Investigating the (Mis)Match between Natural Pest Control Knowledge and the Intensity of Pesticide Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Literature Search
- ‘agriculture’ as setting (as opposed to studies in natural systems)
- ‘beneficial’ or ‘pest insects’ as focus of the study
- factors potentially affecting natural pest control in crop fields, such as ‘landscape’ and ‘flower strips’
- the systemic outcome of interest (‘pest control,’ ‘crop damage,’ ‘yield’).
2.2. Pesticide Use Intensity Data
2.3. Statistical Analyses
3. Results
3.1. Systematic Literature Search
3.2. Pesticide Use Intensity
3.3. Relating Pest Control Studies to Pesticide Use Intensity in World Crops
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
- ts = (agricultur* OR farm* OR agroecosystem* OR cultivat* OR crop* OR horticultur* OR vegetab* OR orchard* OR “fruit tree*”)
- AND ts = (“insect pest*” OR “pest insect*” OR “arthropod pest*” OR “damaging organism*” OR “damaging animal*” OR “damaging arthropod*” OR “beneficial organism*” OR “beneficial animal” OR “beneficial insect*” OR “natural enem*” OR “beneficial arthropod*” OR “pest parasit*” OR “pest predat*”)
- AND ts = (hedgerow* OR “flower strip*” OR semi-natural OR “alley crop*” OR intercrop* OR tillage OR “crop rotation” OR “integrated pest management” OR IPM OR “crop diversi*” OR landscape* OR “low-intensity” OR “extensive” OR “small-scale” OR “large-scale” OR agroforest* OR organic OR low-input OR insecticid* OR low-dosage OR application timing OR “integrated fruit production” OR IFP OR “integrated production” OR refugia)
- AND ts = (“biological control” OR cbc OR “pest control” OR “herbivory” OR “pest damage” OR “crop damage”)
- AND LANGUAGE: (English) Indexes = SCI-EXPANDED, SSCI Timespan = 1990–2016
References
- Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 2005, 7, 229–252. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Entling, M.H.; Döbeli, J. Sown wildflower areas to enhance spiders in arable fields. Agric. Ecosyst. Environ. 2009, 133, 19–22. [Google Scholar] [CrossRef]
- Tschumi, M.; Albrecht, M.; Bärtschi, C.; Collatz, J.; Entling, M.H.; Jacot, K. Perennial, species-rich wildflower strips enhance pest control and crop yield. Agric. Ecosyst. Environ. 2016, 220, 97–103. [Google Scholar] [CrossRef]
- Schellhorn, N.A.; Gagic, V.; Bommarco, R. Time will tell: Resource continuity bolsters ecosystem services. Trends Ecol. Evol. 2015, 30, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Begg, G.S.; Cook, S.M.; Dye, R.; Ferrante, M.; Franck, P.; Lavigne, C.; Lövei, G.L.; Mansion-Vaquie, A.; Pell, J.K.; Petit, S.; et al. A functional overview of conservation biological control. Crop Prot. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- Tscharntke, T.; Karp, D.S.; Chaplin-Kramer, R.; Batáry, P.; DeClerck, F.; Gratton, C.; Hunt, L.; Ives, A.; Jonsson, M.; Larsen, A.; et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Conserv. 2016, 204, 449–458. [Google Scholar] [CrossRef]
- Willer, H.; Lernoud, J. The World of Organic Agriculture—Statistics and Emerging Trends 2016, 17th ed.; Research Institute of Organic Agriculture FIBL and IFOAM Organics International: Frick, Switzerland; Bonn, Germany, 2016; 333p. [Google Scholar]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 2015, 282, 20141396. [Google Scholar] [CrossRef] [PubMed]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N. Many shades of grey—The context-dependent performance of organic agriculture. Sci. Adv. 2017, 3, e1602638. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, M.; Bommarco, R.; Ekbom, B.; Smith, H.G.; Bengtsson, J.; Caballero-Lopez, B.; Winqvist, C.; Olsson, O. Ecological production functions for biological control services in agricultural landscapes. Methods Ecol. Evol. 2014, 5, 243–252. [Google Scholar] [CrossRef]
- Kühsel, S.; Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat. Commun. 2015, 6, 7989. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, G.; De Simone, S.; Sigura, M.; Boscutti, F.; Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 2016, 53, 233–241. [Google Scholar] [CrossRef]
- Larsen, A.E.; Noack, F. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proc. Natl. Acad. Sci. USA 2017, 114, 5473–5478. [Google Scholar] [CrossRef] [PubMed]
- Muthmann, R.; Nadin, P. The Use of Plant Protection Products in the European Union: Data 1992–2003; Collection Statistical Books; Office for Official Publications of the European Communities: Luxembourg, 2007; pp. 180–181. [Google Scholar]
- Fernandez-Cornejo, J.; Nehring, R.; Osteen, C.; Wechsler, S.; Martin, A.; Vialou, A. Pesticide Use in U.S. Agriculture: 21 Selected Crops, 1960–2008; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2014; p. 80.
- USDA—National Agricultural Statistics Service—Surveys—Chemical Use. Quickstats Tool 2.0. Available online: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/#description (accessed on 8 September 2017).
- California Department of Pesticide Regulation. Summary of Pesticide Use Report Data 2015; California Department of Pesticide Regulation: Sacramento, CA, USA, 2017.
- Epstein, L. California’s pesticide use reports and trends in pesticide use. Outlooks Pest Manag. 2006, 17, 148–154. [Google Scholar] [CrossRef]
- National Academies of Sciences. Genetically Engineered Crops: Experiences and Prospects; National Academies of Sciences: Washington, DC, USA, 2016; ISBN 978-0-309-43738-7. [Google Scholar]
- Larsen, A.E. Agricultural landscape simplification does not consistently drive insecticide use. Proc. Natl. Acad. Sci. USA 2013, 110, 15330–15335. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Food and Agriculture Organization Statistics Division. Available online: http://www.fao.org/faostat (accessed on 7 September 2017).
- USDA Foreign Agricultural Service Cotton: World Markets and Trade. Available online: http://usda.mannlib.cornell.edu/usda/fas/cotton-market//2010s/2015/cotton-market-12-09-2015.pdf (accessed on 11 September 2017).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Thorn, J.P.R.; Friedman, R.; Benz, D.; Willis, K.J.; Petrokofsky, G. What evidence exists for the effectiveness of on-farm conservation land management strategies for preserving ecosystem services in developing countries? A systematic map. Environ. Evid. 2016, 5, 13. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Rauh, V.A.; Perera, F.P.; Horton, M.K.; Whyatt, R.M.; Bansal, R.; Hao, X.; Liu, J.; Barr, D.B.; Slotkin, T.A.; Peterson, B.S. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc. Natl. Acad. Sci. USA 2012, 109, 7871–7876. [Google Scholar] [CrossRef] [PubMed]
- Eddleston, M.; Karalliedde, L.; Buckley, N.; Fernando, R.; Hutchinson, G.; Isbister, G.; Konradsen, F.; Murray, D.; Piola, J.C.; Senanayake, N.; et al. Pesticide poisoning in the developing world—A minimum pesticides list. Lancet 2002, 360, 1163–1167. [Google Scholar] [CrossRef]
- Garcerá, C.; Fonte, A.; Moltó, E.; Chueca, P. Sustainable Use of Pesticide Applications in Citrus: A Support Tool for Volume Rate Adjustment. Int. J. Environ. Res. Public Health 2017, 14, 715. [Google Scholar] [CrossRef] [PubMed]
- Damos, P.; Colomar, L.-A.E.; Ioriatti, C. Integrated fruit production and pest management in Europe: The apple case study and how far we are from the original concept? Insects 2015, 6, 626–657. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Jensen, H.H.; Mueller, D.S.; Nonnecke, G.R.; Bonnet, D.; Gleason, M.L. Estimating Consumers’ Valuation of Organic and Cosmetically Damaged Apples. HortScience 2007, 42, 1366–1371. [Google Scholar]
- Dedryver, C.-A.; Le Ralec, A.; Fabre, F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. C. R. Biol. 2010, 333, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Rusch, A.; Chaplin-Kramer, R.; Gardiner, M.M.; Hawro, V.; Holland, J.; Landis, D.; Thies, C.; Tscharntke, T.; Weisser, W.W.; Winqvist, C.; et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 2016, 221, 198–204. [Google Scholar] [CrossRef]
- Zhao, Z.; Sandhu, H.S.; Ouyang, F.; Ge, F. Landscape changes have greater effects than climate changes on six insect pests in China. Sci. China Life Sci. 2016, 59, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Chaplin-Kramer, R.; O’Rourke, M.E.; Blitzer, E.J.; Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Gurr, G.M.; Lu, Z.; Zheng, X.; Xu, H.; Zhu, P.; Chen, G.; Yao, X.; Cheng, J.; Zhu, Z.; Catindig, J.L.; et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2016, 2, 16014. [Google Scholar] [CrossRef] [PubMed]
- Pywell, R.F.; Heard, M.S.; Woodcock, B.A.; Hinsley, S.; Ridding, L.; Nowakowski, M.; Bullock, J.M. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proc. R. Soc. B 2015, 282, 20151740. [Google Scholar] [CrossRef] [PubMed]
- Steward, P.R.; Shackelford, G.; Carvalheiro, L.G.; Benton, T.G.; Garibaldi, L.A.; Sait, S.M. Pollination and biological control research: Are we neglecting two billion smallholders. Agric. Food Secur. 2014, 3, 1. [Google Scholar] [CrossRef]
- American Association for the Advancement of Science. Infographic: Pesticide Planet. Science 2013, 341, 730–731. [Google Scholar] [CrossRef]
- United States Department of Agriculture Economics, Statistics and Market Information System. Available online: https://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1000 (accessed on 8 September 2017).
- Perry, E.D.; Ciliberto, F.; Hennessy, D.A.; Moschini, G. Genetically engineered crops and pesticide use in US maize and soybeans. Sci. Adv. 2016, 2, e1600850. [Google Scholar] [CrossRef] [PubMed]
- Kniss, A.R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 2017, 8, 14865. [Google Scholar] [CrossRef] [PubMed]
Surveyed Response | Number of Studies |
---|---|
Enemies | 152 |
Pests | 122 |
Pest control | 49 |
Crop damage | 14 |
Yield | 12 |
Pollinators/Pollination | 5 |
NP 1 | 95 |
NPX 1 | 27 |
NPXY 1 | 4 |
Total | 192 |
Deviance | Residual Deviance | Estimate | Confidence Interval | p-Value | |
---|---|---|---|---|---|
Model 1 | 49.7 | ||||
(Intercept) | 3.31 | 2.64–3.97 | <0.001 | ||
Insecticide use (kg/ha) | 13.9 | 35.75 | −0.74 | −1.4–0.1 | 0.022 |
World yield 2014 (t/ha) | 20.6 | 15.15 | −0.03 | −0.05–0.02 | <0.001 |
World production 2014 (kt) | 0 | 15.15 | −1 × 10−9 | −0.71 × 10−6−0.73 × 10−6 | 0.986 |
Model 2 | 26.86 | ||||
(Intercept) | 1.5 | 0.88–2.14 | <0.001 | ||
log(World harvested area 2014 (million ha)) | 11.1 | 15.8 | 0.28 | 0.11–0.45 | 0.002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mall, D.; Larsen, A.E.; Martin, E.A. Investigating the (Mis)Match between Natural Pest Control Knowledge and the Intensity of Pesticide Use. Insects 2018, 9, 2. https://doi.org/10.3390/insects9010002
Mall D, Larsen AE, Martin EA. Investigating the (Mis)Match between Natural Pest Control Knowledge and the Intensity of Pesticide Use. Insects. 2018; 9(1):2. https://doi.org/10.3390/insects9010002
Chicago/Turabian StyleMall, David, Ashley E. Larsen, and Emily A. Martin. 2018. "Investigating the (Mis)Match between Natural Pest Control Knowledge and the Intensity of Pesticide Use" Insects 9, no. 1: 2. https://doi.org/10.3390/insects9010002
APA StyleMall, D., Larsen, A. E., & Martin, E. A. (2018). Investigating the (Mis)Match between Natural Pest Control Knowledge and the Intensity of Pesticide Use. Insects, 9(1), 2. https://doi.org/10.3390/insects9010002