Next Issue
Volume 11, September
Previous Issue
Volume 11, March
 
 

J. Funct. Biomater., Volume 11, Issue 2 (June 2020) – 25 articles

Cover Story (view full-size image): Ag- and Cu-incorporated TiO2 layers were incubated in saline for a period of 0–28 days, and both the durability of the antibacterial effect and surface changes were investigated. As a result, the chemical state of Ag changed from Ag2O to metallic Ag, whilst that of Cu did not change. The concentrations of Ag and Cu were dramatically decreased by incubation. The antibacterial effect of Ag-incorporated specimens diminished, and that of Cu was maintained even after incubation in saline. Our study suggests the importance of time-transient effects of Ag and Cu on the development of antibacterial effects. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 9194 KiB  
Article
Evaluation of the In Vivo Biocompatibility of Amorphous Calcium Phosphate-Containing Metals
by Pio Moerbeck-Filho, Suelen C. Sartoretto, Marcelo J. Uzeda, Maurício Barreto, Alena Medrado, Adriana Alves and Mônica D. Calasans-Maia
J. Funct. Biomater. 2020, 11(2), 45; https://doi.org/10.3390/jfb11020045 - 23 Jun 2020
Cited by 8 | Viewed by 3507
Abstract
Among the biomaterials based on calcium phosphate, hydroxyapatite has been widely used due to its biocompatibility and osteoconduction. The substitution of the phosphate group by the carbonate group associated with the absence of heat treatment and low synthesis temperature leads to the formation [...] Read more.
Among the biomaterials based on calcium phosphate, hydroxyapatite has been widely used due to its biocompatibility and osteoconduction. The substitution of the phosphate group by the carbonate group associated with the absence of heat treatment and low synthesis temperature leads to the formation of carbonated hydroxyapatite (CHA). The association of CHA with other metals (strontium, zinc, magnesium, iron, and manganese) produces amorphous calcium phosphate-containing metals (ACPMetals), which can optimize their properties and mimic biological apatite. This study aimed to evaluate the biocompatibility and biodegradation of ACPMetals in mice subcutaneous tissue. The materials were physicochemically characterized with Fourier Transform InfraRed (FTIR), X-Ray Diffraction (XRD), and Atomic Absorption Spectrometry (AAS). Balb-C mice (n = 45) were randomly divided into three groups: carbonated hydroxyapatite, CHA (n = 15), ACPMetals (n = 15), and without implantation of material (SHAM, n = 15). The groups were subdivided into three experimental periods (1, 3, and 9 weeks). The samples were processed histologically for descriptive and semiquantitative evaluation of the biological effect of biomaterials according to ISO 10993-6:2016. The ACPMetals group was partially biodegradable; however, it presented a severe irritating reaction after 1 and 3 weeks and moderately irritating after nine weeks. Future studies with other concentrations and other metals should be carried out to mimic biological apatite. Full article
Show Figures

Figure 1

11 pages, 3497 KiB  
Article
Time-Transient Effects of Silver and Copper in the Porous Titanium Dioxide Layer on Antibacterial Properties
by Masaya Shimabukuro, Akari Hiji, Tomoyo Manaka, Kosuke Nozaki, Peng Chen, Maki Ashida, Yusuke Tsutsumi, Akiko Nagai and Takao Hanawa
J. Funct. Biomater. 2020, 11(2), 44; https://doi.org/10.3390/jfb11020044 - 22 Jun 2020
Cited by 19 | Viewed by 3749
Abstract
Recently, silver (Ag) and copper (Cu) have been incorporated into a titanium (Ti) surface to realize their antibacterial property. This study investigated both the durability of the antibacterial effect and the surface change of the Ag- and Cu-incorporated porous titanium dioxide (TiO2 [...] Read more.
Recently, silver (Ag) and copper (Cu) have been incorporated into a titanium (Ti) surface to realize their antibacterial property. This study investigated both the durability of the antibacterial effect and the surface change of the Ag- and Cu-incorporated porous titanium dioxide (TiO2) layer. Ag- and Cu-incorporated TiO2 layers were formed by micro-arc oxidation (MAO) treatment using the electrolyte with Ag and Cu ions. Ag- and Cu-incorporated specimens were incubated in saline during a period of 0–28 days. The changes in both the concentrations and chemical states of the Ag and Cu were characterized using X-ray photoelectron spectroscopy (XPS). The durability of the antibacterial effects against Escherichia coli (E. coli) were evaluated by the international organization for standardization (ISO) method. As a result, the Ag- and Cu-incorporated porous TiO2 layers were formed on a Ti surface by MAO. The chemical state of Ag changed from Ag2O to metallic Ag, whilst that of Cu did not change by incubation in saline for up to 28 days. Cu existed as a stable Cu2O compound in the TiO2 layer during the 28 days of incubation in saline. The concentrations of Ag and Cu were dramatically decreased by incubation for up to 7 days, and remained a slight amount until 28 days. The antibacterial effect of Ag-incorporated specimens diminished, and that of Cu was maintained even after incubation in saline. Our study suggests the importance of the time-transient effects of Ag and Cu on develop their antibacterial effects. Full article
(This article belongs to the Special Issue Bacterial Interactions with Dental and Medical Materials)
Show Figures

Graphical abstract

4 pages, 606 KiB  
Editorial
“Monoclonal-Type” Plastic Antibodies for COVID-19 Treatment: What Is the Idea?
by Francesco Puoci
J. Funct. Biomater. 2020, 11(2), 43; https://doi.org/10.3390/jfb11020043 - 17 Jun 2020
Cited by 11 | Viewed by 5319
Abstract
In late December 2019, an outbreak due to a novel coronavirus, initially called 2019-nCoV, was reported in Wuhan, China [...] Full article
Show Figures

Figure 1

9 pages, 1966 KiB  
Article
Novel Coatings to Minimize Bacterial Adhesion and Promote Osteoblast Activity for Titanium Implants
by Samira E. A. Camargo, Tanaya Roy, Patrick H. Carey IV, Chaker Fares, Fan Ren, Arthur E. Clark and Josephine F. Esquivel-Upshaw
J. Funct. Biomater. 2020, 11(2), 42; https://doi.org/10.3390/jfb11020042 - 16 Jun 2020
Cited by 17 | Viewed by 3925
Abstract
Titanium nitride (TiN) and silicon carbide (SiC) adhesion properties to biofilm and the proliferation of human osteoblasts were studied. Quaternized titanium nitride (QTiN) was produced by converting the surface nitrogen on TiN to a positive charge through a quaternization process to further improve [...] Read more.
Titanium nitride (TiN) and silicon carbide (SiC) adhesion properties to biofilm and the proliferation of human osteoblasts were studied. Quaternized titanium nitride (QTiN) was produced by converting the surface nitrogen on TiN to a positive charge through a quaternization process to further improve the antibacterial efficiency. The SiC required a nitridation within the plasma chamber of the surface layer before quaternization could be carried out to produce quaternized SiC (QSiC). The antimicrobial activity was evaluated on the reference strains of Porphyromonas gingivalis for 4 h by fluorescence microscopy using a live/dead viability kit. All the coatings exhibited a lower biofilm coverage compared to the uncoated samples (Ti—85.2%; TiN—24.22%; QTiN—11.4%; SiC—9.1%; QSiC—9.74%). Scanning Electron Microscope (SEM) images confirmed the reduction in P. gingivalis bacteria on the SiC and TiN-coated groups. After 24 h of osteoblast cultivation on the samples, the cell adhesion was observed on all the coated and uncoated groups. Fluorescence images demonstrated that the osteoblast cells adhered and proliferated on the surfaces. TiN and SiC coatings can inhibit the attachment of Porphyromonas gingivalis and promote osteoblast adhesion on the titanium used for implants. These coatings may possess the ability to prevent the development of peri-implantitis and stimulate osteointegration. Full article
(This article belongs to the Special Issue Advanced Functional Biomaterials for Dental Implants)
Show Figures

Figure 1

19 pages, 5990 KiB  
Article
CaSiO3-HAp Structural Bioceramic by Sol-Gel and SPS-RS Techniques: Bacteria Test Assessment
by Evgeniy Papynov, Oleg Shichalin, Igor Buravlev, Anton Belov, Arseniy Portnyagin, Vitaliy Mayorov, Evgeniy Merkulov, Taisiya Kaidalova, Yulia Skurikhina, Vyacheslav Turkutyukov, Alexander Fedorets and Vladimir Apanasevich
J. Funct. Biomater. 2020, 11(2), 41; https://doi.org/10.3390/jfb11020041 - 12 Jun 2020
Cited by 8 | Viewed by 3410
Abstract
The article presents an original way of getting porous and mechanically strong CaSiO3-HAp ceramics, which is highly desirable for bone-ceramic implants in bone restoration surgery. The method combines wet and solid-phase approaches of inorganic synthesis: sol-gel (template) technology to produce the [...] Read more.
The article presents an original way of getting porous and mechanically strong CaSiO3-HAp ceramics, which is highly desirable for bone-ceramic implants in bone restoration surgery. The method combines wet and solid-phase approaches of inorganic synthesis: sol-gel (template) technology to produce the amorphous xonotlite (Ca6Si6O17·2OH) as the raw material, followed by its spark plasma sintering–reactive synthesis (SPS-RS) into ceramics. Formation of both crystalline wollastonite (CaSiO3) and hydroxyapatite (Ca10(PO4)6(OH)2) occurs “in situ” under SPS conditions, which is the main novelty of the method, due to combining the solid-phase transitions of the amorphous xonotlite with the chemical reaction within the powder mixture between CaO and CaHPO4. Formation of pristine HAp and its composite derivative with wollastonite was studied by means of TGA and XRD with the temperatures of the “in situ” interactions also determined. A facile route to tailor a macroporous structure is suggested, with polymer (siloxane-acrylate latex) and carbon (fibers and powder) fillers being used as the pore-forming templates. Microbial tests were carried out to reveal the morphological features of the bacterial film Pseudomonas aeruginosa that formed on the surface of the ceramics, depending on the content of HAp (0, 20, and 50 wt%). Full article
(This article belongs to the Special Issue Bacterial Interactions with Dental and Medical Materials)
Show Figures

Figure 1

41 pages, 5366 KiB  
Review
On the Interaction between 1D Materials and Living Cells
by Giuseppe Arrabito, Yana Aleeva, Vittorio Ferrara, Giuseppe Prestopino, Clara Chiappara and Bruno Pignataro
J. Funct. Biomater. 2020, 11(2), 40; https://doi.org/10.3390/jfb11020040 - 10 Jun 2020
Cited by 6 | Viewed by 4179
Abstract
One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field [...] Read more.
One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models relevant for a quantitative description of the 1D material/cell interface, this work offers an unprecedented review of 1D nano- and microscale materials (inorganic, organic, biomolecular) explored so far in this vibrant research field, highlighting their emerging biological applications. The correlation between each 1D material chemistry and the resulting biological response is investigated, allowing to emphasize the advantages and the issues that each class presents. Finally, current challenges and future perspectives are discussed. Full article
(This article belongs to the Special Issue Fibrous Scaffolds for Tissue Engineering Application)
Show Figures

Graphical abstract

16 pages, 1935 KiB  
Article
A 2,5-Dihydroxybenzoic Acid–Gelatin Conjugate Inhibits the Basal and Hsp90-Stimulated Migration and Invasion of Tumor Cells
by Anastasiya V. Snigireva, Oleg S. Morenkov, Yuri Y. Skarga, Alexander V. Lisov, Zoya A. Lisova, Alexey A. Leontievsky, Mariya A. Zhmurina, Viktoria S. Petrenko and Veronika V. Vrublevskaya
J. Funct. Biomater. 2020, 11(2), 39; https://doi.org/10.3390/jfb11020039 - 3 Jun 2020
Cited by 2 | Viewed by 3033
Abstract
The extracellular cell surface-associated and soluble heat shock protein 90 (Hsp90) is known to participate in the migration and invasion of tumor cells. Earlier, we demonstrated that plasma membrane-associated heparan sulfate proteoglycans (HSPGs) bind the extracellular Hsp90 and thereby promote the Hsp90-mediated motility [...] Read more.
The extracellular cell surface-associated and soluble heat shock protein 90 (Hsp90) is known to participate in the migration and invasion of tumor cells. Earlier, we demonstrated that plasma membrane-associated heparan sulfate proteoglycans (HSPGs) bind the extracellular Hsp90 and thereby promote the Hsp90-mediated motility of tumor cells. Here, we showed that a conjugate of 2,5-dihydroxybenzoic acid with gelatin (2,5-DHBA–gelatin), a synthetic polymer with heparin-like properties, suppressed the basal (unstimulated) migration and invasion of human glioblastoma A-172 and fibrosarcoma HT1080 cells, which was accompanied by the detachment of a fraction of Hsp90 from cell surface HSPGs. The polymeric conjugate also inhibited the migration/invasion of cells stimulated by exogenous soluble native Hsp90, which correlated with the inhibition of the attachment of soluble Hsp90 to cell surface HSPGs. The action of the 2,5-DHBA–gelatin conjugate on the motility of A-172 and HT1080 cells was similar to that of heparin. The results demonstrate a potential of the 2,5-DHBA–gelatin polymer for the development of antimetastatic drugs targeting cell motility and a possible role of extracellular Hsp90 in the suppression of the migration and invasion of tumor cells mediated by the 2,5-DHBA–gelatin conjugate and heparin. Full article
Show Figures

Figure 1

11 pages, 4239 KiB  
Article
In Vitro Study on the Effect of a New Bioactive Desensitizer on Dentin Tubule Sealing and Bonding
by Minh N. Luong, Laurie Huang, Daniel C. N. Chan and Alireza Sadr
J. Funct. Biomater. 2020, 11(2), 38; https://doi.org/10.3390/jfb11020038 - 2 Jun 2020
Cited by 7 | Viewed by 4490
Abstract
Bioactive mineral-based dentin desensitizers that can quickly and effectively seal dentinal tubules and promote dentin mineralization are desired. This in vitro study evaluated a novel nanohydroxyapatite-based desensitizer, Predicta (PBD, Parkell), and its effect on bond strength of dental adhesives. Human dentin discs (2-mm [...] Read more.
Bioactive mineral-based dentin desensitizers that can quickly and effectively seal dentinal tubules and promote dentin mineralization are desired. This in vitro study evaluated a novel nanohydroxyapatite-based desensitizer, Predicta (PBD, Parkell), and its effect on bond strength of dental adhesives. Human dentin discs (2-mm thick) were subjected to 0.5 M EDTA to remove the smear layer and expose tubules, treated with PBD, and processed for surface and cross-sectional SEM examination before and after immersion in simulated body fluid (SBF) for four weeks (ISO 23317-2014). The effects of two dental desensitizers on the microshear bond strength of a universal adhesive and a two-step self-etch system were compared. SEM showed coverage and penetration of nanoparticles in wide tubules on the PBD-treated dentin at the baseline. After four weeks in SBF, untreated dentin showed amorphous mineral deposits while PBD-treated dentin disclosed a highly mineralized structure integrated with dentin. Desensitizers significantly reduced microshear bond strength test (MSBS) of adhesives by 15–20% on average, depending on the bonding protocol. In conclusion, PBD demonstrated effective immediate tubules sealing capability and promoted mineral crystal growth over dentin and into the tubules during SBF-storage. For bonding to desensitizer-treated dentin, a two-step self-etching adhesive or universal bond with phosphoric acid pretreatment are recommended. Full article
(This article belongs to the Special Issue Bacterial Interactions with Dental and Medical Materials)
Show Figures

Figure 1

10 pages, 2998 KiB  
Communication
Towards the Development of a Novel Ex Ovo Model of Infection to Pre-Screen Biomaterials Intended for Treating Chronic Wounds
by Elena García-Gareta, Justyna Binkowska, Nupur Kohli and Vaibhav Sharma
J. Funct. Biomater. 2020, 11(2), 37; https://doi.org/10.3390/jfb11020037 - 2 Jun 2020
Cited by 8 | Viewed by 3597
Abstract
This communication reports preliminary data towards the development of a live ex vivo model of persistent infection that is based on the chick embryo chorioallantoic membrane (CAM), which can be used for pre-screening biomaterials with antimicrobial properties for their antimicrobial and angiogenic potential. [...] Read more.
This communication reports preliminary data towards the development of a live ex vivo model of persistent infection that is based on the chick embryo chorioallantoic membrane (CAM), which can be used for pre-screening biomaterials with antimicrobial properties for their antimicrobial and angiogenic potential. Our results showed that it was possible to infect chicken embryos with Staphylococcus aureus, one of the main types of bacteria found in the persistent infection associated with chronic wounds, and maintain the embryos’ survival for up to 48 h. Survival of the embryos varied with the dose of bacteria inoculum and with the use and time of streptomycin application after infection. In infected yet viable embryos, the blood vessels network of the CAM was maintained with minimal disruption. Microbiological tests could confirm embryo infection, but quantification was difficult. By publishing these preliminary results, we hope that not only our group but others within the scientific community further this research towards the establishment of biomimetic and reproducible ex vivo models of persistent infection. Full article
(This article belongs to the Special Issue Bacterial Interactions with Dental and Medical Materials)
Show Figures

Figure 1

17 pages, 3556 KiB  
Article
Substituted Nano-Hydroxyapatite Toothpastes Reduce Biofilm Formation on Enamel and Resin-Based Composite Surfaces
by Andrei C. Ionescu, Gloria Cazzaniga, Marco Ottobelli, Franklin Garcia-Godoy and Eugenio Brambilla
J. Funct. Biomater. 2020, 11(2), 36; https://doi.org/10.3390/jfb11020036 - 1 Jun 2020
Cited by 22 | Viewed by 4572
Abstract
Background: Toothpastes containing nano-hydroxyapatite (n-HAp) substituted with metal ions provide calcium and phosphate ions to dental hard tissues, reducing demineralization, and promoting remineralization. Few data are available about the effect of these bioactive compounds on oral microbiota. Methods: This in vitro [...] Read more.
Background: Toothpastes containing nano-hydroxyapatite (n-HAp) substituted with metal ions provide calcium and phosphate ions to dental hard tissues, reducing demineralization, and promoting remineralization. Few data are available about the effect of these bioactive compounds on oral microbiota. Methods: This in vitro study evaluated the influence of two commercially-available substituted n-HAp-based toothpastes (α: Zn-carbonate substituted n-HAp; β: F, Mg, Sr-carbonate substituted n-HAp) on early colonization (EC, 12 h) and biofilm formation (BF, 24 h) by oral microbiota. Controls were brushed with distilled water. Artificial oral microcosm and Streptococcus mutans biofilms were developed using human enamel and a resin-based composite (RBC) as adherence surfaces. Two test setups, a shaking multiwell plate and a modified drip-flow reactor (MDFR), were used to simulate clinical conditions during the night (low salivary flow and clearance) and daytime, respectively. Energy-dispersive X-ray spectrometry (EDS) was used to evaluate specimens’ surfaces after toothpaste treatment. Fluoride release from β toothpaste was evaluated. Viable adherent biomass was quantified by MTT assay, and biofilms’ morphology was highlighted using confocal microscopy. Results: EDS showed the presence of remnants from the tested toothpastes on both adherence surfaces. β toothpaste showed significantly lower EC and BF compared to control using the artificial oral microcosm model, while α toothpaste showed lower EC and BF compared to control, but higher EC and BF compared to β toothpaste. The effect shown by β toothpaste was, to a minimal extent, due to fluoride release. Interestingly, this result was seen on both adherence surfaces, meaning that the tested toothpastes significantly influenced EC and BF even on RBC surfaces. Furthermore, the effect of toothpaste treatments was higher after 12 h than 24 h, suggesting that toothbrushing twice a day is more effective than brushing once. Conclusions: The efficacy of these treatments in reducing microbial colonization of RBC surfaces may represent a promising possibility in the prevention of secondary caries. Full article
(This article belongs to the Special Issue Bacterial Interactions with Dental and Medical Materials)
Show Figures

Figure 1

13 pages, 3637 KiB  
Article
Sol-Gel Derived Tertiary Bioactive Glass–Ceramic Nanorods Prepared via Hydrothermal Process and Their Composites with Poly(Vinylpyrrolidone-Co-Vinylsilane)
by Dibakar Mondal, Andrei Zaharia, Kibret Mequanint and Amin S. Rizkalla
J. Funct. Biomater. 2020, 11(2), 35; https://doi.org/10.3390/jfb11020035 - 1 Jun 2020
Cited by 4 | Viewed by 3551
Abstract
Bioactive glass (BG) nanoparticles have wide applications in bone repair due to their bone-bonding and biodegradable nature. In this work, nanometric rod-shaped ternary SiO2-CaO-P2O5 bioactive glass particles were prepared through sol-gel chemistry followed by a base-induced hydrothermal process [...] Read more.
Bioactive glass (BG) nanoparticles have wide applications in bone repair due to their bone-bonding and biodegradable nature. In this work, nanometric rod-shaped ternary SiO2-CaO-P2O5 bioactive glass particles were prepared through sol-gel chemistry followed by a base-induced hydrothermal process at 130 °C and 170 °C for various times up to 36 h. This facile, low-temperature and surfactant-free hydrothermal process has shown to be capable of producing uniform nanorods and nanowires. One-dimensional growth of nanorods and the characteristics of siloxane bridging networks were dependent on the hydrothermal temperature and time. Hardened bioactive composites were prepared from BG nanorods and cryo-milled poly(vinylpyrrolidone-co-triethoxyvinylsilane) in the presence of ammonium phosphate as potential bone graft biomaterials. Covalent crosslinking has been observed between the organic and inorganic components within these composites. The ultimate compressive strength and modulus values increased with increasing co-polymer content, reaching 27 MPa and 500 MPa respectively with 30% co-polymer incorporation. The materials degraded in a controlled non-linear manner when incubated in phosphate-buffered saline from 6 h to 14 days. Fibroblast cell attachment and spreading on the composite were not as good as the positive control surfaces and suggested that they may require protein coating in order to promote favorable cell interactions. Full article
(This article belongs to the Special Issue Bioceramics and Bioactive Glass-Based Materials)
Show Figures

Figure 1

12 pages, 2940 KiB  
Article
Coating Medpor® Implant with Tissue-Engineered Elastic Cartilage
by Dong Joon Lee, Jane Kwon, Yong-Il Kim, Yong Hoon Kwon, Samuel Min and Hae Won Shin
J. Funct. Biomater. 2020, 11(2), 34; https://doi.org/10.3390/jfb11020034 - 22 May 2020
Cited by 6 | Viewed by 4476
Abstract
Inert biomaterials used for auricular reconstruction, which is one of the most challenging and diverse tasks in craniofacial or head and neck surgery, often cause problems such as capsule formation, infection, and skin extrusion. To solve these problems, scaffold consisting of inert biomaterial, [...] Read more.
Inert biomaterials used for auricular reconstruction, which is one of the most challenging and diverse tasks in craniofacial or head and neck surgery, often cause problems such as capsule formation, infection, and skin extrusion. To solve these problems, scaffold consisting of inert biomaterial, high-density polyethylene (Medpor®) encapsulated with neocartilage, biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) was created using a tissue engineering strategy. PLGA scaffold without Medpor® was created to serve as the control. Scaffolds were vacuum-seeded with rabbit chondrocytes, freshly isolated from the ear by enzymatic digestion. Then, cell-seeded scaffolds were implanted subcutaneously in the dorsal pockets of nude mice. After 12 weeks, explants were analyzed by histological, biochemical, and mechanical evaluations. Although the PLGA group resulted in neocartilage formation, the PLGA–Medpor® group demonstrated improved outcome with the formation of well-surrounded cartilage around the implants with higher mechanical strength than the PLGA group, indicating that Medpor® has an influence on the structural strength of engineered cartilage. The presence of collagen and elastin fibers was evident in the histological section in both groups. These results demonstrated a novel method of coating implant material with engineered cartilage to overcome the limitations of using biodegradable scaffold in cartilage tissue regeneration. By utilizing the patient’s own chondrocytes, our proposed method may broaden the choice of implant materials while minimizing side effects and immune reaction for the future medical application. Full article
Show Figures

Graphical abstract

13 pages, 6437 KiB  
Article
Anti-Bacterial Properties and Biocompatibility of Novel SiC Coating for Dental Ceramic
by Samira Esteves Afonso Camargo, Azeem S. Mohiuddeen, Chaker Fares, Jessica L. Partain, Patrick H. Carey IV, Fan Ren, Shu-Min Hsu, Arthur E. Clark and Josephine F. Esquivel-Upshaw
J. Funct. Biomater. 2020, 11(2), 33; https://doi.org/10.3390/jfb11020033 - 20 May 2020
Cited by 21 | Viewed by 4692
Abstract
A 200 nm plasma-enhanced chemical vapor-deposited SiC was used as a coating on dental ceramics to improve anti-bacterial properties for the applications of dental prosthesis. A thin SiO2 (20 nm) in the same system was deposited first, prior to SiC deposition, to [...] Read more.
A 200 nm plasma-enhanced chemical vapor-deposited SiC was used as a coating on dental ceramics to improve anti-bacterial properties for the applications of dental prosthesis. A thin SiO2 (20 nm) in the same system was deposited first, prior to SiC deposition, to improve the adhesion between SiC to dental ceramic. Silane and methane were the precursors for SiC deposition, and the SiO2 deposition employed silane and nitrous oxide as the precursors. SiC antimicrobial activity was evaluated on the proliferation of biofilm, Streptococcus sanguinis, and Streptococcus mutans on SiC-coated and uncoated dental ceramics for 24 h. The ceramic coating with SiC exhibited a biofilm coverage of 16.9%, whereas uncoated samples demonstrated a significantly higher biofilm coverage of 91.8%, measured with fluorescence and scanning electron microscopic images. The cytotoxicity of the SiC coating was evaluated using human periodontal ligament fibroblasts (HPdLF) by CellTiter-BlueCell viability assay. After 24 h of HPdLF cultivation, no obvious cytotoxicity was observed on the SiC coating and control group; both sets of samples exhibited similar cell adhesion and proliferation. SiC coating on a ceramic demonstrated antimicrobial activity without inducing cytotoxic effects. Full article
(This article belongs to the Special Issue Bacterial Interactions with Dental and Medical Materials)
Show Figures

Figure 1

16 pages, 4139 KiB  
Article
Determination and Quantification of the Distribution of CN-NL Nanoparticles Encapsulating Glycyrrhetic Acid on Novel Textile Surfaces with Hyperspectral Imaging
by Kudirat A. Obisesan, Simona Neri, Elodie Bugnicourt, Inmaculada Campos and Laura Rodriguez-Turienzo
J. Funct. Biomater. 2020, 11(2), 32; https://doi.org/10.3390/jfb11020032 - 20 May 2020
Cited by 7 | Viewed by 4090
Abstract
Chitin Lignin nanoparticles (CN-NL), standalone and encapsulating glycyrrhetic acid (GA), were applied on novel substrates for textiles to obtain antibacterial, antioxidant properties. Their homogeneous application is an important parameter that can strongly influence the final performance of the investigated textiles for its cosmetic [...] Read more.
Chitin Lignin nanoparticles (CN-NL), standalone and encapsulating glycyrrhetic acid (GA), were applied on novel substrates for textiles to obtain antibacterial, antioxidant properties. Their homogeneous application is an important parameter that can strongly influence the final performance of the investigated textiles for its cosmetic and medical use. In this paper, hyperspectral imaging techniques combined with chemometric tools were investigated to study the distribution and quantification of CN-NL/GA on chitosan and CN-NL on pullulan substrates. To do so, samples of chitosan and pullulan impregnated with CN-NL/GA and CN-NL were analysed through Short Wave Infrared (SWIR) and Visible-Near Infrared (VisNIR) hyperspectral cameras. Two different chemometric tools for qualitative and quantitative analysis have been applied, principal component analysis (PCA) and partial least square regression (PLSR) models. Promising results were obtained in the VisNIR range, which made it possible for us to visualize the CN-NL/GA compound on chitosan and CN-NL on pullulan substrates. Additionally, the PLSR model results had determination coefficient ( R C 2 ) for calibration and cross-validation ( R C V 2 )   values of 0.983 and 0.857, respectively. Minimum values of root-mean-square error for calibration (RMSEC) and cross-validation (RMSECV) of CN-NL/GA were 0.333 and 0.993 g, respectively. The results demonstrate that hyperspectral imaging combined with chemometrics offers a powerful tool for studying the distribution on chitosan and pullulan substrates and to quantify the content of CN-NL/GA compounds on chitosan substrates. Full article
Show Figures

Figure 1

13 pages, 1299 KiB  
Review
Autologous Matrix of Platelet-Rich Fibrin in Wound Care Settings: A Systematic Review of Randomized Clinical Trials
by Chayane Karla Lucena de Carvalho, Beatriz Luci Fernandes and Mauren Abreu de Souza
J. Funct. Biomater. 2020, 11(2), 31; https://doi.org/10.3390/jfb11020031 - 14 May 2020
Cited by 13 | Viewed by 4198
Abstract
Platelet-rich fibrin (PRF) consists of a matrix that provides the necessary elements for wound healing, acting as a biodegradable scaffold for cell migration, proliferation, and differentiation, in addition to the delivery of growth factors and angiogenesis. This study aims to determine the effectiveness [...] Read more.
Platelet-rich fibrin (PRF) consists of a matrix that provides the necessary elements for wound healing, acting as a biodegradable scaffold for cell migration, proliferation, and differentiation, in addition to the delivery of growth factors and angiogenesis. This study aims to determine the effectiveness of the autologous PRF in the treatment of wounds of different etiologies. We carried out a systematic review of randomized clinical trials, guided by the recommendations of the Cochrane Collaboration using the following databases: Pubmed/MEDLINE, EMBASE, Web of Science, and CENTRAL. The search strategy resulted in the inclusion of ten studies that evaluated the use of PRF dressings for the healing of acute or chronic wounds of multiple etiologies. Among the 172 participants treated with PRF in wounds of varying etiologies and different segment times, 130 presented favorable events with the use of the intervention. Among the 10 studies included, only two of them did not demonstrate better results than the control group. The studies showed clinical heterogeneity, making it impossible to perform a meta-analysis. The findings do not provide enough evidence to support the routine use of PRF dressings as the first line of treatment for the healing of acute or chronic wounds of different etiologies. There was great variability in the application of the various protocols and the ways to prepare the PRF, resulting in clinical heterogeneity. Therefore, it makes it impossible to synthesize and to collect evidence from different types of studies in the meta-analysis, which affects the results and their proper discussion. Full article
Show Figures

Figure 1

16 pages, 3040 KiB  
Article
Modification of PLA-Based Films by Grafting or Coating
by Aleksandra Miletić, Ivan Ristić, Maria-Beatrice Coltelli and Branka Pilić
J. Funct. Biomater. 2020, 11(2), 30; https://doi.org/10.3390/jfb11020030 - 7 May 2020
Cited by 14 | Viewed by 4655
Abstract
Recently, the demand for the use of natural polymers in the cosmetic, biomedical, and sanitary sectors has been increasing. In order to meet specific functional properties of the products, usually, the incorporation of the active component is required. One of the main problems [...] Read more.
Recently, the demand for the use of natural polymers in the cosmetic, biomedical, and sanitary sectors has been increasing. In order to meet specific functional properties of the products, usually, the incorporation of the active component is required. One of the main problems is enabling compatibility between hydrophobic and hydrophilic surfaces. Therefore, surface modification is necessary. Poly(lactide) (PLA) is a natural polymer that has attracted a lot ofattention in recent years. It is bio-based, can be produced from carbohydrate sources like corn, and it is biodegradable. The main goal of this work was the functionalization of PLA, inserting antiseptic and anti-inflammatory nanostructured systems based on chitin nanofibrils–nanolignin complexes ready to be used in the biomedical, cosmetics, and sanitary sectors. The specific challenge of this investigation was to increase the interaction between the hydrophobic PLA matrix with hydrophilic chitin–lignin nanoparticle complexes. First, chemical modification via the “grafting from” method using lactide oligomers was performed. Then, active coatings with modified and unmodified chitin–lignin nanoparticle complexes were prepared and applied on extruded PLA-based sheets. The chemical, thermal, and mechanical characterization of prepared samples was carried out and the obtained results were discussed. Full article
Show Figures

Figure 1

16 pages, 2018 KiB  
Review
Synthetic Bone Substitutes and Mechanical Devices for the Augmentation of Osteoporotic Proximal Humeral Fractures: A Systematic Review of Clinical Studies
by Giuseppe Marongiu, Marco Verona, Gaia Cardoni and Antonio Capone
J. Funct. Biomater. 2020, 11(2), 29; https://doi.org/10.3390/jfb11020029 - 5 May 2020
Cited by 16 | Viewed by 4713
Abstract
Background: Different augmentation techniques have been described in the literature in addition to the surgical treatment of proximal humeral fractures. The aim of this systematic review was to analyze the use of cements, bone substitutes, and other devices for the augmentation of proximal [...] Read more.
Background: Different augmentation techniques have been described in the literature in addition to the surgical treatment of proximal humeral fractures. The aim of this systematic review was to analyze the use of cements, bone substitutes, and other devices for the augmentation of proximal humeral fractures. Methods: A systematic review was conducted by using PubMed/MEDLINE, ISI Web of Knowledge, Cochrane Library, Scopus/EMBASE, and Google Scholar databases according the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines over the years 1966 to 2019. The search term “humeral fracture proximal” was combined with “augmentation”; “polymethylmethacrylate, PMMA”; “cement”; “bone substitutes”; “hydroxyapatite”; “calcium phosphates”; “calcium sulfate”; “cell therapies”, and “tissue engineering” to find the literature relevant to the topic under review. Results: A total of 10 clinical studies considered eligible for the review, with a total of 308 patients, were included. Mean age at the time of injury was 68.8 years (range of 58–92). The most commonly described techniques were reinforcing the screw–bone interface with bone PMMA cement (three studies), filling the metaphyseal void with synthetic bone substitutes (five studies), and enhancing structural support with metallic devices (two studies). Conclusion: PMMA cementation could improve screw-tip fixation. Calcium phosphate and calcium sulfate injectable composites provided good biocompatibility, osteoconductivity, and lower mechanical failure rate when compared to non-augmented fractures. Mechanical devices currently have a limited role. However, the available evidence is provided mainly by level III to IV studies, and none of the proposed techniques have been sufficiently studied. Full article
Show Figures

Figure 1

13 pages, 4005 KiB  
Article
Open-Cell Tizr-Based Bulk Metallic Glass Scaffolds with Excellent Biocompatibility and Suitable Mechanical Properties for Biomedical Application
by Van Tai Nguyen, Xavier Pei-Chun Wong, Sin-Mao Song, Pei-Hua Tsai, Jason Shian-Ching Jang, I-Yu Tsao, Che-Hsin Lin and Van Cuong Nguyen
J. Funct. Biomater. 2020, 11(2), 28; https://doi.org/10.3390/jfb11020028 - 1 May 2020
Cited by 4 | Viewed by 3469
Abstract
A series of biocompatible high-porosity (up to 72.4%) TiZr-based porous bulk metallic glass (BMG) scaffolds were successfully fabricated by hot pressing a mixture of toxic element-free TiZr-based BMG powder and an Al particle space holder. The morphology of the fabricated scaffolds was similar [...] Read more.
A series of biocompatible high-porosity (up to 72.4%) TiZr-based porous bulk metallic glass (BMG) scaffolds were successfully fabricated by hot pressing a mixture of toxic element-free TiZr-based BMG powder and an Al particle space holder. The morphology of the fabricated scaffolds was similar to that of human bones, with pore sizes ranging from 75 to 250 μm. X-ray diffraction patterns and transmission electron microscopy images indicated that the amorphous structure of the TiZr-based BMG scaffolds remained in the amorphous state after hot pressing. Noncytotoxicity and extracellular calcium deposition of the TiZr-based BMG scaffolds at porosities of 32.8%, 48.8%, and 64.0% were examined by using the direct contact method. The results showed that the BMG scaffolds possess high cell viability and extracellular calcium deposition with average cell survival and deposition rates of approximately 170.1% and 130.9%, respectively. In addition, the resulting TiZr-based BMG scaffolds exhibited a considerable reduction in Young’s moduli from 56.4 to 2.3 GPa, compressive strength from 979 to 19 MPa, and bending strength from 157 MPa to 49 MPa when the porosity was gradually increased from 2.0% to 72.4%. Based on the aforementioned specific characteristics, TiZr-based BMG scaffolds can be considered as potential candidates for biomedical applications in the human body. Full article
(This article belongs to the Special Issue Application of Biomechanical Model on Tissue Engineering)
Show Figures

Figure 1

11 pages, 2273 KiB  
Article
Effect of Modification with Helium Atmospheric-Pressure Plasma and Deep-Ultraviolet Light on Adhesive Shear Strength of Fiber-Reinforced Poly(ether-ether-ketone) Polymer
by Seigo Okawa, Norimasa Taka and Yujin Aoyagi
J. Funct. Biomater. 2020, 11(2), 27; https://doi.org/10.3390/jfb11020027 - 1 May 2020
Cited by 7 | Viewed by 3495
Abstract
We investigated the effect of helium atmospheric-pressure plasma (PL) and deep-ultraviolet (UV) light treatments on the adhesive properties of fiber-reinforced poly(ether-ether-ketone) polymer (PEEK). PEEK disks reinforced with carbon (CPEEK) or glass (GPEEK) fibers were polished, modified with PL and UV for 60 s, [...] Read more.
We investigated the effect of helium atmospheric-pressure plasma (PL) and deep-ultraviolet (UV) light treatments on the adhesive properties of fiber-reinforced poly(ether-ether-ketone) polymer (PEEK). PEEK disks reinforced with carbon (CPEEK) or glass (GPEEK) fibers were polished, modified with PL and UV for 60 s, and the surface energy was calculated by measuring the contact angles. The disk surfaces were analyzed by X-ray photoemission spectroscopy. Shear bond strength testing was performed using a universal testing machine, and the fracture surfaces were observed by electron probe microanalyzer. Data were analyzed with one and two-way ANOVA and Tukey’s post-hoc test (p < 0.05). The surface energies were increased by the modifications, which created OH functional groups on the surfaces. The bond strengths of CPEEK were increased by PL, and those of GPEEK were increased by PL and UV, owing to chemical bonding at the interface. Full article
Show Figures

Figure 1

11 pages, 2596 KiB  
Communication
Clinoenstatite/Tantalum Coating for Enhancement of Biocompatibility and Corrosion Protection of Mg Alloy
by Hamid Reza Bakhsheshi-Rad, Aliakbar Najafinezhad, Esah Hamzah, Ahmad Fauzi Ismail, Filippo Berto and Xiongbiao Chen
J. Funct. Biomater. 2020, 11(2), 26; https://doi.org/10.3390/jfb11020026 - 13 Apr 2020
Cited by 11 | Viewed by 4087
Abstract
Biodegradable Mg alloys have appeared as the most appealing metals for biomedical applications, particularly as temporary bone implants. However, issues regarding high corrosion rate and biocompatibility restrict their application. Hence, in the present work, nanostructured clinoenstatite (CLT, MgSiO3)/tantalum nitride (TaN) was [...] Read more.
Biodegradable Mg alloys have appeared as the most appealing metals for biomedical applications, particularly as temporary bone implants. However, issues regarding high corrosion rate and biocompatibility restrict their application. Hence, in the present work, nanostructured clinoenstatite (CLT, MgSiO3)/tantalum nitride (TaN) was deposited on the Mg-Ca-Zn alloy via electrophoretic deposition (EPD) along with physical vapor deposition (PVD) to improve the corrosion and biological characteristics of the Mg-Ca-Zn alloy. The TaN intermediate layer with bubble like morphology possessed a compact and homogenous structure with a thickness of about 950 nm while the thick CLT over-layer (~15 μm) displayed a less compact structure containing nano-porosities as well as nanoparticles with spherical morphology. The electrochemical tests demonstrated that the as prepared CLT/TaN film is able to substantially increase the anticorrosion property of Mg-Ca-Zn bare alloy. Cytocompatibility outcomes indicated that formation of CLT and TaN on the Mg bare alloy surface enhanced cell viability, proliferation and growth, implying excellent biocompatibility. Taken together, the CLT/TaN coating exhibits appropriate characteristic including anticorrosion property and biocompatibility in order to employ in biomedical files. Full article
(This article belongs to the Special Issue Advanced Bioceramics)
Show Figures

Graphical abstract

18 pages, 1177 KiB  
Review
The Role of Poly(Methyl Methacrylate) in Management of Bone Loss and Infection in Revision Total Knee Arthroplasty: A Review
by Leyla Hasandoost, Omar Rodriguez, Adel Alhalawani, Paul Zalzal, Emil H. Schemitsch, Stephen D. Waldman, Marcello Papini and Mark R. Towler
J. Funct. Biomater. 2020, 11(2), 25; https://doi.org/10.3390/jfb11020025 - 10 Apr 2020
Cited by 18 | Viewed by 6287
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in joint arthroplasty to secure an implant to the host bone. Complications including fracture, bone loss and infection might cause failure of total knee arthroplasty (TKA), resulting in the need for revision total knee arthroplasty (rTKA). The [...] Read more.
Poly(methyl methacrylate) (PMMA) is widely used in joint arthroplasty to secure an implant to the host bone. Complications including fracture, bone loss and infection might cause failure of total knee arthroplasty (TKA), resulting in the need for revision total knee arthroplasty (rTKA). The goals of this paper are: (1) to identify the most common complications, outside of sepsis, arising from the application of PMMA following rTKA, (2) to discuss the current applications and drawbacks of employing PMMA in managing bone loss, (3) to review the role of PMMA in addressing bone infection following complications in rTKA. Papers published between 1970 to 2018 have been considered through searching in Springer, Google Scholar, IEEE Xplore, Engineering village, PubMed and weblinks. This review considers the use of PMMA as both a bone void filler and as a spacer material in two-stage revision. To manage bone loss, PMMA is widely used to fill peripheral bone defects whose depth is less than 5 mm and covers less than 50% of the bone surface. Treatment of bone infections with PMMA is mainly for two-stage rTKA where antibiotic-loaded PMMA is inserted as a spacer. This review also shows that using antibiotic-loaded PMMA might cause complications such as toxicity to surrounding tissue, incomplete antibiotic agent release from the PMMA, roughness and bacterial colonization on the surface of PMMA. Although PMMA is the only commercial bone cement used in rTKA, there are concerns associated with using PMMA following rTKA. More research and clinical studies are needed to address these complications. Full article
Show Figures

Figure 1

14 pages, 6084 KiB  
Article
Antimicrobial Materials with Lime Oil and a Poly(3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses
by Pooja Basnett, Elena Marcello, Barbara Lukasiewicz, Rinat Nigmatullin, Alexandra Paxinou, Muhammad Haseeb Ahmad, Bhavana Gurumayum and Ipsita Roy
J. Funct. Biomater. 2020, 11(2), 24; https://doi.org/10.3390/jfb11020024 - 10 Apr 2020
Cited by 20 | Viewed by 5240
Abstract
A medium chain-length polyhydroxyalkanoate (PHA) was produced by Pseudomonas mendocina CH50 using a cheap carbon substrate, sugarcane molasses. A PHA yield of 14.2% dry cell weight was achieved. Chemical analysis confirmed that the polymer produced was a medium chain-length PHA, a copolymer of [...] Read more.
A medium chain-length polyhydroxyalkanoate (PHA) was produced by Pseudomonas mendocina CH50 using a cheap carbon substrate, sugarcane molasses. A PHA yield of 14.2% dry cell weight was achieved. Chemical analysis confirmed that the polymer produced was a medium chain-length PHA, a copolymer of 3-hydroxyoctanoate and 3-hydroxydecanoate, P(3HO-co-3HD). Lime oil, an essential oil with known antimicrobial activity, was used as an additive to P(3HO-co-3HD) to confer antibacterial properties to this biodegradable polymer. The incorporation of lime oil induced a slight decrease in crystallinity of P(3HO-co-3HD) films. The antibacterial properties of lime oil were investigated using ISO 20776 against Staphylococcus aureus 6538P and Escherichia coli 8739, showing a higher activity against the Gram-positive bacteria. The higher activity of the oil against S. aureus 6538P defined the higher efficiency of loaded polymer films against this strain. The effect of storage on the antimicrobial properties of the loaded films was investigated. After one-year storage, the content of lime oil in the films decreased, causing a reduction of the antimicrobial activity of the materials produced. However, the films still possessed antibacterial activity against S. aureus 6538P. Full article
Show Figures

Graphical abstract

20 pages, 14494 KiB  
Article
Skin-Compatible Biobased Beauty Masks Prepared by Extrusion
by Maria-Beatrice Coltelli, Luca Panariello, Pierfrancesco Morganti, Serena Danti, Adone Baroni, Andrea Lazzeri, Alessandra Fusco and Giovanna Donnarumma
J. Funct. Biomater. 2020, 11(2), 23; https://doi.org/10.3390/jfb11020023 - 6 Apr 2020
Cited by 25 | Viewed by 5711
Abstract
In the cosmetic sector, natural and sustainable products with a high compatibility with skin, thus conjugating wellness with a green-oriented consumerism, are required by the market. Poly(hydroxyalkanoate) (PHA)/starch blends represent a promising alternative to prepare flexible films as support for innovative beauty masks, [...] Read more.
In the cosmetic sector, natural and sustainable products with a high compatibility with skin, thus conjugating wellness with a green-oriented consumerism, are required by the market. Poly(hydroxyalkanoate) (PHA)/starch blends represent a promising alternative to prepare flexible films as support for innovative beauty masks, wearable after wetting and releasing starch and other selected molecules. Nevertheless, preparing these films by extrusion is difficult due to the high viscosity of the polymer melt at the temperature suitable for processing starch. The preparation of blends including poly(butylene succinate-co-adipate) (PBSA) or poly(butylene adipate-co-terephthalate) (PBAT) was investigated as a strategy to better modulate melt viscosity in view of a possible industrial production of beauty mask films. The release properties of films in water, connected to their morphology, was also investigated by extraction trials, infrared spectroscopy and stereo and electron microscopy. Then, the biocompatibility with cells was assessed by considering both mesenchymal stromal cells and keratinocytes. All the results were discussed considering the morphology of the films. This study evidenced the possibility of modulating thanks to the selection of composition and the materials processing of the properties necessary for producing films with tailored properties and processability for beauty masks. Full article
Show Figures

Graphical abstract

17 pages, 2844 KiB  
Article
Cytotoxic Effects of Plant Sap-Derived Extracellular Vesicles on Various Tumor Cell Types
by Kimin Kim, Hye Ju Yoo, Jik-Han Jung, Ruri Lee, Jae-Kyung Hyun, Ji-Ho Park, Dokyun Na and Ju Hun Yeon
J. Funct. Biomater. 2020, 11(2), 22; https://doi.org/10.3390/jfb11020022 - 2 Apr 2020
Cited by 51 | Viewed by 6078
Abstract
Edible plants have been widely used in traditional therapeutics because of the biological activities of their natural ingredients, including anticancer, antioxidant, and anti-inflammatory properties. Plant sap contains such medicinal substances and their secondary metabolites provide unique chemical structures that contribute to their therapeutic [...] Read more.
Edible plants have been widely used in traditional therapeutics because of the biological activities of their natural ingredients, including anticancer, antioxidant, and anti-inflammatory properties. Plant sap contains such medicinal substances and their secondary metabolites provide unique chemical structures that contribute to their therapeutic efficacy. Plant extracts are known to contain a variety of extracellular vesicles (EVs) but the effects of such EVs on various cancers have not been investigated. Here, we extracted EVs from four plants—Dendropanax morbifera, Pinus densiflora, Thuja occidentalis, and Chamaecyparis obtusa—that are known to have cytotoxic effects. We evaluated the cytotoxic effects of these EVs by assessing their ability to selectively reduce the viability of various tumor cell types compared with normal cells and low metastatic cells. EVs from D. morbifera and P. densiflora sap showed strong cytotoxic effects on tumor cells, whereas those from T. occidentalis and C. obtusa had no significant effect on any tumor cell types. We also identified synergistic effect of EVs from D. morbifera and P. densiflora saps on breast and skin tumor cells and established optimized treatment concentrations. Our findings suggest these EVs from plant sap as new candidates for cancer treatment. Full article
Show Figures

Graphical abstract

23 pages, 2742 KiB  
Article
Properties and Skin Compatibility of Films Based on Poly(Lactic Acid) (PLA) Bionanocomposites Incorporating Chitin Nanofibrils (CN)
by Maria-Beatrice Coltelli, Laura Aliotta, Alessandro Vannozzi, Pierfrancesco Morganti, Luca Panariello, Serena Danti, Simona Neri, Cristina Fernandez-Avila, Alessandra Fusco, Giovanna Donnarumma and Andrea Lazzeri
J. Funct. Biomater. 2020, 11(2), 21; https://doi.org/10.3390/jfb11020021 - 1 Apr 2020
Cited by 35 | Viewed by 5836
Abstract
Nanobiocomposites suitable for preparing skin compatible films by flat die extrusion were prepared by using plasticized poly(lactic acid) (PLA), poly(butylene succinate-co-adipate) (PBSA), and Chitin nanofibrils as functional filler. Chitin nanofibrils (CNs) were dispersed in the blends thanks to the preparation of pre-nanocomposites containing [...] Read more.
Nanobiocomposites suitable for preparing skin compatible films by flat die extrusion were prepared by using plasticized poly(lactic acid) (PLA), poly(butylene succinate-co-adipate) (PBSA), and Chitin nanofibrils as functional filler. Chitin nanofibrils (CNs) were dispersed in the blends thanks to the preparation of pre-nanocomposites containing poly(ethylene glycol). Thanks to the use of a melt strength enhancer (Plastistrength) and calcium carbonate, the processability and thermal properties of bionanocomposites films containing CNs could be tuned in a wide range. Moreover, the resultant films were flexible and highly resistant. The addition of CNs in the presence of starch proved not advantageous because of an extensive chain scission resulting in low values of melt viscosity. The films containing CNs or CNs and calcium carbonate resulted biocompatible and enabled the production of cells defensins, acting as indirect anti-microbial. Nevertheless, tests made with Staphylococcus aureus and Enterobacter spp. (Gram positive and negative respectively) by the qualitative agar diffusion test did not show any direct anti-microbial activity of the films. The results are explained considering the morphology of the film and the different mechanisms of direct and indirect anti-microbial action generated by the nanobiocomposite based films. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop