Commuter Exposure to Black Carbon, Fine Particulate Matter and Particle Number Concentration in Ferry and at the Pier in Istanbul
Abstract
:1. Introduction
2. Methodology
2.1. Features of Ferry Modes and Piers
2.2. Measurement and Instrumentation
2.3. Statistical Analysis
2.4. Exposure Estimation
3. Results and Discussion
3.1. Concentration in Ferry
3.2. Concentration at the Pier
3.3. Seasonal Variations in Ferry and at the Piers
3.4. Correlations between Pollutants and Meteorology
3.5. Correlation between Urban Air and Pier for PM2.5 Concentration
3.6. Estimation of Commuter Exposure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Corbett, J.J.; Farrell, A. Mitigating air pollution impacts of passenger ferries. Trans. Res. Part. D Trans. Environ. 2002, 7, 197–211. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B. Port-city exhaust emission model: An application to cruise and ferry operations in Las Palmas Port. Trans. Res. Part A 2015, 78, 347–360. [Google Scholar] [CrossRef]
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from ship emissions: A global assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.L.; Chan, L.Y. Commuter exposure to aromatic VOCs in public transportation modes in Hong Kong. Sci. Total Environ. 2003, 308, 143–155. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Lee, S.C.; Chan, C.Y. Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos. Environ. 2002, 36, 3363–3373. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Willey & Sons. Inc.: New York, NY, USA, 1999; pp. 3–4. [Google Scholar]
- World Health Organization. The World Health Report: Working Together for Health; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Morawska, L.; Ristovski, Z.; Jayaratne, E.R.; Keogh, D.U.; Ling, X. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 2008, 42, 8113–8138. [Google Scholar] [CrossRef] [Green Version]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health Part C 2008, 26, 339–362. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Report to Congress on Black Carbon; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Hubbell, B.J. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal. Int. J. 2012, 32, 81–95. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Kinne, S.; Kondo, Y.; Quinn, P.K.; Sarofim, M.C.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Janssen, N.A.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; Van Bree, L.; Ten Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Cassee, F.R.; et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef]
- Kirrane, E.F.; Luben, T.J.; Benson, A.; Owens, E.O.; Sacks, J.D.; Dutton, S.J.; Madden, M.; Nichols, J.L. A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. Environ. Int. 2019, 127, 305–316. [Google Scholar] [CrossRef]
- Rich, K.E.; Petkau, J.; Vedal, S.; Brauer, M. A case-crossover analysis of particulate air pollution and cardiac arrhythmia in patients with implantable cardioverter defibrillators. Inhal. Toxicol. 2004, 16, 363–372. [Google Scholar] [CrossRef]
- Meister, K.; Johansson, C.; Forsberg, B. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 2011, 120, 431–436. [Google Scholar] [CrossRef]
- Kaufman, J.D.; Adar, S.D.; Barr, R.G.; Budoff, M.; Burke, G.L.; Curl, C.L.; Davinglus, M.L.; Diez Roux, A.V.; Gassett, A.J.; Jacobs, D.R.; et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (The Multi-Ethnic Study of Atherosclerosis and Air Pollution): A longitudinal cohort study. Lancet 2016, 388, 696–704. [Google Scholar] [CrossRef]
- Cooper, D.A. Exhaust emissions from high speed passenger ferries. Atmos. Environ. 2001, 35, 4189–4200. [Google Scholar] [CrossRef]
- Ledoux, F.; Roche, C.; Cazier, F.; Beaugard, C.; Courcot, D. Influence of ship emissions on NOx, SO2, O3 and PM concentrations in a North-Sea harbor in France. J. Environ. Sci. 2018, 71, 56–66. [Google Scholar] [CrossRef]
- Li, B.; Lei, X.N.; Xiu, G.L.; Gao, C.Y.; Gao, S.; Qian, N.S. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 2015, 524, 237–245. [Google Scholar] [CrossRef]
- Moreno, T.; Reche, C.; Rivas, I.; Minguillón, M.C.; Martins, V.; Vargas, C.; Ealo, M.; Fonseca, A.S.; Amato, F.; Sosa, G.; et al. Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ. Res. 2015, 142, 495–510. [Google Scholar] [CrossRef]
- Rivas, I.; Kumar, P.; Hagen-Zanker, A.; de Fatima Andrade, M.; Slovic, A.D.; Pritchard, J.P.; Geurs, K.T. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments. Atmos. Environ. 2017, 161, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [Google Scholar] [CrossRef]
- Tan, S.H.; Roth, M.; Velasco, E. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 2017, 170, 245–258. [Google Scholar] [CrossRef]
- Knibbs, L.D.; de Dear, R.J. Exposure to ultrafine particles and PM2.5 in four Sydney transport modes. Atmos. Environ. 2010, 44, 3224–3227. [Google Scholar] [CrossRef]
- Velasco, E.; Ho, K.J.; Ziegler, A.D. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand. Trans. Res. Part D Trans. Environ. 2013, 21, 62–65. [Google Scholar] [CrossRef]
- TUIK, Turkish Statistical Institute. Available online: http://tuik.gov.tr/Start.do (accessed on 31 December 2018).
- IATR, Istanbul Annual Transportation Report. Istanbul Metropolitan Municipality; 2017. Available online: https://tuhim.ibb.gov.tr/İstatiksel-bilgiler/İbb-ulaşim-raporu-2017/ (accessed on 14 June 2019).
- Onat, B.; Stakeeva, B. Assessment of fine particulate matters in the subway system of Istanbul. Indoor Built Environ. 2012, 23, 1–10. [Google Scholar] [CrossRef]
- Onat, B.; Alver Şahin, Ü.; Sivri, N. The relationship between particle and culturable airborne bacteria concentrations in public transportation. Indoor Built Environ. 2017, 26, 1420–1428. [Google Scholar] [CrossRef]
- Sahin, Ü.A.; Onat, B.; Stakeeva, B.; Ceran, T.; Karim, P. PM10 concentrations and the size distribution of Cu and Fe-containing particles in Istanbul’s subway system. Trans. Res. Part D Trans. Environ. 2012, 17, 48–53. [Google Scholar] [CrossRef]
- Onat, B.; Stakeeva, B. Personal exposure of commuters in public transport to PM2.5 and fine particle counts. Atmos. Pollut. Res. 2013, 4, 329–335. [Google Scholar] [CrossRef]
- Hagler, G.S.; Yelverton, T.L.; Vedantham, R.; Hansen, A.D.; Turner, J.R. Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol Air Qual. Res. 2011, 11, 539–546. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Novakov, T. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos. Environ. 2007, 41, 1874–1888. [Google Scholar] [CrossRef]
- Wang, X.; Westerdahl, D.; Wu, Y.; Pan, X.; Zhang, K.M. On-road emission factor distributions of individual diesel vehicles in and around Beijing, China. Atmos. Environ. 2011, 45, 503–513. [Google Scholar] [CrossRef]
- Westerdahl, D.; Fruin, S.A.; Sax, T.; Fine, P.M.; Sioutas, C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ. 2005, 39, 3597–3610. [Google Scholar] [CrossRef]
- Onat, B.; Şahin, Ü.A.; Uzun, B.; Akın, Ö.; Özkaya, F.; Ayvaz, C. Determinants of exposure to ultrafine particulate matter, black carbon, and PM2.5 in common travel modes in Istanbul. Atmos. Environ. 2019, 206, 258–270. [Google Scholar] [CrossRef]
- Zuurbier, M.; Hoek, G.; Van den Hazel, P.; Brunekreef, B. Minute ventilation of cyclists, car and bus passengers: An experimental study. Environ. Health 2009, 8, 48. [Google Scholar] [CrossRef]
- Yang, F.; Lau, C.F.; Tong, V.W.T.; Zhang, K.K.; Westerdahl, D.; Ng, S.; Ning, Z. Assessment of personal integrated exposure to fine particulate matter of urban residents in Hong Kong. J. Air Waste Manag. Assoc. 2019, 69, 47–57. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Air Quality Guidelines. Global Update 2005. Particulate Matter; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Jalkanen, J.P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmos. Chem. Phys. 2009, 9, 9209–9223. [Google Scholar] [CrossRef] [Green Version]
- CATF—Clean Air Task Force. A Multi-City Investigation of Exposure to Diesel Exhaust in Multiple Commuting Modes; CATF Special Report 2007-1; New York, Clean Air Task Force: Boston, MA, USA, 2010. [Google Scholar]
- Alver, F.; Saraç, B.A.; Şahin, Ü.A. Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmos. Pol. Res. 2018, 9, 822–828. [Google Scholar] [CrossRef]
- Yalcin, E.; Suner, M. The changing role of diesel oil-gasoil-LPG and hydrogen based fuels in human health risk: A numerical investigation in ferry ship operations. Inter. J. Hydrog. Energy 2019, in press. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Houston, D.; Edwards, R.; Princevac, M.; Ferguson, G.; Pan, H.; Bartolome, C. Fine particulate concentrations on sidewalks in five Southern California cities. Atmos. Environ. 2011, 45, 4025–4033. [Google Scholar] [CrossRef]
- Buonanno, G.; Fuoco, F.C.; Stabile, L. Influential parameters on particle exposure of pedestrians in urban microenvironments. Atmos Environ. 2011, 45, 1434–1443. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair-an R package for air quality data analysis. Environ. Model. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- De Nazelle, A.; Fruin, S.; Westerdahl, D.; Martinez, D.; Ripoll, A.; Kubesch, N.; Nieuwenhuijsen, M. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos. Environ. 2012, 59, 151–159. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.J. Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment. Environ. Sci. Technol. 2009, 43, 4737–4743. [Google Scholar] [CrossRef]
- Laumbach, R.J.; Rich, D.Q.; Gandhi, S.; Amorosa, L.; Schneider, S.; Zhang, J.; Ohman-Strickland, P.; Gong, J.; Lelyanov, O.; Kipen, H.M. Acute changes in heart rate variability in subjects with diabetes following a highway traffic exposure. J. Occup. Environ. Med. 2010, 52, 324. [Google Scholar] [CrossRef]
- Weichenthal, S.; Dufresne, A.; Infante-Rivard, C.; Joseph, L. Determinants of ultrafine particle exposures in transportation environments: Findings of an 8-month survey conducted in Montreal, Canada. J. Exp. Sci. Environ. Epidemiol. 2008, 18, 551. [Google Scholar] [CrossRef]
- Kumar, P.; Fennell, P.; Britter, R. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon. Sci. Total Environ. 2008, 402, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Masiol, M.; Vu, T.V.; Beddows, D.C.; Harrison, R.M. Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy). Atmos. Environ. 2016, 139, 56–74. [Google Scholar] [CrossRef]
Transport Mode | Route | Route Length (km) | Commute Time (min) | Number of Trips | Travel Route |
---|---|---|---|---|---|
Fast ferry | Bakırköy-Bostancı | 20 | 50 | 69 | Along the coast of the city |
Car ferry | Yenikapı-Yalova | 50 | 75 | 20 | Mostly through the Marmara Sea, far from the city |
Commute Mode | N | PNC (pt cm−3) | BC (μg m−3) | PM2.5 (μg m−3) | |||
---|---|---|---|---|---|---|---|
Mean (Std.Dev) | Median | Mean (Std.Dev.) | Median | Mean (Std.Dev.) | Median | ||
Fast ferry | 69 | 25,001 (13,611) | 15,461 | 7.7 (5.2) | 4.8 | 19.5 (9.5) | 16.8 |
Bakırköy pier | 50 | 31,620 (22,883) | 22,488 | 6.0 (7.2) | 2.7 | 24.7 (15.9) | 22.4 |
Bostancı pier | 36 | 20,416 (15,333) | 13,837 | 12.3 (13.0) | 4.5 | 26.1 (11.5) | 24.5 |
Car ferry | 20 | 20,399 (7222) | 18,711 | 1.2 (0.8) | 0.9 | 14.4 (6.3) | 14.4 |
Yenikapı pier | 20 | 24,386 (13,474) | 20,623 | 5.4 (4.6) | 2.5 | 25.8 (13.9) | 20.2 |
Yalova pier | 10 | 42,005 (30,899) | 32,249 | 14.3 (10.1) | 8.5 | 23.4 (8.8) | 20.1 |
In Vehicle | Fast Ferry | Car Ferry | ||||
---|---|---|---|---|---|---|
PNC (pt cm−3) | BC (μg m−3) | PM2.5 (μg m−3) | PNC (pt cm−3) | BC (μg m−3) | PM2.5 (μg m−3) | |
Winter | 29,308 | 6.8 | 22.1 | 19173 | 1.3 | 16.4 |
Summer | 22,697 | 8.2 | 18.3 | 21352 | 1.2 | 12.8 |
p-value | 0.062 | 0.318 | 0.134 | 0.564 | 0.810 | 0.201 |
Pier | Bakırköy Pier | Bostancı Pier | Yenikapı Pier | Yalova Pier | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PNC (pt cm−3) | BC (μg m−3) | PM2.5 (μg m−3) | PNC (pt cm−3) | BC (μg m−3) | PM2.5 (μg m−3) | PNC (pt cm−3) | BC (μg m−3) | PM2.5 (μg m−3) | PNC (pt cm−3) | BC (μg m−3) | PM2.5 (μg m−3) | |
Winter | 36,706 | 7.7 | 33.0 | 23,268 | 12.5 | 30.3 | 35,684 | 9.7 | 35.1 | 34,362 | 25.1 | 28.5 |
Summer | 28,417 | 4.9 | 20.4 | 19,053 | 12.1 | 24.3 | 15,558 | 2.3 | 18.6 | 46,590 | 10.1 | 20.4 |
p-value | 0.277 | 0.251 | 0.032* | 0.572 | 0.942 | 0.170 | 0.000* | 0.000* | 0.012* | 0.603 | 0.314 | 0.169 |
Car Ferry | ||||||||||||||||
Parameters | PNC | BC | PM2.5 | Temp.*** | Humidity*** | Temp. | Humidity | Wind Speed | Pressure | |||||||
PNC | 0.61** | 0.47 | 0.18 | 0.16 | 0.30 | −0.27 | −0.26 | −0.39 | ||||||||
BC | 0.07 | 0.76** | −0.28 | 0.42 | 0.30 | −0.52* | −0.29 | −0.35 | ||||||||
PM2.5 | −0.14 | 0.12 | −0.29 | 0.27 | 0.09 | −0.12 | −0.32 | −0.11 | ||||||||
Temp*** | −0.10 | 0.30* | −0.14 | 0.27 | 0.55* | 0.05 | 0.64* | −0.45 | ||||||||
Humidity*** | −0.21 | 0.27 | 0.07 | 0.13 | 0.85** | −0.25 | 0.63* | −0.84** | ||||||||
Temperature | −0.24 | 0.37** | −0.19 | 0.74** | 0.52** | −0.34 | 0.56* | −0.88** | ||||||||
Humidity | 0.02 | −0.13 | 0.23 | −0.14 | 0.15 | −0.27* | −0.21 | 0.15 | ||||||||
Wind Speed | 0.04 | 0.08 | −0.11 | 0.04 | 0.36** | 0.23 | 0.03 | −0.40 | ||||||||
Pressure | −0.04 | −0.47** | 0.18 | −0.64** | −0.54** | −0.75** | 0.27* | −0.06 | ||||||||
Fast Ferry | ||||||||||||||||
(a) | ||||||||||||||||
Yenikapı Pier | ||||||||||||||||
Parameters | PNC | BC | PM2.5 | Temperature | Humidity | Wind Speed | Pressure | |||||||||
PNC | 0.86** | 0.50* | −0.22 | −0.54* | −0.41 | 0.21 | ||||||||||
BC | 0.26 | 0.55* | 0.06 | −0.53* | −0.41 | −0.14 | ||||||||||
PM2.5 | −0.22 | 0.51 | −0.16 | −0.21 | −0.34 | 0.12 | ||||||||||
Temperature | 0.07 | −0.04 | 0.09 | −0.26 | 0.58** | −0.91** | ||||||||||
Humidity | 0.15 | 0.10 | −0.25 | −0.14 | −0.23 | 0.21 | ||||||||||
Wind Speed | 0.08 | −0.35 | −0.52 | 0.64 | 0.05 | −0.42 | ||||||||||
Pressure | −0.29 | −0.06 | −0.19 | −0.94** | 0.10 | −0.54 | ||||||||||
Yalova Pier | ||||||||||||||||
Bakırköy Pier | ||||||||||||||||
Parameters | PNC | BC | PM2.5 | Temp | Humidity | Wind Speed | Pressure | |||||||||
PNC | 0.30 | 0.38* | −0.35* | 0.14 | −0.14 | 0.27 | ||||||||||
BC | 0.57** | 1 | 0.42** | 0.07 | −0.09 | −0.18 | −0.35* | |||||||||
PM2.5 | 0.08 | −0.04 | −0.36* | 0.25 | −0.29 | 0.16 | ||||||||||
Temp | −0.07 | 0.40* | −0.27 | −0.23 | 0.19 | −0.76** | ||||||||||
Humidity | −0.05 | −0.21 | 0.45** | −0.29 | 0.19 | 0.31* | ||||||||||
Wind Speed | −0.14 | 0.08 | −0.09 | 0.44** | −0.08 | 0.09 | ||||||||||
Pressure | 0.0 | −0.6** | 0.2 | −0.7** | 0.1 | −0.2 | ||||||||||
Bostancı Pier | ||||||||||||||||
(b) |
Commute Mode | Exposure | |||||
---|---|---|---|---|---|---|
PNC | BC | PM2.5 | ||||
Particles | Particles/Mile | μg | μg/Mile | μg | μg/Mile | |
Fast ferry | 158.8E+8 ± 86.4E+8 | 5.92E+8 ± 3.2E+8 | 4.9 ± 3.3 | 0.18 ± 0.12 | 12.4 ± 6.0 | 0.47 ± 0.22 |
Bakırköy pier | 20.1E+8 ± 14.5E+8 | - | 0.4 ± 0.5 | - | 1.6 ± 1.0 | - |
Bostancı pier | 13.0E+8 ± 9.7E+8 | - | 0.8 ± 0.8 | - | 1.7 ± 0.7 | - |
Car ferry | 194.3E+8 ± 68.8E+8 | 6.2E+8 ± 2.2E+8 | 1.1 ± 0.8 | 0.03 ± 0.02 | 13.7 ± 6.0 | 0.43 ± 0.19 |
Yenikapı pier | 15.5E+8 ± 8.6E+8 | - | 0.3 ± 0.3 | - | 1.6 ± 0.9 | - |
Yalova pier | 26.7E+8 ± 19.6E+8 | - | 0.9 ± 0.6 | - | 1.5 ± 0.6 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onat, B.; Alver Şahin, Ü.; Uzun, B.; Akın, Ö.; Özkaya, F.; Ayvaz, C. Commuter Exposure to Black Carbon, Fine Particulate Matter and Particle Number Concentration in Ferry and at the Pier in Istanbul. Atmosphere 2019, 10, 439. https://doi.org/10.3390/atmos10080439
Onat B, Alver Şahin Ü, Uzun B, Akın Ö, Özkaya F, Ayvaz C. Commuter Exposure to Black Carbon, Fine Particulate Matter and Particle Number Concentration in Ferry and at the Pier in Istanbul. Atmosphere. 2019; 10(8):439. https://doi.org/10.3390/atmos10080439
Chicago/Turabian StyleOnat, Burcu, Ülkü Alver Şahin, Burcu Uzun, Özcan Akın, Fazilet Özkaya, and Coşkun Ayvaz. 2019. "Commuter Exposure to Black Carbon, Fine Particulate Matter and Particle Number Concentration in Ferry and at the Pier in Istanbul" Atmosphere 10, no. 8: 439. https://doi.org/10.3390/atmos10080439
APA StyleOnat, B., Alver Şahin, Ü., Uzun, B., Akın, Ö., Özkaya, F., & Ayvaz, C. (2019). Commuter Exposure to Black Carbon, Fine Particulate Matter and Particle Number Concentration in Ferry and at the Pier in Istanbul. Atmosphere, 10(8), 439. https://doi.org/10.3390/atmos10080439