Characterization of Antimicrobial Resistance Determinants and Class 1 and Class 2 Integrons in Salmonella enterica spp., Multidrug-Resistant Isolates from Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Phenotypic Characterization of Antimicrobial Resistance Genes
2.3. Detection of Antimicrobial Resistance Determinants
2.4. Identification of Class 1 and Class 2 Integrons
2.5. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance Profiles within the Multi-Drug Resistance isolates
3.2. Frequency of the Antimicrobial Resistant Determinants
3.3. Integrons
4. Discussion
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O'Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. International Collaboration on Enteric Disease Burden of Illness Studies The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed]
- de Toro, M.; Rojo-Bezares, B.; Vinué, L.; Undabeitia, E.; Torres, C.; Sáenz, Y. In vivo selection of aac(6')-ib-cr and mutations in the gyrA gene in a clinical qnrs1-positive Salmonella enterica serovar Typhimurium DT104b strain recovered after fluoroquinolone treatment. J. Antimicrob. Chemother. 2010, 65, 1945–1949. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; García, V.; Bances, M.; Rodicio, M.R. CTX-M-14 production by a clinical isolate of the European clone of Salmonella enterica 4,[5],12:I. J. Glob. Antimicrob. Resist. 2016, 7, 130–131. [Google Scholar] [CrossRef] [PubMed]
- EFSA. ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA J. 2015, 13, 4006. [Google Scholar]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, 231. [Google Scholar]
- Argüello, H.; Carvajal, A.; Alvarez-Ordonez, A.; Jaramillo-Torres, H.A.; Rubio, P. Effect of logistic slaughter on Salmonella contamination on pig carcasses. Food Res. Int. 2014, 55, 77–82. [Google Scholar] [CrossRef]
- Lynch, H.; Leonard, F.C.; Walia, K.; Lawlor, P.G.; Duffy, G.; Fanning, S.; Markey, B.K.; Brady, C.; Gardiner, G.E.; Argüello, H. Investigation of in-feed organic acids as a low cost strategy to combat Salmonella in grower pigs. Prev. Vet. Med. 2017, 139, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, R.; Henriques, A.; Sereno, R.; Mendonça, N.; da Silva, G.J. Antimicrobial resistance and extended-spectrum β-lactamases of Salmonella enterica serotypes isolated from livestock and processed food in Portugal: An update. Foodborne Pathog. Dis. 2015, 12, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Arguello, H.; Sorensen, G.; Carvajal, A.; Baggesen, D.L.; Rubio, P.; Pedersen, K. Prevalence, serotypes and resistance patterns of Salmonella in Danish pig production. Research in Veterinary Science 2013, 95, 334–342. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J. 2017, 15, 4694. [Google Scholar]
- Beutlich, J.; Jahn, S.; Malorny, B.; Hauser, E.; Hühn, S.; Schroeter, A.; Rodicio, M.R.; Appel, B.; Threlfall, J.; Mevius, D.; et al. Antimicrobial resistance and virulence determinants in European Salmonella genomic island 1-positive Salmonella enterica isolates from different origins. Appl. Environ. Microbiol. 2011, 77, 5655–5664. [Google Scholar] [CrossRef] [PubMed]
- García-Feliz, C.; Collazos, J.A.; Carvajal, A.; Vidal, A.B.; Aladueña, A.; Ramiro, R.; de la Fuente, M.; Echeita, M.A.; Rubio, P. Salmonella enterica infections in Spanish swine fattening units. Zoonoses Public Health 2007, 54, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Pires, S.M.; Vieira, A.R.; Hald, T.; Cole, D. Source attribution of human salmonellosis: An overview of methods and estimates. Foodborne Pathog. Dis. 2014, 11, 667–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, D.F.; Smith, T.J.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Global Health 2013, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Commission notice guidelines for the prudent use of antimicrobials in veterinary medicine (2015/c 299/04). Off. J. Eur. Union 2015, c299/297. [Google Scholar]
- Lynch, H.; Walia, K.; Leonard, F.C.; Lawlor, P.G.; Manzanilla, E.G.; Grant, J.; Duffy, G.; Gardiner, G.E.; Cormican, M.; King, J.; et al. Salmonella in breeding pigs: Shedding pattern, transmission of infection and the role of environmental contamination in Irish commercial farrow-to-finish herds. Zoonoses Public Health 2018, 65, e196–e206. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Doblies, D.; Speed, K.C.R.; Kidd, S.; Davies, R.H. Salmonella Typhimurium in livestock in Great Britain-trends observed over a 32-year period. Epidemiol. Infect. 2018, 146, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Tamang, M.D.; Gurung, M.; Nam, H.M.; Moon, D.C.; Jang, G.C.; Jung, S.C.; Lim, S.K. Antimicrobial susceptibility and virulence characteristics of Salmonella enterica Typhimurium isolates from healthy and diseased pigs in Korea. J. Food Prot. 2014, 77, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.V.; Michael, G.B.; Cardoso, M.; Schwarz, S. Antimicrobial resistance and class 1 integron-associated gene cassettes in Salmonella enterica serovar Typhimurium isolated from pigs at slaughter and abattoir environment. Vet. Microbiol. 2016, 194, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ye, C.; Chang, W.; Sun, S. Serotype distribution, antimicrobial resistance, and class 1 integrons profiles of Salmonella from animals in slaughterhouses in Shandong province, China. Front. Microbiol. 2017, 8, 1049. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs, in the EU, 2006–2007—Part a: Salmonella prevalence estimates. EFSA J. 2008, 135, 1–111. [Google Scholar]
- García-Feliz, C.; Collazos, J.A.; Carvajal, A.; Herrera, S.; Echeita, M.A.; Rubio, P. Antimicrobial resistance of Salmonella enterica isolates from apparently healthy and clinically ill finishing pigs in Spain. Zoonoses Public Health 2008, 55, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Arguello, H.; Carvajal, A.; Naharro, G.; Arcos, M.; Rodicio, M.R.; Martin, M.C.; Rubio, P. Sero- and genotyping of Salmonella in slaughter pigs, from farm to cutting plant, with a focus on the slaughter process. Int. J. Food Microbiol. 2013, 161, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Grimont, P.A.D.; Grimont, F.; Bouvet, P. Taxonomy of the genus Salmonella. In Salmonella in Domestic Animals; Wray, C., Wray, A., Eds.; CABI Publishing: New York, NY, USA, 2000; pp. 1–18. [Google Scholar]
- CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that growth aerobically. In Approved Standard, 7th ed.; m7-a7; CLSI: Wayne, PA, USA, 2006; Volume 26. [Google Scholar]
- Rodríguez, I.; Martín, M.C.; Mendoza, M.C.; Rodicio, M.R. Class 1 and class 2 integrons in non-prevalent serovars of Salmonella enterica: Structure and association with transposons and plasmids. J. Antimicrob. Chemother. 2006, 58, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org.
- EFSA; EMA (European Medicines Agency); EFSA (European Food Safety Authority). EMA and EFSA joint scientific opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J. 2017, 15, 4245. [Google Scholar] [CrossRef]
- de Been, M.; Lanza, V.F.; de Toro, M.; Scharringa, J.; Dohmen, W.; Du, Y.; Hu, J.; Lei, Y.; Li, N.; Tooming-Klunderud, A.; et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014, 10, e1004776. [Google Scholar] [CrossRef] [PubMed]
- Vo, A.T.; van Duijkeren, E.; Gaastra, W.; Fluit, A.C. Antimicrobial resistance, class 1 integrons, and genomic island 1 in Salmonella isolates from Vietnam. PLoS ONE 2010, 5, e9440. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Bao, X.; Ji, L.; Chen, L.; Liu, J.; Miao, J.; Chen, D.; Bian, H.; Li, Y.; Yu, G. Resistance integrons: Class 1, 2 and 3 integrons. Ann. Clin. Microbiol Antimicrob. 2015, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Labbate, M.; Case, R.J.; Stokes, H.W. The integron/gene cassette system: An active player in bacterial adaptation. Methods Mol. Biol. 2009, 532, 103–125. [Google Scholar] [PubMed]
- Lamas, A.; Fernandez-No, I.C.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C. Prevalence, molecular characterization and antimicrobial resistance of Salmonella serovars isolated from northwestern Spanish broiler flocks (2011–2015). Poult. Sci. 2016, 95, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Peirano, G.; Agersø, Y.; Aarestrup, F.M.; dos Reis, E.M.; dos Prazeres Rodrigues, D. Occurrence of integrons and antimicrobial resistance genes among Salmonella enterica from Brazil. J. Antimicrob. Chemother. 2006, 58, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, V.B.; Lincopan, N.; Landgraf, M.; Franco, B.D.; Destro, M.T. Characterization of class 1 integrons and antibiotic resistance genes in multidrug-resistant Salmonella enterica isolates from foodstuff and related sources. Braz. J. Microbiol. 2011, 42, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Guerra, B.; Soto, S.; Cal, S.; Mendoza, M.C. Antimicrobial resistance and spread of class 1 integrons among Salmonella serotypes. Antimicrob. Agents Chemother. 2000, 44, 2166–2169. [Google Scholar] [CrossRef] [PubMed]
- Sinwat, N.; Angkittitrakul, S.; Coulson, K.F.; Pilapil, F.M.; Meunsene, D.; Chuanchuen, R. High prevalence and molecular characteristics of multidrug-resistant Salmonella in pigs, pork and humans in Thailand and Laos provinces. J. Med. Microbiol 2016, 65, 1182–1193. [Google Scholar] [CrossRef] [PubMed]
- Michael, G.B.; Cardoso, M.; Schwarz, S. Molecular analysis of multiresistant porcine Salmonella enterica subsp. enterica serovar Bredeney isolates from Southern Brazil: Identification of resistance genes, integrons and a group II intron. Int J. Antimicrob. Agents 2008, 32, 120–129. [Google Scholar] [CrossRef] [PubMed]
- García-Fierro, R.; Montero, I.; Bances, M.; González-Hevia, M.; Rodicio, M.R. Antimicrobial drug resistance and molecular typing of Salmonella enterica serovar Rissen from different sources. Microb. Drug Resist. 2016, 22, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Olsen, J.E.; Herrero-Fresno, A. The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS ONE 2017, 12, e0178623. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005, 245, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Guerra, B.; Junker, E.; Helmuth, R. Incidence of the recently described sulfonamide resistance gene sul3 among German Salmonella enterica strains isolated from livestock and food. Antimicrob. Agents Chemother. 2004, 48, 2712–2715. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Park, J.H.; Kwak, H.S.; Woo, G.J. Characterization of the quinolone resistance mechanism in foodborne Salmonella isolates with high nalidixic acid resistance. Int. J. Food Microbiol. 2011, 146, 52–56. [Google Scholar] [CrossRef] [PubMed]
- McDermott, P.F.; Tyson, G.H.; Kabera, C.; Chen, Y.; Li, C.; Folster, J.P.; Ayers, S.L.; Lam, C.; Tate, H.P.; Zhao, S. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob. Agents Chemother. 2016, 60, 5515–5520. [Google Scholar] [CrossRef] [PubMed]
No. of Isolates | Antimicrobial Resistance Pattern | Serotype(s) |
---|---|---|
1 | AMP-SMX-TMP | S. 4,[5],12:i:- |
1 | SPE-SMX-TET | Salmonella Typhimurium |
1 | AMP-SMX-SPE-STR | S. Typhimurium |
4 | AMP-SPE-STR-TET | S. Typhimurium |
2 | SMX-SPE-STR-TET | S. Typhimurium |
1 | AMP-SMX-SPE-STR-TMP | S. Typhimurium |
1 | AMP-SPE-STR-TET-TMP | S. Typhimurium |
1 | CHL-SMX-SPE-STR-TET | S. Typhimurium |
2 | FOT-SMX-SPE-STR-TET | Salmonella Derby |
1 | SMX-SPE-STR-TET-TMP | S. Typhimurium |
1 | AMP-CHL-FFN-SPE-STR-TET | S. Typhimurium |
1 | AMP-CHL-NEO-SPE-STR-TET | S. Typhimurium |
2 | AMP-CHL-SMX-SPE-STR-TET | S. Typhimurium |
1 | AMP-SMX-SPE-STR-TET-TMP | Salmonella Bredeney |
1 | CHL-CIP-FFN-GEN-NAL-SMX | S. Typhimurium |
6 | AMP-CHL-FFN-SMX-SPE-STR-TET | S. Typhimurium |
3 | CHL-FFN-SMX-SPE-STR-TET-TMP | S. Typhimurium |
1 | AMP-CIP-FOT-NAL-SMX-SPE-STR | S. Typhimurium |
1 | AMP-FOT-KAN-GEN-SPE-STR-TET | S. Typhimurium |
1 | AMP-FOT-NEO-SMX-SPE-STR-TET | S. Derby |
1 | AMP-FOT-NEO-SMX-SPE-STR-TMP | S. Derby |
1 | AMP-FOT-SMX-SPE-STR-TET-TMP | Salmonella Rissen |
1 | APR-CHL-FFN-GEN-SMX-SPE-STR-TET | S. Derby |
1 | AMP-APR-CEP-GEN-SMX-SPE-STR-TET | S. Typhimurium |
1 | AMP-CEP-CHL-SMX-SPE-STR-TET-TMP | S. Rissen |
2 | AMP-CHL-CIP-NAL-SMX-SPE-STR-TET | S. Typhimurium |
1 | AMP-CHL-FFN-NAL-SMX-SPE-STR-TET | S. Typhimurium |
1 | AMP-CHL-FFN-SMX-SPE-STR-TET-TMP | S. Typhimurium |
1 | AMP-CHL-NAL-SMX-SPE-STR-TET-TMP | Salmonella Kapemba |
1 | AMP-CEP-CIP-SMX-SPE-STR-TET-TMP | Salmonella Worthington |
1 | AMP-GEN-KAN-SMX-SPE-STR-TET-TMP | S. Typhimurium |
1 | CHL-CIP-FFN-GEN-NAL-SMX-SPE-STR | S. Typhimurium |
1 | CHL-CIP-NAL-SMX-SPE-STR-TET-TMP | Salmonella 4,[5],12:i:- |
1 | AMP-APR-CEP-GEN-SMX-SPE-STR-TET-TMP | S. 4,[5],12:i:- |
1 | AMP-CEP-COL-GEN-SMX-SPE-STR-TET-TMP | S. Typhimurium |
1 | AMP-CHL-FOT-GEN-KAN-SMX-SPE-STR-TET | Salmonella London |
1 | AMP-CHL-CIP-FFN-FOT-NAL-SMX-SPE-STR-TET | S. Typhimurium |
1 | AMP-CHL-GEN-KAN-SMX-SPE-STR-TET-TMP | S. Rissen |
1 | CHL-CIP-FFN-NAL-SMX-SPE-STR-TET-TMP | S. Bredeney |
1 | AMP-CHL-CIP-FFN-NEO-SMX-SPE-STR-TET-TMP | S. Typhimurium |
2 | AMP-APR-CEP-CHL-GEN-SMX-SPE-STR-TET-TMP | S. Typhimurium/S. 4,[5],12:i:- |
1 | AMP-APR-CHL-FFN-GEN-SMX-SPE-STR-TET-TMP | S. Typhimurium |
1 | AMP-CEP-CHL-CIP-NAL-NEO-SMX-SPE-STR-TMP | Salmonella Wien |
1 | AMP-CHL-CIP-FFN-FOT-NAL-NEO-SPE-STR-TET | S. Typhimurium |
1 | AMP-CHL-CEP-GEN-SPE-SMX-SPE-STR-TET-TMP | S. Typhimurium |
1 | AMP-APR-CEP-CIP-CHL-FFN-GEN-NAL-SMX-SPE-STR-TET-TMP | S. 4,[5],12:i:- |
1 | AMP-APR-CEP-CHL-CIP-FFN-GEN-NAL-NEO-SMX-SPE-STR-TET-TMP | S. Typhimurium |
Antimicrobial Compound 1 (Genes Tested) | S. Typhimurium | S. 4,[5],12:i:- | S. Derby | S. Rissen | S. Bredeney | S. Kapemba | S. London | S. Worthington | S. Wien |
---|---|---|---|---|---|---|---|---|---|
Sulphonamides | 34 isolates | 5 isolates | 5 isolates | 3 isolates | 2 isolates | 1 isolate | 1 isolate | 1 isolate | 1 isolate |
sul1 | 26 (76.5%) | 5 (100%) | 4 (80%) | 3 (100%) | 1 (50%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) |
sul2 | 9 (26.5%) | 2 (40%) | 1 (20%) | 1 (33%) | 1 (50%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
sul3 | 12 (35.2%) | 2 (40%) | 0 (0%) | 1 (33%) | 1 (50%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) |
Ampicillin | 33 isolates | 4 isolates | 2 isolates | 3 isolates | 1 isolate | 1 isolate | 1 isolate | 1 isolate | 1 isolate |
blaTEM1-like | 21 (63.6%) | 3 (75%) | 1 (50%) | 2 (66%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) |
blaOXA1-like | 4 (12.1%) | 0 (0%) | 1 (50%) | 1 (33%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
blaPSE-1 | 11 (33.3%) | 1 (25%) | 0 (0%) | 1 (33%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Tetracycline | 38 isolates | 4 isolates | 4 isolates | 3 isolates | 1 isolate | 1 isolate | 1 isolate | 1 isolate | 0 isolates |
tet(A) | 19 (50%) | 4 (100%) | 4 (100%) | 3 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | - |
tet(B) | 13 (34.2%) | 0 (0%) | 1 (25%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | - |
tet(G) | 11 (28.9%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | - |
Amphenicols | 27 isolates | 3 isolates | 1 isolate | 2 isolates | 1 isolate | 1 isolate | 1 isolate | 0 isolates | 1 isolate |
catA1 | 8 (29.6%) | 1 (33.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 1 (100%) | - | 0 (0%) |
cmlA | 12 (44.4%) | 2 (66.6%) | 0 (0%) | 1 (50%) | 0 (0%) | 0 (0%) | 0 (0%) | - | 1 (100%) |
floR | 12 (44.4%) | 1 (33.3%) | 1 (100%) | 1 (50%) | 1 (100%) | 0 (0%) | 0 (0%) | - | 0 (0%) |
Spectinomycin/Streptomycin | 41 isolates | 4 isolates | 5 isolates | 3 isolates | 2 isolates | 1 isolate | 1 isolate | 1 isolate | 1 isolate |
aadA1-like | 32 (78%) | 3 (75%) | 4 (80%) | 3 (100%) | 2 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) |
aadA2 | 24 (58.5%) | 4 (100%) | 4 (80%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) |
Trimethoprim | 14 isolates | 5 isolates | 1 isolate | 3 isolates | 2 isolates | 1 isolate | 0 isolates | 1 isolate | 1 isolate |
dfrA1-like | 2 (16.7%) | 1 (20%) | 1 (100%) | 1 (33%) | 2 (100%) | 1 (100%) | - | 0 (0%) | 1 (100%) |
dfrA17 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | - | 1 (100%) | 0 (0%) | |
dfrA12 | 10 (71.4%) | 0 (0%) | 1 (33%) | 0 (0%) | 0 (0%) | - | 0 (0%) | 0 (0%) | |
dfrA7-A17 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | - | 0 (0%) | 0 (0%) | |
dfrA5-A14 | 3 (21.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | - | 0 (0%) | 0 (0%) | |
Kanamycin | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
aphAI | 2 (100%) | - | 1 (100%) | - | - | 1 (100%) | - | - | |
aphA2 | 0 (0%) | - | 0 (0%) | - | - | 0 (0%) | - | - | |
Gentamicin | 10 | 3 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
acc(3)-Iva | 10 (100%) | 3 (100%) | 1 (100%) | 0 (0%) | - | - | 1 (100%) | - | - |
acc(3)-Iia | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | - | - | 0 (0%) | - | - |
aadB | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | - | - | 0 (0%) | - | - |
Amplicon Size/Resistance Gene | Gene Cassettes Detected in the Isolates Carrying the Class 1 and Class 2 Integrons a | No of Isolates | Serotypes |
---|---|---|---|
Class 1 integrons | |||
1000-bp/aadA1 | qac sul1 aadA1-like | 6 | S. Typhimurium (2), S. Derby (2), S. Kapemba (1) S. London (1) |
1000-bp/aadA2 | qac sul1 aadA2 | 3 | S. Typhimurium (2), S. Derby (1) |
1000-bp/aadA2;1,200-bp/blaPSE-1 | qac sul1 blaPSE-1 aadA1-like aadA2 | 13 | S. Typhimurium (11), S. Rissen (1) S. 4,[5],12:i:- (1) |
1600-bp/dfrA1-aadA1a | qac sul1 aadA1-like dfrA1-like | 3 | S. Wien (1), S. Rissen (1) and S. Bredeney (1) |
1600-bp/dfrA17-aadA5 | qac sul1 aadA1-like | 1 | S. Worthington |
1600-bp/aac(3)-aadA7 | qac sul1 aadA1-like dfrA1-like aac3 | 1 | S. Typhimurium (1) |
1900 bp/ dfrA12-orfF-aadA2 | qac sul1 aadA2 dfrA12 | 3 | S. Typhimurium (2), S. 4,[5],12:i:- (1) |
2000-bp/blaOXA-aadA1 c | qac sul1 blaOXA-like aadA1-like dfrA12 | 6 | S. Typhimurium (4), S. Derby (1), S. Rissen (1) |
200-bp | qac sul1 | 4 | S. Typhimurium (1) S. 4,[5],12:i:- (3) |
Defectivea,b | aadA1-like aadA2 dfrA12 | 8 | S. Typhimurium (8) |
Class 2 integrons | |||
2300 bp/ estX-sat2-aadA1 | qac sul1 aadA1-like | 4 | S. Typhimurium (2), S. Kapemba (1), S. Bredeney (1) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argüello, H.; Guerra, B.; Rodríguez, I.; Rubio, P.; Carvajal, A. Characterization of Antimicrobial Resistance Determinants and Class 1 and Class 2 Integrons in Salmonella enterica spp., Multidrug-Resistant Isolates from Pigs. Genes 2018, 9, 256. https://doi.org/10.3390/genes9050256
Argüello H, Guerra B, Rodríguez I, Rubio P, Carvajal A. Characterization of Antimicrobial Resistance Determinants and Class 1 and Class 2 Integrons in Salmonella enterica spp., Multidrug-Resistant Isolates from Pigs. Genes. 2018; 9(5):256. https://doi.org/10.3390/genes9050256
Chicago/Turabian StyleArgüello, Héctor, Beatriz Guerra, Irene Rodríguez, Pedro Rubio, and Ana Carvajal. 2018. "Characterization of Antimicrobial Resistance Determinants and Class 1 and Class 2 Integrons in Salmonella enterica spp., Multidrug-Resistant Isolates from Pigs" Genes 9, no. 5: 256. https://doi.org/10.3390/genes9050256
APA StyleArgüello, H., Guerra, B., Rodríguez, I., Rubio, P., & Carvajal, A. (2018). Characterization of Antimicrobial Resistance Determinants and Class 1 and Class 2 Integrons in Salmonella enterica spp., Multidrug-Resistant Isolates from Pigs. Genes, 9(5), 256. https://doi.org/10.3390/genes9050256