tantalum in a laser-heated diamond anvil cell. Phys. Rev. Lett. 2010, 104, 255701. [Google Scholar] [CrossRef] [PubMed]
- Baty, S.R.; Burakovsky, L.; Preston, D.L. Ab initio melting curve of tungsten and W93 alloy. 2018; in preparation. [Google Scholar]
- Joshi, K.D.; Gupta, S.C.; Banerjee, S. Shock Hugoniot of osmium up to 800 GPa from first principles calculations. J. Phys. Condens. Matter 2009, 21, 415402. [Google Scholar] [CrossRef] [PubMed]
- Dubrovinsky, L.; Dubrovinskaya, N.; Bykova, E.; Bykov, M.; Prakapenka, V.; Prescher, C.; Glazyrin, K.; Liermann, H.-P.; Hanfland, M.; Ekholm, M.; et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 2015, 525, 226. [Google Scholar] [CrossRef] [PubMed]
- Godwal, B.K.; Yan, J.; Clark, S.M.; Jeanloz, R. High-pressure behavior of osmium: An analog for iron in Earth’s core. J. Appl. Phys. 2012, 111, 112608. [Google Scholar] [CrossRef]
- Armentrout, M.M.; Kavner, A. Incompressibility of osmium metal at ultrahigh pressures and temperatures. J. Appl. Phys. 2010, 107, 093528. [Google Scholar] [CrossRef]
- Kulyamina, E.Y.; Zitserman, V.Y.; Fokin, L.R. Osmium: Melting curve and matching of high temperature data. High Temp. 2015, 53, 151–154. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Burakovsky, L.; Chen, S.P.; Johansson, B.; Mikhaylushkin, A.S.; Preston, D.L.; Simak, S.I.; Swift, D.C. Molybdenum at high pressure and temperature: Melting from another solid phase. Phys. Rev. Lett. 2008, 100, 135701. [Google Scholar] [CrossRef] [PubMed]
- Burakovsky, L.; Chen, S.P.; Preston, D.L.; Belonoshko, A.B.; Rosengren, A.; Mikhaylushkin, A.S.; Simak, S.I.; Moriarty, J.A. High-pressure–high-temperature polymorphism in Ta: Resolving an ongoing experimental controversy. Phys. Rev. Lett. 2010, 104, 255702. [Google Scholar] [CrossRef] [PubMed]
- Belonoshko, A.B.; Rosengren, A.; Burakovsky, L.; Preston, D.L.; Johansson, B. Melting of Fe and Fe0.9375Si0.0625 at Earth’s core pressures studied using ab initio molecular dynamics. Phys. Rev. B 2009, 79, 220102. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Rosengren, A. High-pressure melting curve of platinum from ab initio Z method. Phys. Rev. B 2012, 85, 174104. [Google Scholar] [CrossRef]
- Dewaele, A.; Mezouar, M.; Guignot, N.; Loubeyre, P. Melting of lead under high pressure studied using second-scale time-resolved x-ray diffraction. Phys. Rev. B 2007, 76, 144106. [Google Scholar] [CrossRef]
- Anzellini, S.; Dewaele, A.; Mezouar, M.; Loubeyre, P.; Morard, G. Melting of iron at Earth’s inner core boundary based on fast x-ray diffraction. Science 2013, 340, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Errandonea, D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt. Phys. Rev. B 2013, 87, 054108. [Google Scholar] [CrossRef]
- Arblaster, J.W. Is osmium always the densest metal? A comparison of the densities of iridium and osmium. Johns. Matthey Technol. Rev. 2014, 58, 137–141. [Google Scholar] [CrossRef]
- Arblaster, J.W. Crystallographic properties of osmium. Platin. Metals Rev. 2013, 57, 177–185. [Google Scholar] [CrossRef]
- Occelli, F.; Farber, D.L.; Badro, J.; Aracne, C.M.; Teter, D.M.; Hanfland, M.; Canny, B.; Couzinet, B. Experimental evidence for a high-pressure isostructural phase transition in osmium. Phys. Rev. Lett. 2004, 93, 095502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemura, K.; Arai, M.; Kobayashi, K.; Sasaki, T. Bulk modulus of Os by experiments and first-principles calculations. In Proceedings of the 20th AIRAPT—43th EHPRG, Karlsruhe, Germany, 27 June 27–1 July 2005; Available online: http://bibliothek.fzk.de/zb/verlagspublikationen/AIRAPT_EHPRG2005/Posters/P139.pdf (accessed on 10 December 2017).
- Kenichi, T. Bulk modulus of osmium: High-pressure powder x-ray diffraction experiments under quasihydrostatic conditions. Phys. Rev. B 2004, 70, 012101. [Google Scholar] [CrossRef]
- Perreault, C.S.; Velisavljevic, N.; Vohra, Y.K. High-pressure structural parameters and equation of state of osmium to 207 GPa. Cogent Phys. 2017, 4, 1376899. [Google Scholar] [CrossRef]
- Sahu, B.R.; Kleimann, L. Osmium is not harder than diamond. Phys. Rev. B 2005, 72, 113106. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Skorodumova, N.V.; Rosengren, A.; Johansson, B. Melting and critical superheating. Phys. Rev. B 2006, 73, 012201. [Google Scholar] [CrossRef]
- Grover, R. Liquid metal equation of state based on scaling. J. Chem. Phys. 1971, 55, 3435. [Google Scholar] [CrossRef]
- Grover, R. Metallic high pressure equation of state derived from experimental data. In High Pressure Science and Technology, Proceedings of the 6th AIRAPT Conference, Boulder, CO, USA, 25–29 July 1977; Plenum Press: New York, NY, USA, 1979; Volume 1, p. 33, In this paper it is suggested that, for CVL at a given density, CVL = is a good average representation of all the available experimental data and computer simulations on liquid metals, including those for the OCP. Hence, at T = Tm, CVL = . Since CVS ≅ 3R, CVL ≅ CVS ≈ CVS. [Google Scholar]
- Vohra, Y.K.; Duclos, S.J.; Ruoff, A.L. High-pressure x-ray diffraction studies on rhenium up to 216 GPa (2.16 Mbar). Phys. Rev. B 1987, 36, 9790. [Google Scholar] [CrossRef]
- Anzellini, S.; Dewaele, A.; Occelli, F.; Loubeyre, P.; Mezouar, M. Equation of state of rhenium and application for ultra high pressure calibration. J. Appl. Phys. 2014, 115, 043511. [Google Scholar] [CrossRef]
- Jeanloz, R.; Godwal, B.K.; Meade, C. Static strength and equation of state of rhenium at ultra-high pressures. Nature 1991, 349, 687. [Google Scholar] [CrossRef]
- Hellman, O.; Abrikosov, I.A.; Simak, S.I. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 2011, 84, 180301. [Google Scholar] [CrossRef]
- Hellman, O.; Steneteg, P.; Abrikosov, I.A.; Simak, S.I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 2013, 87, 104111. [Google Scholar] [CrossRef]
- Kinslow, R. (Ed.) High-Velocity Impact Phenomena; Academic Press: New York, NY, USA; London, UK, 1970; p. 544. [Google Scholar]
- Kavner, A.; Jeanloz, R. High-pressure melting curve of platinum. J. Appl. Phys. 1998, 83, 7553–7559. [Google Scholar] [CrossRef]
- Ostanin, S.A.; Trubitsin, V.Y. Calculation of the P-T phase diagram of hafnium. Comput. Mater. Sci. 2000, 17, 174. [Google Scholar] [CrossRef]
- Hrubiak, R.; Meng, Y.; Shen, G. Microstructures define melting of molybdenum at high pressures. Nat. Commun. 2017, 8, 14562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burakovsky, L.; Burakovsky, N.; Preston, D.; Simak, S. Systematics of the Third Row Transition Metal Melting: The HCP Metals Rhenium and Osmium. Crystals 2018, 8, 243. https://doi.org/10.3390/cryst8060243
Burakovsky L, Burakovsky N, Preston D, Simak S. Systematics of the Third Row Transition Metal Melting: The HCP Metals Rhenium and Osmium. Crystals. 2018; 8(6):243. https://doi.org/10.3390/cryst8060243
Chicago/Turabian StyleBurakovsky, Leonid, Naftali Burakovsky, Dean Preston, and Sergei Simak. 2018. "Systematics of the Third Row Transition Metal Melting: The HCP Metals Rhenium and Osmium" Crystals 8, no. 6: 243. https://doi.org/10.3390/cryst8060243
APA StyleBurakovsky, L., Burakovsky, N., Preston, D., & Simak, S. (2018). Systematics of the Third Row Transition Metal Melting: The HCP Metals Rhenium and Osmium. Crystals, 8(6), 243. https://doi.org/10.3390/cryst8060243