Previous Issue
Volume 13, April
 
 

Antioxidants, Volume 13, Issue 5 (May 2024) – 66 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 4091 KiB  
Article
Stability, Digestion, and Cellular Transport of Soy Isoflavones Nanoparticles Stabilized by Polymerized Goat Milk Whey Protein
by Mu Tian, Jianjun Cheng and Mingruo Guo
Antioxidants 2024, 13(5), 567; https://doi.org/10.3390/antiox13050567 - 03 May 2024
Viewed by 127
Abstract
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and [...] Read more.
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and zeta potential of −35.16 mV. The PGWP-SIF nanoparticles were evaluated for their stability and in vitro digestion properties, and their ability to transport SIF was assessed using a Caco-2 cell monolayer model. The nanoparticles were resistant to aggregation when subjected to pH changes (pH 2.0 to 8.0), sodium chloride addition (0–200 mM), temperature fluctuations (4 °C, 25 °C, and 37 °C), and long-term storage (4 °C, 25 °C, and 37 °C for 30 days), which was mainly attributed to the repulsion generated by steric hindrance effects. During gastric digestion, only 5.93% of encapsulated SIF was released, highlighting the nanoparticles’ resistance to enzymatic digestion in the stomach. However, a significant increase in SIF release to 56.61% was observed during intestinal digestion, indicating the efficient transport of SIF into the small intestine for absorption. Cytotoxicity assessments via the MTT assay showed no adverse effects on Caco-2 cell lines after encapsulation. The PGWP-stabilized SIF nanoparticles improved the apparent permeability coefficient (Papp) of Caco-2 cells for SIF by 11.8-fold. The results indicated that using PGWP to encapsulate SIF was an effective approach for delivering SIF, while enhancing its bioavailability and transcellular transport. Full article
Show Figures

Figure 1

27 pages, 4740 KiB  
Review
Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis
by Paulo José Lima Juiz, Luiza Teles Barbalho Ferreira, Edilson Araújo Pires and Cristiane Flora Villarreal
Antioxidants 2024, 13(5), 566; https://doi.org/10.3390/antiox13050566 - 03 May 2024
Viewed by 118
Abstract
Periodontal disease is an inflammatory condition characterized by an aberrant immune response against a dysbiotic dental biofilm, with oxidative stress performing an essential role in its pathogenesis. This paper presents a patent mining, performed in the Orbit Intelligence patent database, related to antioxidant [...] Read more.
Periodontal disease is an inflammatory condition characterized by an aberrant immune response against a dysbiotic dental biofilm, with oxidative stress performing an essential role in its pathogenesis. This paper presents a patent mining, performed in the Orbit Intelligence patent database, related to antioxidant phytochemicals in the technological developments that are working to prevent and treat periodontal disease. To access the documents, the descriptors “PERIODONTAL” and “ANTIOXIDANT” were typed in the title, abstract, and claim search fields. A total of 322 patents demonstrate the growing interest in researching natural antioxidants for scientific and technological purposes. The top ten countries regarding the number of family patents produced were the United States, the European Office, Japan, South Korea, China, India, Mexico, Denmark, Canada, and Great Britain. The most cited compounds were vitamin C, green tea, quercetin, melatonin, lycopene, resveratrol, and curcumin. These compounds have been used for the technological development of gels, membranes, dentifrices, chewing gum, orally disintegrating film, mouthwash, mouth spray, and mouth massage cream and exhibit the ability to neutralize free radicals and reduce oxidative stress, a critical factor in the development and progression of periodontal diseases. The patent documents have shown that using antioxidant compounds in conjunction with traditional periodontal treatments is a promising area of interest in periodontal therapy. Full article
(This article belongs to the Special Issue Pharmacological Properties of Natural Antioxidants)
Show Figures

Figure 1

15 pages, 1698 KiB  
Article
How Bacteria Cope with Oxidative Stress Induced by Cadmium: Volatile Communication Is Differentially Perceived among Strains
by Paulo Cardoso, Ricardo Pinto, Tiago Lopes and Etelvina Figueira
Antioxidants 2024, 13(5), 565; https://doi.org/10.3390/antiox13050565 - 03 May 2024
Viewed by 132
Abstract
Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent [...] Read more.
Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent stimulus. To shed light on how bacteria trigger their response and adapt to changes in the environment, the intra- and interspecific influences of volatiles on bacterial strains growing under non-stressed and cadmium-stressed conditions were assessed. Each strain was exposed to its volatiles emitted by cells growing under different conditions to test whether the environment in which a cell grows influences neighboring cells. The five genera tested showed different responses, with Rhizobium displaying the greatest influence. In a second experiment, 13 strains from different genera were grown under control conditions but exposed to volatiles released by Cd-stressed Rhizobium cells to ascertain whether Rhizobium’s observed influence was strain-specific or broader. Our results showed that the volatiles emitted by some bacteria under stress are differentially perceived and translated into biochemical changes (growth, alteration of the antioxidant response, and oxidative damage) by other bacteria, which may increase the adaptability and resilience of bacterial communities to environmental changes, especially those with a prooxidant nature. Cadmium (Cd) contamination of soils constitutes a risk to the environment and human health. Here, we showed the effects of Cd exposure on bacteria and how volatile communication influences the biochemistry related to coping with oxidative stress. This knowledge can be important for remediation and risk assessment and highlights that new biological features, such as volatile communication, should be considered when studying and assessing the impact of contaminants on soil ecosystems. Full article
(This article belongs to the Special Issue Environmental Pollution and Oxidative Stress)
Show Figures

Graphical abstract

16 pages, 5372 KiB  
Article
Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species
by Chae Ryeong Ahn, In Jin Ha, Jai-Eun Kim, Kwang Seok Ahn, Jinbong Park and Seung Ho Baek
Antioxidants 2024, 13(5), 564; https://doi.org/10.3390/antiox13050564 - 03 May 2024
Viewed by 120
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric [...] Read more.
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy’s anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs. Full article
(This article belongs to the Special Issue Natural Antioxidants in Obesity and Related Diseases—2nd Edition)
Show Figures

Figure 1

16 pages, 20662 KiB  
Article
Exploring the Metabolic Effects of a Herbal Remedy of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia Extracts: Unraveling Its Therapeutic Potential as a Topical Application for Atopic Dermatitis Treatment
by Gakyung Lee, Byung Hwa Jung, Taemin Lee, Jae Hyeon Park, Hyung Sik Kim, Hocheol Kim and Hyun Ok Yang
Antioxidants 2024, 13(5), 563; https://doi.org/10.3390/antiox13050563 - 02 May 2024
Viewed by 261
Abstract
Our previous study demonstrated that our novel herbal remedy, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum Cassia extracts, exhibits a therapeutic effect in 1-chloro-2,4-dinitrobenzene (DNCB)-induced mice by inhibiting the Th-2 inflammatory response upon oral administration. It also ameliorated imbalances [...] Read more.
Our previous study demonstrated that our novel herbal remedy, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum Cassia extracts, exhibits a therapeutic effect in 1-chloro-2,4-dinitrobenzene (DNCB)-induced mice by inhibiting the Th-2 inflammatory response upon oral administration. It also ameliorated imbalances in lipid metabolism related to the skin barrier function in keratinocytes, indicating its potential as a topical agent. This study aims to further investigate the therapeutic effects and metabolic mechanisms of its topical application. The anti-atopic effect was evaluated using dermatitis scores, histopathological analysis, and immune cell factors in DNCB-induced mice. Metabolomic profiling of serum and lesional skin was conducted to elucidate the metabolic mechanisms. The topical application significantly reduced dermatitis scores, mast cell infiltration, and serum levels of immunoglobulin E (IgE), IFN-γ, interleukin (IL)-4, IL-17, and thymic stromal lymphopoietin (TSLP), demonstrating its effectiveness in treating atopic dermatitis (AD). Serum metabolomics revealed alterations in fatty acid metabolism related to the pro-inflammatory response. In lesional skin, metabolic markers associated with oxidative stress, immune regulation, and AD symptoms were restored. This study demonstrated its potential as a topical agent in suppressing Th-2 inflammatory responses and improving metabolic abnormalities related to AD symptoms, providing crucial insights for developing natural AD treatments. Full article
(This article belongs to the Topic Plant Extracts and Their Therapeutic Effects)
Show Figures

Graphical abstract

17 pages, 884 KiB  
Article
Impact of Lactic Acid Bacteria Fermentation on (Poly)Phenolic Profile and In Vitro Antioxidant and Anti-Inflammatory Properties of Herbal Infusions
by Tarik Ozturk, María Ángeles Ávila-Gálvez, Sylvie Mercier, Fernando Vallejo, Alexis Bred, Didier Fraisse, Christine Morand, Ebru Pelvan, Laurent-Emmanuel Monfoulet and Antonio González-Sarrías
Antioxidants 2024, 13(5), 562; https://doi.org/10.3390/antiox13050562 - 02 May 2024
Viewed by 266
Abstract
Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the [...] Read more.
Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the total content and profile of (poly)phenols. The present study aimed to investigate the impact of fermentation with two strains of Lactiplantibacillus plantarum of several herbal infusions from thyme, rosemary, echinacea, and pomegranate peel on the (poly)phenolic composition and whether lacto-fermentation can contribute to enhance their in vitro antioxidant and anti-inflammatory effects on human colon myofibroblast CCD18-Co cells. HPLC-MS/MS analyses revealed that fermentation increased the content of the phenolics present in all herbal infusions. In vitro analyses indicated that pomegranate infusion showed higher antioxidant and anti-inflammatory effects, followed by thyme, echinacea, and rosemary, based on the total phenolic content. After fermentation, despite increasing the content of phenolics, the antioxidant and anti-inflammatory effects via reduction pro-inflammatory markers (IL-6, IL-8 and PGE2) were similar to those of their corresponding non-fermented infusions, with the exception of a greater reduction in lacto-fermented thyme. Overall, the findings suggest that the consumption of lacto-fermented herbal infusions could be beneficial in alleviating intestinal inflammatory disorders. Full article
(This article belongs to the Special Issue Antioxidant Activity of Fermented Foods and Food Microorganisms)
Show Figures

Graphical abstract

14 pages, 820 KiB  
Article
Elevated Bile Acid 3β,5α,6β-Trihydroxycholanoyl Glycine in a Subset of Adult Ataxias Including Niemann–Pick Type C
by Nazgol Motamed-Gorji, Youssef Khalil, Cristina Gonzalez-Robles, Shamsher Khan, Philippa Mills, Hector Garcia-Moreno, Heather Ging, Ambreen Tariq, Peter T. Clayton and Paola Giunti
Antioxidants 2024, 13(5), 561; https://doi.org/10.3390/antiox13050561 - 02 May 2024
Viewed by 186
Abstract
Ataxia is a common neurological feature of Niemann–Pick disease type C (NPC). In this disease, unesterified cholesterol accumulates in lysosomes of the central nervous system and hepatic cells. Oxidation by reactive oxygen species produces oxysterols that can be metabolised to specific bile acids. [...] Read more.
Ataxia is a common neurological feature of Niemann–Pick disease type C (NPC). In this disease, unesterified cholesterol accumulates in lysosomes of the central nervous system and hepatic cells. Oxidation by reactive oxygen species produces oxysterols that can be metabolised to specific bile acids. These bile acids have been suggested as useful biomarkers to detect NPC. Concentrations of 3β,5α,6β-trihydroxycholanyl glycine (3β,5α,6β-triOH-Gly) and 3β,7β-dihydroxy-5-cholenyl glycine (3β,7β-diOH-Δ5-Gly) were measured in plasma of 184 adults with idiopathic ataxia. All patients were tested with whole genome sequencing containing hereditary ataxia panels, which include NPC1 and NPC2 mutations and other genetic causes of ataxia. Plasma 3β,5α,6β-triOH-Gly above normal (>90 nM) was found in 8 out of 184 patients. One patient was homozygous for the p.(Val1165Met) mutation in the NPC1 gene. The remaining seven included one patient with Friedreich’s ataxia and three patients with autoimmune diseases. Oxidative stress is known to be increased in Friedreich’s ataxia and in autoimmune diseases. Therefore, this subset of patients possibly shares a common mechanism that determines the increase of this bile acid. In a large cohort of adults with ataxia, plasma 3β,5α,6β-triOH-Gly was able to detect the one patient in the cohort with NPC1 disease, but also detected oxidation of cholesterol by ROS in other disorders. Plasma 3β,7β-diOH-Δ5-Gly is not a potential biomarker for NPC1. Full article
Show Figures

Figure 1

17 pages, 4062 KiB  
Article
Valproic Acid Causes Redox-Regulated Post-Translational Protein Modifications That Are Dependent upon P19 Cellular Differentiation States
by Ted B. Piorczynski, Jouber Calixto, Haley C. Henry, Kelli England, Susannah Cowley, Jackson M. Hansen, Jonathon T. Hill and Jason M. Hansen
Antioxidants 2024, 13(5), 560; https://doi.org/10.3390/antiox13050560 - 01 May 2024
Viewed by 388
Abstract
Valproic acid (VPA) is a common anti-epileptic drug and known neurodevelopmental toxicant. Although the exact mechanism of VPA toxicity remains unknown, recent findings show that VPA disrupts redox signaling in undifferentiated cells but has little effect on fully differentiated neurons. Redox imbalances often [...] Read more.
Valproic acid (VPA) is a common anti-epileptic drug and known neurodevelopmental toxicant. Although the exact mechanism of VPA toxicity remains unknown, recent findings show that VPA disrupts redox signaling in undifferentiated cells but has little effect on fully differentiated neurons. Redox imbalances often alter oxidative post-translational protein modifications and could affect embryogenesis if developmentally critical proteins are targeted. We hypothesize that VPA causes redox-sensitive post-translational protein modifications that are dependent upon cellular differentiation states. Undifferentiated P19 cells and P19-derived neurons were treated with VPA alone or pretreated with D3T, an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant pathway, prior to VPA exposure. Undifferentiated cells treated with VPA alone exhibited an oxidized glutathione redox couple and increased overall protein oxidation, whereas differentiated neurons were protected from protein oxidation via increased S-glutathionylation. Pretreatment with D3T prevented the effects of VPA exposure in undifferentiated cells. Taken together, our findings support redox-sensitive post-translational protein alterations in undifferentiated cells as a mechanism of VPA-induced developmental toxicity and propose NRF2 activation as a means to preserve proper neurogenesis. Full article
Show Figures

Figure 1

23 pages, 7982 KiB  
Article
The Management of Irrigation and Potassium Fertilization to Mitigate the Effect of Light Frosts on the Phenolic and Volatile Compounds in Virgin Olive Oils
by Suony Antonelli, Sebastián Pozas, Jorge Saavedra-Torrico, Mauricio Donders, Chris Bustamante, Betsabet Sepúlveda, Francisco Tapia, Diego L. García-González and Nalda Romero
Antioxidants 2024, 13(5), 559; https://doi.org/10.3390/antiox13050559 - 01 May 2024
Viewed by 285
Abstract
The frequency of early frosts has increased in recent years, which are injurious to olive growing, causing losses in the yield and quality of virgin olive oil. In this research, it was studied how the management of agronomic factors mitigates frost damage in [...] Read more.
The frequency of early frosts has increased in recent years, which are injurious to olive growing, causing losses in the yield and quality of virgin olive oil. In this research, it was studied how the management of agronomic factors mitigates frost damage in Arbequina olives, minimizing the loss of phenols and volatiles in virgin olive oil, at different fruit ripening stages. A Box–Behnken design and multivariate analysis were performed, with three levels of irrigation, potassium fertilization, and foliar copper application (15 treatments). Virgin olive oil was extracted from fresh and frozen olives. Light frost caused a significant decrease in the total phenols and secoiridoid compounds in and the antioxidant capacity of the frost-affected oils, which were perceived as more pungent and had the slight defect of “frostbitten olives”. According to the Box–Behnken design, an 86% reference evapotranspiration (ET0) or higher with 100 potassium oxide units (UK2O) and a 100% ET0 or higher with 250 UK2O would be required to minimize the effect of light frost on phenols and volatiles. Partial Least Squares Regression–Discriminant Analysis (PLS-DA) differentiated the virgin olive oils according to their ripening stage and fresh and frost conditions. Moreover, PLS-DA positively correlated a 75–100% ET0 and 0 Uk2O with the dialdehydic form of the decarboxymethyl ligstroside aglycone (p-HPEA-EDA), the dialdehydic form of the decarboxymethyl oleuropein aglycone (3,4-DHPEA-EDA), the dialdehydic form of the ligstroside aglycone (p-HPEA-EDA-DLA), and with fruity, pungent, and bitter attributes. Precision agronomic management based on the needs of the crop itself would avoid unnecessary stress on olive trees and oil damage. Full article
(This article belongs to the Special Issue Phenolic Antioxidants)
Show Figures

Figure 1

15 pages, 1488 KiB  
Article
Effects of Electron Beam Radiation on the Phenolic Composition and Bioactive Properties of Olive Pomace Extracts
by Joana Madureira, Inês Gonçalves, Jéssica Cardoso, Maria Inês Dias, Pedro M. P. Santos, Fernanda M. A. Margaça, Celestino Santos-Buelga, Lillian Barros and Sandra Cabo Verde
Antioxidants 2024, 13(5), 558; https://doi.org/10.3390/antiox13050558 - 01 May 2024
Viewed by 263
Abstract
Olive pomace is an agro-industrial waste product generated from the olive oil industry and constituted by bioactive compounds with potential applications in several industrial sectors. The purpose of this work was to evaluate the effects of electron beam (e-beam) radiation on olive pomace, [...] Read more.
Olive pomace is an agro-industrial waste product generated from the olive oil industry and constituted by bioactive compounds with potential applications in several industrial sectors. The purpose of this work was to evaluate the effects of electron beam (e-beam) radiation on olive pomace, specifically on phenolic compounds (by HPLC–DAD–ESI/MS) and the bioactive properties (antioxidant, antiproliferative, and antimicrobial activities) of crude olive pomace (COP) and extracted olive pomace (EOP) extracts. The amount of total flavonoid content and the reducing power of COP extracts were higher than those obtained for EOP extracts. The results suggested that e-beam radiation at 6 kGy increased both total phenolic and total flavonoid contents as well as the reducing power of COP extracts, due to the higher extractability (>2.5-fold) of phenolic compounds from these samples, while decreasing the scavenging activity of extracts. The extracts of both olive pomaces showed antibacterial potential, and COP extracts at 400 µg/mL also presented antiproliferative activity against A549, Caco-2, 293T, and RAW264.7 cell lines, with both properties preserved with the e-beam treatment. All in all, e-beam radiation at 6 kGy appears to be a promising technology to valorize the pollutant wastes of the olive oil industry through enhancing phenolic extractability and bioactive properties, and, furthermore, to contribute to the environmental and economical sustainability of the olive oil industry. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Graphical abstract

15 pages, 1747 KiB  
Review
Physical Activity and Oxidative Stress in Aging
by Rosamaria Militello, Simone Luti, Tania Gamberi, Alessio Pellegrino, Alessandra Modesti and Pietro Amedeo Modesti
Antioxidants 2024, 13(5), 557; https://doi.org/10.3390/antiox13050557 - 01 May 2024
Viewed by 388
Abstract
Biological aging, characterized by changes in metabolism and physicochemical properties of cells, has an impact on public health. Environment and lifestyle, including factors like diet and physical activity, seem to play a key role in healthy aging. Several studies have shown that regular [...] Read more.
Biological aging, characterized by changes in metabolism and physicochemical properties of cells, has an impact on public health. Environment and lifestyle, including factors like diet and physical activity, seem to play a key role in healthy aging. Several studies have shown that regular physical activity can enhance antioxidant defense mechanisms, including the activity of enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase. However, intense or prolonged exercise can also lead to an increase in reactive oxygen species (ROS) production temporarily, resulting in oxidative stress. This phenomenon is referred to as “exercise-induced oxidative stress”. The relationship between physical activity and oxidative stress in aging is complex and depends on various factors such as the type, intensity, duration, and frequency of exercise, as well as individual differences in antioxidant capacity and adaptation to exercise. In this review, we analyzed what is reported by several authors regarding the role of physical activity on oxidative stress in the aging process as well as the role of hormesis and physical exercise as tools for the prevention and treatment of sarcopenia, an aging-related disease. Finally, we reported what has recently been studied in relation to the effect of physical activity and sport on aging in women. Full article
(This article belongs to the Special Issue Impact of Physical Activity on Oxidative Stress in Muscle Aging)
Show Figures

Figure 1

15 pages, 694 KiB  
Article
Astaxanthin Added during Post-Warm Recovery Mitigated Oxidative Stress in Bovine Vitrified Oocytes and Improved Quality of Resulting Blastocysts
by Linda Dujíčková, Lucia Olexiková, Alexander V. Makarevich, Alexandra Rosenbaum Bartková, Lucie Němcová, Peter Chrenek and František Strejček
Antioxidants 2024, 13(5), 556; https://doi.org/10.3390/antiox13050556 - 30 Apr 2024
Viewed by 186
Abstract
Various antioxidants are tested to improve the viability and development of cryopreserved oocytes, due to their known positive health effects. The aim of this study was to find whether astaxanthin (AX), a xanthophyll carotenoid, could mitigate deteriorations that occurred during the vitrification/warming process [...] Read more.
Various antioxidants are tested to improve the viability and development of cryopreserved oocytes, due to their known positive health effects. The aim of this study was to find whether astaxanthin (AX), a xanthophyll carotenoid, could mitigate deteriorations that occurred during the vitrification/warming process in bovine oocytes. Astaxanthin (2.5 µM) was added to the maturation medium during the post-warm recovery period of vitrified oocytes for 3 h. Afterward, the oocytes were fertilized in vitro using frozen bull semen and presumptive zygotes were cultured in the B2 Menezo medium in a co-culture with BRL-1 cells at 38.5 °C and 5% CO2 until the blastocyst stage. AX addition significantly reduced ROS formation, lipid peroxidation, and lysosomal activity, while increasing mitochondrial activity in vitrified oocytes. Although the effect of AX on embryo development was not observed, it stimulated cell proliferation in the blastocysts derived from vitrified oocytes and improved their quality by upregulation or downregulation of some genes related to apoptosis (BCL2, CAS9), oxidative stress (GPX4, CDX2), and development (GJB5) compared to the vitrified group without AX. Therefore, the antioxidant properties of astaxanthin even during short exposure to bovine vitrified/warmed oocytes resulted in improved blastocyst quality comparable to those from fresh oocytes. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
19 pages, 11957 KiB  
Article
Modeling Melanoma Heterogeneity In Vitro: Redox, Resistance and Pigmentation Profiles
by Larissa Anastacio da Costa Carvalho, Isabella Harumi Yonehara Noma, Adriana Hiromi Uehara, Ádamo Davi Diógenes Siena, Luciana Harumi Osaki, Mateus Prates Mori, Nadja Cristhina de Souza Pinto, Vanessa Morais Freitas, Wilson Araújo Silva Junior, Keiran S. M. Smalley and Silvya Stuchi Maria-Engler
Antioxidants 2024, 13(5), 555; https://doi.org/10.3390/antiox13050555 - 30 Apr 2024
Viewed by 223
Abstract
Microenvironment and transcriptional plasticity generate subpopulations within the tumor, and the use of BRAF inhibitors (BRAFis) contributes to the rise and selection of resistant clones. We stochastically isolated subpopulations (C1, C2, and C3) from naïve melanoma and found that the clones demonstrated distinct [...] Read more.
Microenvironment and transcriptional plasticity generate subpopulations within the tumor, and the use of BRAF inhibitors (BRAFis) contributes to the rise and selection of resistant clones. We stochastically isolated subpopulations (C1, C2, and C3) from naïve melanoma and found that the clones demonstrated distinct morphology, phenotypic, and functional profiles: C1 was less proliferative, more migratory and invasive, less sensitive to BRAFis, less dependent on OXPHOS, more sensitive to oxidative stress, and less pigmented; C2 was more proliferative, less migratory and invasive, more sensitive to BRAFis, less sensitive to oxidative stress, and more pigmented; and C3 was less proliferative, more migratory and invasive, less sensitive to BRAFis, more dependent on OXPHOS, more sensitive to oxidative stress, and more pigmented. Hydrogen peroxide plays a central role in oxidative stress and cell signaling, and PRDXs are one of its main consumers. The intrinsically resistant C1 and C3 clones had lower MITF, PGC-1α, and PRDX1 expression, while C1 had higher AXL and decreased pigmentation markers, linking PRDX1 to clonal heterogeneity and resistance. PRDX2 is depleted in acquired BRAFi-resistant cells and acts as a redox sensor. Our results illustrate that decreased pigmentation markers are related to therapy resistance and decreased antioxidant defense. Full article
(This article belongs to the Special Issue Antioxidants to Overcome Resistance in Cancer Therapy)
14 pages, 2326 KiB  
Review
Hydrogen Peroxide Signaling in the Maintenance of Plant Root Apical Meristem Activity
by Hui Liu, Yangwei Mu, Yuxin Xuan, Xiaolin Wu, Wei Wang and Hui Zhang
Antioxidants 2024, 13(5), 554; https://doi.org/10.3390/antiox13050554 - 30 Apr 2024
Viewed by 141
Abstract
Hydrogen peroxide (H2O2) is a prevalent reactive oxygen species (ROS) found in cells and takes a central role in plant development and stress adaptation. The root apical meristem (RAM) has evolved strong plasticity to adapt to complex and changing [...] Read more.
Hydrogen peroxide (H2O2) is a prevalent reactive oxygen species (ROS) found in cells and takes a central role in plant development and stress adaptation. The root apical meristem (RAM) has evolved strong plasticity to adapt to complex and changing environmental conditions. Recent advances have made great progress in explaining the mechanism of key factors, such as auxin, WUSCHEL-RELATED HOMEOBOX 5 (WOX5), PLETHORA (PLT), SHORTROOT (SHR), and SCARECROW (SCR), in the regulation of RAM activity maintenance. H2O2 functions as an emerging signaling molecule to control the quiescent center (QC) specification and stem cell niche (SCN) activity. Auxin is a key signal for the regulation of RAM maintenance, which largely depends on the formation of auxin regional gradients. H2O2 regulates the auxin gradients by the modulation of intercellular transport. H2O2 also modulates the expression of WOX5, PLTs, SHR, and SCR to maintain RAM activity. The present review is dedicated to summarizing the key factors in the regulation of RAM activity and discussing the signaling transduction of H2O2 in the maintenance of RAM activity. H2O2 is a significant signal for plant development and environmental adaptation. Full article
(This article belongs to the Special Issue Reactive Oxygen and Nitrogen Species in Plants―2nd Edition)
15 pages, 1392 KiB  
Article
Variability in the Qualitative and Quantitative Composition of Phenolic Compounds and the In Vitro Antioxidant Activity of Sour Cherry (Prunus cerasus L.) Leaves
by Kristina Zymonė, Mindaugas Liaudanskas, Juozas Lanauskas, Miglė Nagelytė and Valdimaras Janulis
Antioxidants 2024, 13(5), 553; https://doi.org/10.3390/antiox13050553 - 30 Apr 2024
Viewed by 201
Abstract
Sour cherry (Prunus cerasus L.) is a deciduous tree belonging to the Rosaceae Juss. family. Cherry leaves are an underutilized source of biologically active compounds. The aim of this study was to determine the composition of the phenolic compounds, as well as [...] Read more.
Sour cherry (Prunus cerasus L.) is a deciduous tree belonging to the Rosaceae Juss. family. Cherry leaves are an underutilized source of biologically active compounds. The aim of this study was to determine the composition of the phenolic compounds, as well as the total antioxidant activity, in leaf samples of P. cerasus cultivars and to elucidate the cultivars with particular phytochemical compositions. The phytochemical profiles of P. cerasus leaves vary significantly in a cultivar-dependent manner. The total content of identified phenolic compounds varied from 8.254 to 16.199 mg/g in the cherry leaves. Chlorogenic acid ranged between 1413.3 µg/g (‘North Star’) and 8028.0 µg/g (‘Note’). The total content of flavonols varied from 4172.5 µg/g (‘Vytenu zvaigzde’) to 9030.7 µg/g (‘Tikhonovskaya’). The total content of identified proanthocyanidins varied from 122.3 µg/g (‘Note’) to 684.8 µg/g (‘Kelleris’). The highest levels of phloridzin (38.1 ± 0.9 µg/g) were found in samples of ‘Molodezhnaya’, while the lowest level of this compound was determined in the leaf samples of ‘Turgenevka’ (6.7 ± 0.2). The strongest antiradical (138.0 ± 4.0 µmol TE/g, p < 0.05) and reducing (364.9 ± 10.5 µmol TE/g, p < 0.05) activity in vitro was exhibited by the cultivar ‘Vytenu zvaigzde’ cherry leaf sample extracts. ‘Kelleris’, ‘Note’, and ‘Tikhonovskaya’ distinguish themselves with peculiar phytochemical compositions. Full article
Show Figures

Figure 1

18 pages, 9508 KiB  
Article
Formyl-Peptide Receptor 2 Signaling Modulates SLC7A11/xCT Expression and Activity in Tumor Cells
by Tiziana Pecchillo Cimmino, Carolina Punziano, Iolanda Panico, Zeudi Petrone, Myrhiam Cassese, Raffaella Faraonio, Vincenza Barresi, Gabriella Esposito, Rosario Ammendola and Fabio Cattaneo
Antioxidants 2024, 13(5), 552; https://doi.org/10.3390/antiox13050552 - 30 Apr 2024
Viewed by 252
Abstract
Cancer cells exhibit high levels of oxidative stress and consequently require a high amount of cysteine for glutathione synthesis. Solute Carrier Family 7 Member 11 (SLC7A11), or xCT, mediates the cellular uptake of cystine in exchange for intracellular glutamate; imported extracellular cystine is [...] Read more.
Cancer cells exhibit high levels of oxidative stress and consequently require a high amount of cysteine for glutathione synthesis. Solute Carrier Family 7 Member 11 (SLC7A11), or xCT, mediates the cellular uptake of cystine in exchange for intracellular glutamate; imported extracellular cystine is reduced to cysteine in the cytosol through a NADPH-consuming reduction reaction. SLC7A11/xCT expression is under the control of stress-inducing conditions and of several transcription factors, such as NRF2 and ATF4. Formyl-peptide receptor 2 (FPR2) belongs to the FPR family, which transduces chemotactic signals mediating either inflammatory or anti-inflammatory responses according to the nature of its ligands and/or FPR2 binding with other FPR isoforms. The repertoire of FPR2 agonists with anti-inflammatory activities comprises WKYMVm peptide and Annexin A1 (ANXA1), and the downstream effects of the intracellular signaling cascades triggered by FPR2 include NADPH oxidase (NOX)-dependent generation of reactive oxygen species. Herein, we demonstrate that stimulation of CaLu-6 cells with either WKYMVm or ANXA1: (i) induces the redox-regulated activation of SLC7A11/xCT; (ii) promotes the synthesis of glutathione; (iii) prevents lipid peroxidation; and (iv) favors NRF2 nuclear translocation and activation. In conclusion, our overall results demonstrate that FPR2 agonists and NOX modulate SLC7A11/xCT expression and activity, thereby identifying a novel regulative pathway of the cystine/glutamate antiport that represents a new potential therapeutical target for the treatment of human cancers. Full article
Show Figures

Figure 1

16 pages, 4728 KiB  
Article
NOX2 as a Biomarker of Academic Performance: Evidence from University Students during Examination
by Cristina Nocella, Alessandra D’Amico, Roberto Cangemi, Chiara Fossati, Fabio Pigozzi, Elena Mannacio, Vittoria Cammisotto, Simona Bartimoccia, Valentina Castellani, Gianmarco Sarto, Beatrice Simeone, Erica Rocco, Giacomo Frati, Sebastiano Sciarretta, Pasquale Pignatelli, Roberto Carnevale and SMiLe Group
Antioxidants 2024, 13(5), 551; https://doi.org/10.3390/antiox13050551 - 30 Apr 2024
Viewed by 216
Abstract
Background: Cortisol levels, oxidative stress, and lower cerebral performance seem to be closely related. This study aimed to evaluate the question of whether exam stress affected oxidative stress and endothelial function parameters in the salivary samples of students. Methods: A total of 114 [...] Read more.
Background: Cortisol levels, oxidative stress, and lower cerebral performance seem to be closely related. This study aimed to evaluate the question of whether exam stress affected oxidative stress and endothelial function parameters in the salivary samples of students. Methods: A total of 114 healthy students were recruited. All students were subjected to a 21-item DASS questionnaire to assess perceived stress. Cortisol levels, biomarkers of oxidative stress, and endothelial function were evaluated at T0, during the semester, and T1, in the morning before the exam, in saliva samples. In vitro, HUVECs were stimulated with cortisol, and oxidative stress and endothelial function parameters were evaluated. Results: At T1, cortisol levels were significantly increased compared with the levels during the semester. Moreover, exam results correlated inversely with the DASS score at T1. In addition, NOX2, H2O2 and endothelin-1 significantly increased, while NO bioavailability decreased. In vitro, HUVECs treatment with human cortisol determined the increase of oxidative stress and the decrease of endothelial function, in association with impaired eNOS phosphorylation. Conclusion: NOX2-mediated oxidative stress is a mechanism that could mediate cortisol-induced transient endothelial dysfunction during academic examination. Therefore, strategies to monitor or modulate oxidative stress could help students to reduce the impact of examination-related stress. Full article
(This article belongs to the Special Issue Clinical Relevance of Biomarkers of Oxidative Stress)
Show Figures

Figure 1

17 pages, 4490 KiB  
Article
Therapeutic Effects of Hinokitiol through Regulating the SIRT1/NOX4 against Ligature-Induced Experimental Periodontitis
by Tae-Yeon Kim, Eun-Nam Kim and Gil-Saeng Jeong
Antioxidants 2024, 13(5), 550; https://doi.org/10.3390/antiox13050550 - 30 Apr 2024
Viewed by 287
Abstract
Hinokitiol (HKT) is one of the essential oil components found in the heartwood of Cupressaceae plants, and has been reported to have various bioactive effects, including anti-inflammatory effects. However, the improving effect of HKT on periodontitis, which is characterized by periodontal tissue inflammation [...] Read more.
Hinokitiol (HKT) is one of the essential oil components found in the heartwood of Cupressaceae plants, and has been reported to have various bioactive effects, including anti-inflammatory effects. However, the improving effect of HKT on periodontitis, which is characterized by periodontal tissue inflammation and alveolar bone loss, has not been clearly revealed. Therefore, we investigated the periodontitis-alleviating effect of HKT and the related molecular mechanisms in human periodontal ligament cells. According to the study results, HKT downregulated SIRT1 and NOX4, which were increased by Porphyromonas gingivalis Lipopolysaccharide (PG-LPS) stimulation and were found to regulate pro-inflammatory mediators and oxidative stress through SIRT1/NOX4 signals. Additionally, by increasing the expression of osteogenic makers such as alkaline phosphatase, osteogenic induction of human periodontal ligament (HPDL) cells, which had been reduced by PG-LPS, was restored. Furthermore, we confirmed that NOX4 expression was regulated through regulation of SIRT1 expression with HKT. The in vitro effect of HKT on improving periodontitis was proven using the periodontal inflammation model, which induces periodontal inflammation using ligature, a representative in vivo model. According to in vivo results, HKT alleviated periodontal inflammation and restored damaged alveolar bone in a concentration-dependent manner in the periodontal inflammation model. Through this experiment, the positive effects of HKT on relieving periodontal tissue inflammation and recovering damaged alveolar bone, which are important treatment strategies for periodontitis, were confirmed. Therefore, these results suggest that HKT has potential in the treatment of periodontitis. Full article
(This article belongs to the Special Issue Antioxidant Capacity of Natural Products)
Show Figures

Figure 1

20 pages, 3115 KiB  
Article
The Truncated Peptide AtPEP1(9–23) Has the Same Function as AtPEP1(1–23) in Inhibiting Primary Root Growth and Triggering of ROS Burst
by Junmei Cui, Ermei Sa, Jiaping Wei, Yan Fang, Guoqiang Zheng, Ying Wang, Xiaoxia Wang, Yongjie Gong, Zefeng Wu, Panfeng Yao and Zigang Liu
Antioxidants 2024, 13(5), 549; https://doi.org/10.3390/antiox13050549 - 29 Apr 2024
Viewed by 184
Abstract
Currently, the widely used active form of plant elicitor peptide 1 (PEP1) from Arabidopsis thaliana is composed of 23 amino acids, hereafter AtPEP1(1–23), serving as an immune elicitor. The relatively less conserved N-terminal region in AtPEP family indicates that the amino [...] Read more.
Currently, the widely used active form of plant elicitor peptide 1 (PEP1) from Arabidopsis thaliana is composed of 23 amino acids, hereafter AtPEP1(1–23), serving as an immune elicitor. The relatively less conserved N-terminal region in AtPEP family indicates that the amino acids in this region may be unrelated to the function and activity of AtPEP peptides. Consequently, we conducted an investigation to determine the necessity of the nonconserved amino acids in AtPEP1(1–23) peptide for its functional properties. By assessing the primary root growth and the burst of reactive oxygen species (ROS), we discovered that the first eight N-terminal amino acids of AtPEP1(1–23) are not crucial for its functionality, whereas the conserved C-terminal aspartic acid plays a significant role in its functionality. In this study, we identified a truncated peptide, AtPEP1(9–23), which exhibits comparable activity to AtPEP1(1–23) in inhibiting primary root growth and inducing ROS burst. Additionally, the truncated peptide AtPEP1(13–23) shows similar ability to induce ROS burst as AtPEP1(1–23), but its inhibitory effect on primary roots is significantly reduced. These findings are significant as they provide a novel approach to explore and understand the functionality of the AtPEP1(1–23) peptide. Moreover, exogenous application of AtPEP1(13–23) may enhance plant resistance to pathogens without affecting their growth and development. Therefore, AtPEP1(13–23) holds promise for development as a potentially applicable biopesticides. Full article
17 pages, 1307 KiB  
Article
Effects of Berberine on Lipid Metabolism, Antioxidant Status, and Immune Response in Liver of Tilapia (Oreochromis niloticus) under a High-Fat Diet Feeding
by Rui Jia, Yiran Hou, Liqiang Zhang, Bing Li and Jian Zhu
Antioxidants 2024, 13(5), 548; https://doi.org/10.3390/antiox13050548 - 29 Apr 2024
Viewed by 188
Abstract
Berberine, a natural alkaloid found abundantly in various medicinal plants, exhibits antioxidative, anti-inflammatory, and lipid metabolism-regulatory properties. Nonetheless, its protective effects and the molecular mechanisms underlying liver injury in fish have not been fully elucidated. The aims of this study were to investigate [...] Read more.
Berberine, a natural alkaloid found abundantly in various medicinal plants, exhibits antioxidative, anti-inflammatory, and lipid metabolism-regulatory properties. Nonetheless, its protective effects and the molecular mechanisms underlying liver injury in fish have not been fully elucidated. The aims of this study were to investigate the antioxidative, anti-inflammatory, and lipid metabolism-regulating effects of berberine against high-fat diet (HFD)-induced liver damage and to clarify the underlying molecular mechanisms. Tilapia were fed diets containing two doses of berberine (50 and 100 mg/kg diet) alongside high fat for 60 days. The results showed that berberine treatments (50 and/or 100 mg/kg) significantly reduced elevated aminotransferases, triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) in the plasma. In the liver, berberine treatments significantly increased the expression of peroxisome proliferator-activated receptor α (pparα) and carnitine palmitoyltransferase 1 (cpt-1) genes, leading to a reduction in lipid accumulation. Meanwhile, berberine treatment suppressed lipid peroxidation formation and enhanced antioxidant capacity. Berberine upregulated the mRNA levels of erythroid 2-related factor 2 (nrf2) and its downstream genes including heme oxygenase 1 (ho-1) and glutathione-S-transferase (gstα). Additionally, berberine attenuated the inflammation by inhibiting the expression of toll-like receptor 2 (tlr2), myeloid differential protein-88 (myd88), relb, and inflammatory cytokines such as interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α), and il-8. In summary, this study suggested that berberine offers protection against HFD-induced liver damage in tilapia via regulating lipid metabolism, antioxidant status, and immune response. This protective effect may be attributed to the modulation of the Nrf2, TLR2/MyD88/NF-κB, and PPARα signaling pathways. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
15 pages, 1248 KiB  
Review
Oxidative Metabolism in Brain Ischemia and Preconditioning: Two Sides of the Same Coin
by Elena D’Apolito, Maria Josè Sisalli, Michele Tufano, Lucio Annunziato and Antonella Scorziello
Antioxidants 2024, 13(5), 547; https://doi.org/10.3390/antiox13050547 - 29 Apr 2024
Viewed by 266
Abstract
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal [...] Read more.
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain’s low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2–2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•−), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions. Full article
(This article belongs to the Special Issue Oxidative Stress and Its Role in Ischemic Stroke)
Show Figures

Figure 1

22 pages, 5331 KiB  
Article
Use of Optical Redox Imaging to Quantify Alveolar Macrophage Redox State in Infants: Proof of Concept Experiments in a Murine Model and Human Tracheal Aspirates Samples
by He N. Xu, Diego Gonzalves, Jonathan H. Hoffman, Joseph A. Baur, Lin Z. Li and Erik A. Jensen
Antioxidants 2024, 13(5), 546; https://doi.org/10.3390/antiox13050546 - 29 Apr 2024
Viewed by 469
Abstract
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to [...] Read more.
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to this area of research, we first used Optical Redox Imaging (ORI) to characterize the responses to H2O2-induced oxidative stress and caffeine treatment in an in vitro model of mouse alveolar macrophages (AM). H2O2 caused a dose-dependent decrease in NADH and an increase in FAD-containing flavoproteins (Fp) and the redox ratio Fp/(NADH + Fp). Caffeine treatment did not affect Fp but significantly decreased NADH with doses of ≥50 µM, and 1000 µM caffeine treatment significantly increased the redox ratio and decreased the baseline level of mitochondrial ROS (reactive oxygen species). However, regardless of whether AM were pretreated with caffeine or not, the mitochondrial ROS levels increased to similar levels after H2O2 challenge. We then investigated the feasibility of utilizing ORI to examine macrophage redox status in tracheal aspirate (TA) samples obtained from premature infants receiving invasive ventilation. We observed significant heterogeneity in NADH, Fp, Fp/(NADH + Fp), and mitochondrial ROS of the TA macrophages. We found a possible positive correlation between gestational age and NADH and a negative correlation between mean airway pressure and NADH that provides hypotheses for future testing. Our study demonstrates that ORI is a feasible technique to characterize macrophage redox state in infant TA samples and supports further use of this method to investigate lung macrophage-mediated disease endotypes in BPD. Full article
(This article belongs to the Special Issue Oxidative Stress and Newborns)
Show Figures

Figure 1

29 pages, 3947 KiB  
Review
Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host–Pathogen Dynamics
by Omer M. A. Dagah, Billton Bryson Silaa, Minghui Zhu, Qiu Pan, Linlin Qi, Xinyu Liu, Yuqi Liu, Wenjing Peng, Zakir Ullah, Appolonia F. Yudas, Amir Muhammad, Xianquan Zhang and Jun Lu
Antioxidants 2024, 13(5), 545; https://doi.org/10.3390/antiox13050545 - 29 Apr 2024
Viewed by 410
Abstract
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system [...] Read more.
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host–pathogen interactions, offering valuable insights for future research and therapeutic development. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

21 pages, 3175 KiB  
Article
Inhibitory Effects of Fermented Sprouted Oat Extracts on Oxidative Stress and Melanin Overproduction
by Hyeijin Cho, Jisun Yang, Ji Young Kang and Kyung Eun Kim
Antioxidants 2024, 13(5), 544; https://doi.org/10.3390/antiox13050544 - 29 Apr 2024
Viewed by 380
Abstract
Hyperpigmentation occurs due to irregular secretion of melanin pigment in the skin. This can affect quality of life depending on its severity, so prevention and management are essential. Oats (Avena sativa L.), a grain consumed worldwide, are known to offer improved health [...] Read more.
Hyperpigmentation occurs due to irregular secretion of melanin pigment in the skin. This can affect quality of life depending on its severity, so prevention and management are essential. Oats (Avena sativa L.), a grain consumed worldwide, are known to offer improved health benefits upon germination and fermentation. This study is aimed to investigate the protective effects of lactobacilli-fermented sprouted oat extracts on oxidative stress and melanin overproduction in vitro. The anti-melanogenic effect was investigated using melanin content and tyrosinase activity assays in B16F10 cells, as well as a mushroom tyrosinase-based enzyme inhibition assay. The results showed that L. casei-fermented oat extracts were the most effective for reducing melanin formation by reducing the mRNA expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 2 mRNA expression. Furthermore, L. casei fermentation was effective in improving the total phenolic, flavonoid, and avenanthramide A contents of sprouted oat extracts. The results also demonstrated the antioxidant effects of L. casei-fermented sprouted oat extracts in promoting DPPH radical-scavenging activity, superoxide dismutase-like activity, and reduction in reactive oxygen species levels. Overall, the findings indicate that fermented sprouted oat extracts are promising candidates for antioxidant and anti-hyperpigmentation treatments. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Cosmetics—2nd Edition)
Show Figures

Graphical abstract

24 pages, 993 KiB  
Review
Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health
by Lorenzo Flori, Giada Benedetti, Vincenzo Calderone and Lara Testai
Antioxidants 2024, 13(5), 543; https://doi.org/10.3390/antiox13050543 - 28 Apr 2024
Viewed by 302
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, [...] Read more.
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia–reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved. Full article
16 pages, 2645 KiB  
Article
Blends of Organic Acids Are Weaponizing the Host iNOS and Nitric Oxide to Reduce Infection of Piscirickettsia salmonis In Vitro
by Nicolae Corcionivoschi, Igori Balta, David McCleery, Ioan Pet, Tiberiu Iancu, Calin Julean, Adela Marcu, Lavinia Stef and Sorin Morariu
Antioxidants 2024, 13(5), 542; https://doi.org/10.3390/antiox13050542 - 28 Apr 2024
Viewed by 355
Abstract
For the last 30 years, Piscirickettsia salmonis has caused major economic losses to the aquaculture industry as the aetiological agent for the piscirickettsiosis disease. Replacing the current interventions, based on antibiotics, with natural alternatives (e.g., organic acids) represents a priority. With this study, [...] Read more.
For the last 30 years, Piscirickettsia salmonis has caused major economic losses to the aquaculture industry as the aetiological agent for the piscirickettsiosis disease. Replacing the current interventions, based on antibiotics, with natural alternatives (e.g., organic acids) represents a priority. With this study, we aimed to better understand their biological mechanism of action in an in vitro model of infection with salmon epithelial cells (CHSE-214). Our first observation revealed that at the sub-inhibitory concentration of 0.5%, the organic acid blend (Aq) protected epithelial cell integrity and significantly reduced P. salmonis invasion. The MIC was established at 1% Aq and the MBC at 2% against P. salmonis. The sub-inhibitory concentration significantly increased the expression of the antimicrobial peptides Cath2 and Hepcidin1, and stimulated the activity of the innate immune effector iNOS. The increase in iNOS activity also led to higher levels of nitric oxide (NO) being released in the extracellular space. The exposure of P. salmonis to the endogenous NO caused an increase in bacterial lipid peroxidation levels, a damaging effect which can ultimately reduce the pathogen’s ability to attach or multiply intracellularly. We also demonstrate that the increased NO release by the host CHSE-214 cells is a consequence of direct exposure to Aq and is not dependent on P. salmonis infection. Additionally, the presence of Aq during P. salmonis infection of CHSE-214 cells significantly mitigated the expression of the pro-inflammatory cytokines IL-1β, IL-8, IL-12, and IFNγ. Taken together, these results indicate that, unlike antibiotics, natural antimicrobials can weaponize the iNOS pathway and secreted nitric oxide to reduce infection and inflammation in a Piscirickettsia salmonis in vitro model of infection. Full article
Show Figures

Figure 1

18 pages, 4689 KiB  
Article
Liquid Chromatography/Tandem Mass Spectrometry Analysis of Sophora flavescens Aiton and Protective Effects against Alcohol-Induced Liver Injury and Oxidative Stress in Mice
by Ye Jin Yang, Min Jung Kim, Ju-Hye Yang, Ji Woong Heo, Hun Hwan Kim, Woo H. Kim, Gon Sup Kim, Hu-Jang Lee, Young Woo Kim, Kwang Youn Kim and Kwang Il Park
Antioxidants 2024, 13(5), 541; https://doi.org/10.3390/antiox13050541 - 28 Apr 2024
Viewed by 282
Abstract
In this study, we investigated the hepatoprotective effects of an ethanol extract of Sophora flavescens Aiton (ESF) on an alcohol-induced liver disease mouse model. Alcoholic liver disease (ALD) was caused by the administration of ethanol to male C57/BL6 mice who were given a [...] Read more.
In this study, we investigated the hepatoprotective effects of an ethanol extract of Sophora flavescens Aiton (ESF) on an alcohol-induced liver disease mouse model. Alcoholic liver disease (ALD) was caused by the administration of ethanol to male C57/BL6 mice who were given a Lieber−DeCarli liquid diet, including ethanol. The alcoholic fatty liver disease mice were orally administered ESF (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day), which served as a positive control every day for 16 days. The findings suggest that ESF enhances hepatoprotective benefits by significantly decreasing serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), markers for liver injury. Furthermore, ESF alleviated the accumulation of triglyceride (TG) and total cholesterol (TC), increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), and improved serum alcohol dehydrogenase (ADH) activity in the alcoholic fatty liver disease mice model. Cells and organisms rely on the Kelch-like ECH-associated protein 1- Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) system as a critical defensive mechanism in response to oxidative stress. Therefore, Nrf2 plays an important role in ALD antioxidant responses, and its level is decreased by increased reactive oxidation stress (ROS) in the liver. ESF increased Nrf2, which was decreased in ethanol-damaged livers. Additionally, four polyphenol compounds were identified through a qualitative analysis of the ESF using LC-MS/MS. This study confirmed ESF’s antioxidative and hangover-elimination effects and suggested the possibility of using Sophora flavescens Aiton (SF) to treat ALD. Full article
(This article belongs to the Special Issue Antioxidant and Biological Properties of Plant Extracts—3rd Edition)
Show Figures

Figure 1

16 pages, 3486 KiB  
Article
Dietary Lycium barbarum Polysaccharide Modulates Growth Performance, Antioxidant Capacity, and Lipid Metabolism in Common Carp (Cyprinus carpio) Fed with High-Fat Diet
by Di Wu, Jinnan Li, Ze Fan, Zhipeng Sun, Xianhu Zheng, Haitao Zhang, Hong Xu and Liansheng Wang
Antioxidants 2024, 13(5), 540; https://doi.org/10.3390/antiox13050540 - 28 Apr 2024
Viewed by 210
Abstract
To investigate the ameliorative effects and mechanism of Lycium barbarum polysaccharide (LBP) on growth performance, oxidative stress, and lipid deposition in common carp (Cyprinus carpio) fed with high-fat diets, fish with an initial weight of 5.29 ± 0.12 g were divided [...] Read more.
To investigate the ameliorative effects and mechanism of Lycium barbarum polysaccharide (LBP) on growth performance, oxidative stress, and lipid deposition in common carp (Cyprinus carpio) fed with high-fat diets, fish with an initial weight of 5.29 ± 0.12 g were divided into five experimental groups—including normal-fat diets, high-fat diets, and high-fat diets—supplemented with LBP (0.5, 1.0, and 2.0 g/kg) for 8 weeks. The results showed that high-fat diets resulted in significant decreases in final body weight, weight gain rate, and specific growth rate of fish, as well as causing a significant decrease in hepatic total antioxidant capacity, catalase, and glutathione peroxidase activities. These changes were accompanied by a significant decrease in lipase activity and ATP level and a significant increase in malondialdehyde content. The expression levels of lipid metabolism-related genes (acetyl coenzyme A carboxylase 1, stearoyl coenzyme A desaturase 1, fat synthase, peroxisome proliferator-activated receptor-γ, fructofuranose bisphosphatase, and glucose-6-phosphatase) were also markedly elevated by high-fat diets. Supplementation with 0.5–2.0 g/kg LBP in high-fat diets improved the reduced growth performance, increased hepatic total antioxidant enzymes, catalase, and glutathione peroxidase activities, and lowered malondialdehyde level in fish fed with high-fat diets. Additionally, dietary supplementation with LBP significantly downregulated hepatic gene expression levels of acetyl coenzyme A carboxylase 1, stearoyl coenzyme A desaturase 1, fat synthase, sterol regulatory element-binding protein 1, peroxisome proliferator-activated receptor-γ, fructofuranose bisphosphatase, and glucose-6-phosphatase. In conclusion, fish fed with high-fat diets demonstrated impaired growth performance, antioxidant capacity, and lipid metabolism, and dietary supplementation with 0.5–2.0 g/kg LBP ameliorated the impairments induced by high-fat diets. Full article
(This article belongs to the Special Issue Oxidative Stress and Nutrition in Aquatic Animals)
Show Figures

Figure 1

18 pages, 1969 KiB  
Article
Glutathione and a Pool of Metabolites Partly Related to Oxidative Stress Are Associated with Low and High Myopia in an Altered Bioenergetic Environment
by Salvador Mérida, Amparo Návea, Carmen Desco, Bernardo Celda, Mercedes Pardo-Tendero, José Manuel Morales-Tatay and Francisco Bosch-Morell
Antioxidants 2024, 13(5), 539; https://doi.org/10.3390/antiox13050539 - 27 Apr 2024
Viewed by 350
Abstract
Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are [...] Read more.
Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated. Full article
19 pages, 4268 KiB  
Article
Lemon Peel Water Extract: A Novel Material for Retinal Health, Protecting Retinal Pigment Epithelial Cells against Dynamin-Related Protein 1-Mediated Mitochondrial Fission by Blocking ROS-Stimulated Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathway
by Shang-Chun Tsou, Chen-Ju Chuang, Inga Wang, Tzu-Chun Chen, Jui-Hsuan Yeh, Chin-Lin Hsu, Yu-Chien Hung, Ming-Chung Lee, Yuan-Yen Chang and Hui-Wen Lin
Antioxidants 2024, 13(5), 538; https://doi.org/10.3390/antiox13050538 - 27 Apr 2024
Viewed by 508
Abstract
Previous studies showed that NaIO3 can induce oxidative stress-mediated retinal pigment epithelium (RPE) damage to simulate age-related macular degeneration (AMD). Lemon peel is rich in antioxidants and components that can penetrate the blood–retinal barrier, but their role in retinal oxidative damage remains [...] Read more.
Previous studies showed that NaIO3 can induce oxidative stress-mediated retinal pigment epithelium (RPE) damage to simulate age-related macular degeneration (AMD). Lemon peel is rich in antioxidants and components that can penetrate the blood–retinal barrier, but their role in retinal oxidative damage remains unexplored. Here, we explore the protection of lemon peel ultrasonic-assisted water extract (LUWE), containing large amounts of flavonoids and polyphenols, against NaIO3-induced retinal degeneration. We initially demonstrated that LUWE, orally administered, prevented retinal distortion and thinning on the inner and outer nuclei layers, downregulating cleaved caspase-3 protein expression in RPE cells in NaIO3-induced mice. The effect of LUWE was achieved through the suppression of apoptosis and the associated proteins, such as cleaved PARP and cleaved caspase-3, as suggested by NaIO3-induced ARPE-19 cell models. This is because LUWE reduced reactive oxygen species-mediated mitochondrial fission via regulating p-Drp-1 and Fis1 expression. We further confirmed that LUWE suppresses the expression of p-MEK-1/2 and p-ERK-1/2 in NaIO3-induced ARPE-19 cells, thereby providing the protection described above, which was confirmed using PD98059 and U0126. These results indicated that LUWE prevents mitochondrial oxidative stress-mediated RPE damage via the MEK/ERK pathway. Elucidation of the molecular mechanism may provide a new protective strategy against retinal degeneration. Full article
Previous Issue
Back to TopTop