Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 

Antioxidants, Volume 3, Issue 3 (September 2014) – 10 articles , Pages 472-635

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
474 KiB  
Article
Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate
by Constant Anatole Pieme, Joseph Ngoupayo, Claude Herve Khou-Kouz Nkoulou, Bruno Moukette Moukette, Borgia Legrand Njinkio Nono, Vicky Jocelyne Ama Moor, Jacqueline Ze Minkande and Jeanne Yonkeu Ngogang
Antioxidants 2014, 3(3), 618-635; https://doi.org/10.3390/antiox3030618 - 19 Sep 2014
Cited by 23 | Viewed by 7801
Abstract
The aim of this study was to determine the in vitro antioxidant activity, free radical scavenging property and the beneficial effects of extracts of various parts of Syzygium guineense in reducing oxidative stress damage in the liver. The effects of extracts on free [...] Read more.
The aim of this study was to determine the in vitro antioxidant activity, free radical scavenging property and the beneficial effects of extracts of various parts of Syzygium guineense in reducing oxidative stress damage in the liver. The effects of extracts on free radicals were determined on radicals DPPH, ABTS, NO and OH followed by the antioxidant properties using Ferric Reducing Antioxidant Power assay (FRAP) and hosphomolybdenum (PPMB). The phytochemical screening of these extracts was performed by determination of the phenolic content. The oxidative damage inhibition in the liver was determined by measuring malondialdehyde (MDA) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase. Overall, the bark extract of the ethanol/water or methanol showed the highest radical scavenging activities against DPPH, ABTS and OH radicals compared to the other extracts. This extract also contained the highest phenolic content implying the potential contribution of phenolic compounds towards the antioxidant activities. However, the methanol extract of the root demonstrated the highest protective effects of SOD and CAT against ferric chloride while the hydro-ethanol extract of the leaves exhibited the highest inhibitory effects on lipid peroxidation. These findings suggest that antioxidant properties of S. guineense extracts could be attributed to phenolic compounds revealed by phytochemical studies. Thus, the present results indicate clearly that the extracts of S. guineense possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants. The antioxidant properties of the bark extract may thus sustain its various biological activities. Full article
(This article belongs to the Special Issue Natural Products as Antioxidants)
1422 KiB  
Article
Optimisation of Ultrasound-Assisted Extraction Conditions for Phenolic Content and Antioxidant Capacity from Euphorbia tirucalli Using Response Surface Methodology
by Quan V. Vuong, Chloe D. Goldsmith, Trung Thanh Dang, Van Tang Nguyen, Deep Jyoti Bhuyan, Elham Sadeqzadeh, Christopher J. Scarlett and Michael C. Bowyer
Antioxidants 2014, 3(3), 604-617; https://doi.org/10.3390/antiox3030604 - 17 Sep 2014
Cited by 32 | Viewed by 6067
Abstract
Euphorbia tirucalli (E. tirucalli) is now widely distributed around the world and is well known as a source of traditional medicine in many countries. This study aimed to utilise response surface methodology (RSM) to optimise ultrasonic-assisted extraction (UAE) conditions for total [...] Read more.
Euphorbia tirucalli (E. tirucalli) is now widely distributed around the world and is well known as a source of traditional medicine in many countries. This study aimed to utilise response surface methodology (RSM) to optimise ultrasonic-assisted extraction (UAE) conditions for total phenolic compounds (TPC) and antioxidant capacity from E. tirucalli leaf. The results showed that ultrasonic temperature, time and power effected TPC and antioxidant capacity; however, the effects varied. Ultrasonic power had the strongest influence on TPC; whereas ultrasonic temperature had the greatest impact on antioxidant capacity. Ultrasonic time had the least impact on both TPC and antioxidant capacity. The optimum UAE conditions were determined to be 50 °C, 90 min. and 200 W. Under these conditions, the E. tirucalli leaf extract yielded 2.93 mg GAE/g FW of TPC and exhibited potent antioxidant capacity. These conditions can be utilised for further isolation and purification of phenolic compounds from E. tirucalli leaf. Full article
(This article belongs to the Special Issue Natural Products as Antioxidants)
Show Figures

Figure 1

493 KiB  
Review
Friedreich’s Ataxia: A Neuronal Point of View on the Oxidative Stress Hypothesis
by Barbara Carletti and Fiorella Piemonte
Antioxidants 2014, 3(3), 592-603; https://doi.org/10.3390/antiox3030592 - 10 Sep 2014
Cited by 8 | Viewed by 6081
Abstract
A prominent feature of Friedreich’s ataxia (FRDA) is the neurodegeneration of the central and peripheral nervous systems, but little information is available about the mechanisms leading to neuronal damage in this pathology. Currently, no treatments delay, prevent, or reverse the inexorable decline that [...] Read more.
A prominent feature of Friedreich’s ataxia (FRDA) is the neurodegeneration of the central and peripheral nervous systems, but little information is available about the mechanisms leading to neuronal damage in this pathology. Currently, no treatments delay, prevent, or reverse the inexorable decline that occurs in this condition. Evidence of oxidative damage has been demonstrated in Friedreich’s ataxia, and this damage has been proposed as the origin of the disease. Nevertheless, the role of oxidative stress in FRDA remains debatable. The lack of direct evidence of reactive oxygen species overproduction in FRDA cells and tissues and the failure of exogenous antioxidants to rescue FRDA phenotypes questions the role of oxidative stress in this pathology. For example, the antioxidant “idebenone” ameliorates cardiomyopathy in FRDA patients, but this therapy does not improve neurodegeneration. To date, no known pharmacological treatment with antioxidant properties cures or delays FRDA neuropathology. This review reports and discusses the evidence of oxidative stress in FRDA and focuses on the existing knowledge of the apparent ineffectiveness of antioxidants for the treatment of neuronal damage. Full article
(This article belongs to the Special Issue Oxidative Stress and Neurodegenerative Diseases)
896 KiB  
Article
Evaluation of Antioxidant and Hepatoprotective Activities of Moringa oleifera Lam. Leaves in Carbon Tetrachloride-Intoxicated Rats
by Dharmendra Singh, Priya Vrat Arya, Ved Prakash Aggarwal and Radhey Shyam Gupta
Antioxidants 2014, 3(3), 569-591; https://doi.org/10.3390/antiox3030569 - 02 Sep 2014
Cited by 49 | Viewed by 8656
Abstract
The antioxidant and hepatoprotective activities of the extract of Moringa oleifera leaves were investigated against CCl4-induced hepatotoxicity in rats. Hepatotoxic rats were treated with ethanol extract of Moringa oleifera for a period of 60 days at the following three dose levels; [...] Read more.
The antioxidant and hepatoprotective activities of the extract of Moringa oleifera leaves were investigated against CCl4-induced hepatotoxicity in rats. Hepatotoxic rats were treated with ethanol extract of Moringa oleifera for a period of 60 days at the following three dose levels; 100, 200 and 400 mg/kg body weight/day, orally. The activities were studied by assaying the serum marker enzymes like SGOT, SGPT, GGT, LDH, ALP, ACP, as well as total bilirubin, total protein and albumin in serum concomitantly with the activities of LPO, SOD, CAT, GSH, GR and GPx in liver. The activities of all parameters registered a significant (p ≤ 0.001) alteration in CCl4 treated rats, which were significantly recovered towards an almost normal level in rats co-administered with M. oleifera extract in a dose-dependent manner. All the biochemical investigations were confirmed by the histopathological observations and compared with the standard drug. silymarin. Results suggest that the antioxidant and hepatoprotective activities of M. oleifera leaves are possibly related to the free radical scavenging activity which might be due to the presence of total phenolics and flavonoids in the extract and/or the purified compounds β-sitosterol, quercetin and kaempferol, which were isolated from the ethanol extract of M. oleifera leaves. Full article
Show Figures

Figure 1

965 KiB  
Article
Kinetics and Mechanistic Studies on the Reaction between Cytochrome c and Tea Catechins
by Lihua Wang, Elizabeth Santos, Desiree Schenk and Montserrat Rabago-Smith
Antioxidants 2014, 3(3), 559-568; https://doi.org/10.3390/antiox3030559 - 19 Aug 2014
Cited by 12 | Viewed by 8192
Abstract
Green tea is characterized by the presence of an abundance of polyphenolic compounds, also known as catechins, including epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (EGC) and epigallocatechin gallate (EGCG). In addition to being a popular beverage, tea consumption has been suggested as a [...] Read more.
Green tea is characterized by the presence of an abundance of polyphenolic compounds, also known as catechins, including epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (EGC) and epigallocatechin gallate (EGCG). In addition to being a popular beverage, tea consumption has been suggested as a mean of chemoprevention. However, its mode of action is unclear. It was discovered that tea catechins can react with cytochrome c. When oxidized cytochrome c was mixed with catechins commonly found in green tea under non-steady-state conditions, a reduction of cytochrome c was observed. The reaction rate of the catechins was dependent on the pH and the nature of the catechin. The pseudo-first order rate constant obtained increased in the order of EC < ECG < EGC < EGCG, which is consistent with previously reported superoxide reduction activities and Cu2+ reduction activities of tea catechins. Full article
Show Figures

Figure 1

799 KiB  
Article
Endogenous Phenolics in Hulls and Cotyledons of Mustard and Canola: A Comparative Study on Its Sinapates and Antioxidant Capacity
by Shyamchand Mayengbam, Ayyappan Aachary and Usha Thiyam-Holländer
Antioxidants 2014, 3(3), 544-558; https://doi.org/10.3390/antiox3030544 - 15 Aug 2014
Cited by 26 | Viewed by 6627
Abstract
Endogenous sinapic acid (SA), sinapine (SP), sinapoyl glucose (SG) and canolol (CAN) of canola and mustard seeds are the potent antioxidants in various lipid-containing systems. The study investigated these phenolic antioxidants using different fractions of canola and mustard seeds. Phenolic compounds were extracted [...] Read more.
Endogenous sinapic acid (SA), sinapine (SP), sinapoyl glucose (SG) and canolol (CAN) of canola and mustard seeds are the potent antioxidants in various lipid-containing systems. The study investigated these phenolic antioxidants using different fractions of canola and mustard seeds. Phenolic compounds were extracted from whole seeds and their fractions: hulls and cotyledons, using 70% methanol by the ultrasonication method and quantified using HPLC-DAD. The major phenolics from both hulls and cotyledons extracts were SP, with small amounts of SG, and SA with a significant difference of phenolic contents between the two seed fractions. Cotyledons showed relatively high content of SP, SA, SG and total phenolics in comparison to hulls (p < 0.001). The concentration of SP in different fractions ranged from 1.15 ± 0.07 to 12.20 ± 1.16 mg/g and followed a decreasing trend- canola cotyledons > mustard cotyledons > mustard seeds > canola seeds > mustard hulls > canola hulls. UPLC-tandem Mass Spectrometry confirmed the presence of sinapates and its fragmentation in these extracts. Further, a high degree of correlation (r = 0.93) was noted between DPPH scavenging activity and total phenolic content. Full article
(This article belongs to the Special Issue Antioxidants in Oils)
Show Figures

Figure 1

922 KiB  
Article
Investigation of the Antioxidant and Hepatoprotective Potential of Hypericum mysorense
by Raghu C. Hariharapura, Ramamurthy Srinivasan, Godavarthi Ashok, Santoshkumar H. Dongre, Hitesh V. Jagani and Pottekkad Vijayan
Antioxidants 2014, 3(3), 526-543; https://doi.org/10.3390/antiox3030526 - 12 Aug 2014
Cited by 11 | Viewed by 7105
Abstract
Background: Hypericum is a well-known plant genus in herbal medicine. Hypericum mysorense (Family: Hypericaceae), a plant belonging to the same genus, is well known in folklore medicine for its varied therapeutic potential. Objective: The aim of the present study was to investigate [...] Read more.
Background: Hypericum is a well-known plant genus in herbal medicine. Hypericum mysorense (Family: Hypericaceae), a plant belonging to the same genus, is well known in folklore medicine for its varied therapeutic potential. Objective: The aim of the present study was to investigate the different parts of the plant for antioxidant and hepatoprotective properties. Materials and Methods: The methanol extracts of Hypericum mysorense prepared from various parts of the plant were tested in vitro for their free radical scavenging activity against ABTS (diammonium salt), DPPH (1,1-diphenyl-2-picrylhydrazyl), NO, O2•− and OH radicals, using standard systems of assays. The total antioxidant capacity, total phenolic and total flavonoid content of the extracts were analyzed. Further, the leaf and flowering top extracts were tested for their in vivo antioxidant and hepatoprotective activities on Wistar rats using a carbon tetrachloride-induced hepatic injury model. Results: The leaf and flowering top extract showed potent antioxidant activity and also possessed highest total phenolic and flavonoid content. The antioxidant activity and the total phenolic and flavonoid content present in these extracts showed a good correlation. The leaf and flowering top extracts at 200 mg/kg restored aspartate amino transferase (ASAT), alanine amino transferase (ALAT), alkaline phosphatase (ALP), total bilirubin and protein levels significantly in CCl4-intoxicated rats. The tested extracts also showed a significant (p < 0.001) reduction in 2-thiobarbituric acid reactive substance (TBARS) levels with an increase in SOD and CAT levels. The histopathology of liver did not show any toxicity after the treatment with the extracts. The active extracts were standardized using two marker compounds, hyperoside and rutin, which were isolated from the plant by HPLC. HPLC studies revealed that the maximum concentration of hyperoside and rutin is present in the flowering top extract. Full article
Show Figures

Figure 1

448 KiB  
Article
Phytochemicals and Antioxidative Properties of Borneo Indigenous Liposu (Baccaurea lanceolata) and Tampoi (Baccaurea macrocarpa) Fruits
by Mohd Fadzelly Abu Bakar, Nor Ezani Ahmad, Fifilyana Abdul Karim and Syazlina Saib
Antioxidants 2014, 3(3), 516-525; https://doi.org/10.3390/antiox3030516 - 30 Jul 2014
Cited by 15 | Viewed by 7235
Abstract
Two underutilized indigenous fruits of Borneo, Liposu (Baccaurea lanceolata) and Tampoi (Baccaurea macrocarpa) were investigated for their total phenolic (TPC), flavonoid (TFC), anthocyanin (TAC) and carotenoid (TCC) contents as well as antioxidant properties in vitro. The fruits were [...] Read more.
Two underutilized indigenous fruits of Borneo, Liposu (Baccaurea lanceolata) and Tampoi (Baccaurea macrocarpa) were investigated for their total phenolic (TPC), flavonoid (TFC), anthocyanin (TAC) and carotenoid (TCC) contents as well as antioxidant properties in vitro. The fruits were separated into three different parts (i.e., pericarp, flesh and seed) and extracted using 80% methanol. Antioxidant activity was determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging, ABTS decolorization and FRAP (Ferric Reducing Antioxidant Power) assays. The results showed that B. macrocarpa pericarp contained the highest amount of total phenolics, total flavonoid, total anthocyanin and total carotenoid with the values of 60.04 ± 0.53 mg GAE/g, 44.68 ± 0.67 mg CE/g, 1.23 ± 0.20 mg c-3-gE/100 g and 0.81 ± 0.14 mg BCE/g. Results from DPPH, ABTS and FRAP assays also showed that the pericarp of B. macrocarpa displayed the highest antioxidant capacity. The antioxidant activity of the extract was significantly correlated with the total phenolic and flavonoid contents, but not with the carotenoid contents. In conclusion, B. macrocarpa displayed high potential as natural source of phytochemicals with antioxidant properties. Full article
837 KiB  
Article
Changes of Major Antioxidant Compounds and Radical Scavenging Activity of Palm Oil and Rice Bran Oil during Deep-Frying
by Azizah Abdul Hamid, Mohd Sabri Pak Dek, Chin Ping Tan, Mohd Asraf Mohd Zainudin and Evelyn Koh Wee Fang
Antioxidants 2014, 3(3), 502-515; https://doi.org/10.3390/antiox3030502 - 10 Jul 2014
Cited by 22 | Viewed by 7557
Abstract
Changes in antioxidant properties and degradation of bioactives in palm oil (PO) and rice bran oil (RBO) during deep-frying were investigated. The alpha (α)-tocopherol, gamma (γ)-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity [...] Read more.
Changes in antioxidant properties and degradation of bioactives in palm oil (PO) and rice bran oil (RBO) during deep-frying were investigated. The alpha (α)-tocopherol, gamma (γ)-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity was determined using 2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Results revealed that the antioxidant activity of PO decreased significantly (p < 0.05), while that of RBO was preserved after deep-frying of fries. As expected, the concentration of α-tocopherol in PO and γ-tocotrienol in both PO and RBO decreased significantly (p < 0.05) with increased frying. Results also showed that γ-tocotrienol was found to be more susceptible to degradation compared to that of α-tocopherol in both PO and RBO. Interestingly, no significant degradation of α-tocopherol was observed in RBO. It is suggested that the presence of γ-oryzanol and γ-tocotrienol in RBO may have a protective effect on α-tocopherol during deep-frying. Full article
Show Figures

Graphical abstract

823 KiB  
Review
Oxidative Stress and the Use of Antioxidants in Stroke
by Rachel Shirley, Emily N. J. Ord and Lorraine M. Work
Antioxidants 2014, 3(3), 472-501; https://doi.org/10.3390/antiox3030472 - 03 Jul 2014
Cited by 195 | Viewed by 12792
Abstract
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has [...] Read more.
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease. Full article
(This article belongs to the Special Issue Free Radicals and Antioxidants in Neuroinflammation)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop