Assessment of the Cyclic Fatigue Performance of the Novel Protaper Ultimate File System Used in Different Kinematics: An In Vitro Study
Abstract
:1. Introduction
Aim
2. Materials and Methods
2.1. Study Design
- Group 1
- 25.08 F2 ProTaper Ultimate (Dentsply Maillefer, Baillagues, Switzerland), (PTU), (n = 10), used in continuous rotation;
- Group 2
- 25.08 F2 ProTaper Ultimate (Dentsply Maillefer, Baillagues, Switzerland), (PTU), (n = 10), used in forward reciprocating motion;
- Group 3
- 25.08 F2 ProTaper Gold (Dentsply Maillefer, Baillagues, Switzerland), (PTG), (n = 10), used in continuous rotation;
- Group 4
- 25.08 F2 ProTaper Gold (Dentsply Maillefer, Baillagues, Switzerland), (PTG), (n = 10), used in forward reciprocating motion;
- Group 5
- 25.08 M3 UDG (United Dental Changzhou, Changzhou, China), (M3), (n = 10), used in continuous rotation;
- Group 6
- 25.08 M3 UDG (United Dental Changzhou, Changzhou, China), (M3), (n = 10), used in forward reciprocating motion.
2.2. Testing Device
2.3. Testing Conditions
2.4. Stereomicroscope and X-ray Fluorescence Analysis
2.5. Statistical Analysis
3. Results
3.1. Stereomicroscope Evaluation
3.2. X-ray Fluorescence Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, O.A. Current challenges and concepts in the preparation of root canal systems: A review. J. Endod. 2004, 30, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Peralta-Mamani, M.; Rios, D.; Duarte, M.A.H.; Santiago Junior, J.F.; Honório, H.M. Manual vs. rotary instrumentation in endodontic treatment of permanent teeth: A systematic review and meta-analysis. Am. J. Dent. 2019, 32, 311–324. [Google Scholar] [PubMed]
- Uslu, G.; Gundogar, M.; Özyurek, T.; Plotino, G. Cyclic fatigue resistance of reduced-taper nickel-titanium (NiTi) instruments in doubled-curved (S-shaped) canals at body temperature. J. Dent. Res. Dent. Clin. Dent. Prospect. 2020, 14, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Sattapan, B.; Nervo, G.J.; Palamara, J.E.; Messer, H.H. Defects in rotary nickel-titanium files after clinical use. J. Endod. 2000, 26, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Parashos, P.; Messer, H.H. NiTi instrument fracture and its consequences. J. Endod. 2006, 32, 1031–1043. [Google Scholar] [CrossRef]
- Peters, O.; Chien, P.; Armitt, K.; De la Macorra, J.; Arias, A. Testing Cyclic Fatigue Resistance of Nickel Titanium Rotary Endodontic Instruments: A Validation Study for a Minimum Quality Criterion in a Standardized Environment. Front. Dent. Med. 2021, 2, 744809. [Google Scholar] [CrossRef]
- Gambarini, G.; Grande, N.M.; Plotino, G.; Somma, F.; Garala, M.; De Luca, M.; Testarelli, L. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J. Endod. 2008, 34, 1003–1005. [Google Scholar] [CrossRef]
- Pruett, J.P.; Clement, D.J.; Carnes, D.L. Cyclic fatigue testing of nickel-titanium endodontic instruments. J. Endod. 1997, 23, 77–85. [Google Scholar] [CrossRef]
- Zelada, G.; Varela, P.; Martín, B.; Bahíllo, J.G.; Magán, F.; Ahn, S. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J. Endod. 2002, 28, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Castelló-Escrivá, R.; Alegre-Domingo, T.; Faus-Matoses, V.; Román-Richon, S.; Faus-Llácer, V.J. In Vitro comparison of cyclic fatigue resistance of ProTaper, WaveOne, and Twisted Files. J. Endod. 2012, 38, 1521–1524. [Google Scholar] [CrossRef]
- Plotino, G.; Ahmed, H.M.; Grande, N.M.; Cohen, S.; Bukiet, F. Assessment of Reciprocation in Endodontic Preparation: A Comprehensive Review—Part II: Properties and Effectiveness. J. Endod. 2015, 41, 1939–1950. [Google Scholar] [CrossRef] [PubMed]
- De Pedro-Muñoz, A.; Rico-Romano, C.; Sánchez-Llobet, P.; Montiel-Company, J.M.; Mena-Álvarez, J. Cyclic Fatigue Resistance of Rotary versus Reciprocating Endodontic Files: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 882. [Google Scholar] [CrossRef] [PubMed]
- Siddique, R.; Nivedhitha, M.S. Effectiveness of rotary and reciprocating systems on microbial reduction: A systematic review. J. Conserv. Dent. 2019, 22, 114–122. [Google Scholar] [PubMed]
- Espir, C.G.; Nascimento Mendes, C.A.; Guerreiro Tanomaru, J.M.; Freire, L.G.; Gavini, G.; Tanomaru Filho, M. Counterclockwise or clockwise reciprocating motion for oval root canal preparation: A micro-CT analysis. Int. Endod. J. 2018, 51, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.N.; Martins, R.F.; Fernandes, F.M.B.; Silva, E.J. What Meaningful Information Are the Instruments Mechanical Testing Giving Us? A Comprehensive Review. J. Endod. 2022, 48, 985–1004. [Google Scholar] [CrossRef] [PubMed]
- Berutti, E.; Chiandussi, G.; Gaviglio, I.; Ibba, A. Comparative analysis of torsional and bending stresses in two mathematical models of nickel-titanium rotary instruments: ProTaper versus ProFile. J. Endod. 2003, 29, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Ha, J.H.; Lee, C.J.; El Abed, R.; Abu-Tahun, I.; Kim, H.C. Effects of Pitch Length and Heat Treatment on the Mechanical Properties of the Glide Path Preparation Instruments. J. Endod. 2016, 42, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Roda-Casanova, V.; Zubizarreta-Macho, Á.; Sanchez-Marin, F.; Alonso Ezpeleta, Ó.; Albaladejo Martínez, A.; Galparsoro Catalán, A. Computerized Generation and Finite Element Stress Analysis of Endodontic Rotary Files. Appl. Sci. 2021, 11, 4329. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, C.; Faus-Matoses, V.; Alegre-Domingo, T.; Faus-Matoses, I.; Faus-Llácer, V.-J. An in vitro cyclic fatigue resistance comparison of conventional and new generation nickel-titanium rotary files. J. Clin. Exp. Dent. 2018, 10, e805–e809. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J. Endod. 2009, 35, 1469–1476. [Google Scholar] [CrossRef]
- Zubizarreta-Macho, Á.; Mena Álvarez, J.; Albaladejo Martínez, A.; Segura-Egea, J.J.; Caviedes Brucheli, J.; Agustín-Panadero, R.; López Píriz, R.; Alonso-Ezpeleta, Ó. Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files. J. Clin. Med. 2019, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Zubizarreta-Macho, A.; Alonso-Ezpeleta, O.; Albaladejo Martínez, A.; Faus Matoses, V.; Caviedes Brucheli, A.; Agustín-Panadero, R.; Mena Álvarez, J.; Vizmanos Martínez-Berganza, F. Novel Electronic Device to Quantify the Cyclic Fatigue Resistance of Endodontic Reciprocating Files after Using and Sterilization. Appl. Sci. 2020, 10, 4962. [Google Scholar] [CrossRef]
- Walia, H.M.; Brantley, W.A.; Gerstein, H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J. Endod. 1988, 14, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Li, U.M.; Lee, B.S.; Shih, C.T.; Lan, W.H.; Lin, C.P. Cyclic fatigue of endodontic nickel titanium rotary instruments: Static and dynamic tests. J. Endod. 2002, 28, 448–451. [Google Scholar] [CrossRef]
- Lopes, H.P.; Elias, C.N.; Vieira, M.V.; Siqueira, J.F., Jr.; Mangelli, M.; Lopes, W.S.; Vieira, V.T.; Alves, F.R.; Oliveira, J.C.; Soares, T.G. Fatigue Life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J. Endod. 2013, 39, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Klymus, M.E.; Alcalde, M.P.; Vivan, R.R.; Só, M.V.; Vasconselos, B.C.; Duarte, M.A. Effect of temperature on the cyclic fatigue resistance of thermally treated reciprocating instruments. Clin. Oral Investig. 2019, 23, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Rasimick, B.J.; Musikant, B.L.; Deutsch, A.S. A comparison of cyclic fatigue resistance in reciprocating and rotary nickel-titanium instruments. Aust. Endod. J. 2011, 37, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G.; Rubini, A.G.; Al Sudani, D.; Gergi, R.; Culla, A.; De Angelis, F.; Di Carlo, S.; Pompa, G.; Osta, N.; Testarelli, L. Influence of different angles of reciprocation on the cyclic fatigue of nickel-titanium endodontic instruments. J. Endod. 2012, 38, 1408–1411. [Google Scholar] [CrossRef] [PubMed]
- Faus-Matoses, V.; Faus-Llácer, V.; Ruiz-Sánchez, C.; Jaramillo-Vásconez, S.; Faus-Matoses, I.; Martín-Biedma, B.; Zubizarreta-Macho, Á. Effect of Rotational Speed on the Resistance of NiTi Alloy Endodontic Rotary Files to Cyclic Fatigue—An In Vitro Study. J. Clin. Med. 2022, 11, 3143. [Google Scholar] [CrossRef]
- Pedullà, E.; Plotino, G.; Grande, N.M.; Scibilia, M.; Pappalardo, A.; Malagnino, V.A.; Rapisarda, E. Influence of rotational speed on the cyclic fatigue of Mtwo instruments. Int. Endod. J. 2014, 47, 514–519. [Google Scholar] [CrossRef]
- Zanza, A.; D’Angelo, M.; Reda, R.; Gambarini, G.; Testarelli, L.; Di Nardo, D. An Update on Nickel-Titanium Rotary Instruments in Endodontics: Mechanical Characteristics, Testing and Future Perspective—An Overview. Bioengineering 2021, 16, 218. [Google Scholar] [CrossRef] [PubMed]
- Arıcan, B.; Atav Ates, A. Influence of Rotational Speed and Glide Path on Cyclic Fatigue Resistance of XP-endo Shaper. Niger. J. Clin. Pract. 2020, 23, 1443–1448. [Google Scholar]
- Grande, N.M.; Plotino, G.; Pecci, R.; Bedini, R.; Malagnino, V.A.; Somma, F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int. Endod. J. 2006, 39, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.S.P.; Darvell, B.W. Fatigue testing of a NiTi rotary instrument. Part 1: Strain–life relationship. Int. Endod. J. 2007, 40, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Bürklein, S.; Zupanc, L.; Donnermeyer, D.; Tegtmeyer, K.; Schäfer, E. Effect of Core Mass and Alloy on Cyclic Fatigue Resistance of Different Nickel-Titanium Endodontic Instruments in Matching Artificial Canals. Materials 2021, 14, 5734. [Google Scholar] [CrossRef]
- Saber, S.D.; Abu El Sadat, S.M. Effect of altering the reciprocation range on the fatigue life and the shaping ability of WaveOne nickel- titanium instruments. J. Endod. 2013, 39, 685–688. [Google Scholar] [CrossRef]
- Berutti, E.; Chiandussi, G.; Paolino, D.S.; Scotti, N.; Cantatore, G.; Castellucci, A.; Pasqualini, D. Canal shaping with WaveOne Primary reciprocating files and ProTaper system: A comparative study. J. Endod. 2012, 38, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Zanza, A.; Seracchiani, M.; Reda, R.; Miccoli, G.; Testarelli, L.; Di Nardo, D. Metallurgical Tests in Endodontics: A Narrative Review. Bioengineering 2022, 9, 30. [Google Scholar] [CrossRef]
- Zafar, M.S. Impact of Endodontic Instrumentation on Surface Roughness of Various Nickel-Titanium Rotary Files. Eur. J. Dent. 2020, 15, 273–280. [Google Scholar] [CrossRef]
- Seracchiani, M.; Miccoli, G.; Di Nardo, D.; Zanza, A.; Cantore, M.; Gambarini, G.; Testarelli, L. Effect of flexural stress on torsional resistance of NiTi instruments. J. Endod. 2020, 47, 472–476. [Google Scholar] [CrossRef]
- Inan, U.; Keskin, C.; Sivas Yilmaz, Ö.; Baş, G. Cyclic fatigue of reciproc blue and reciproc instruments exposed to intracanal temperature in simulated severe apical curvature. Clin. Oral Investig. 2019, 23, 2077–2082. [Google Scholar] [CrossRef] [PubMed]
- Jamleh, A.; Yahata, Y.; Ebihara, A.; Atmeh, A.R.; Bakhsh, T.; Suda, H. Performance of NiTi endodontic instrument under different temperatures. Odontology 2016, 104, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.M.; Mercadé Bellido, M.; Testarelli, L.; Gambarini, G. Influence of temperature on cyclic fatigue resistance of ProTaper gold and ProTaper universal rotary files. J. Endod. 2017, 43, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Grande, N.M.; Plotino, G.; Silla, E.; Pedullà, E.; DeDeus, G.; Gambarini, G.; Somma, F. Environmental temperature drastically affects flexural fatigue resistance of nickel-titanium rotary files. J. Endod. 2017, 43, 1157–1160. [Google Scholar] [CrossRef] [PubMed]
- Bürklein, S.; Maßmann, P.; Schäfer, E.; Donnermeyer, D. Cyclic Fatigue of Different Reciprocating Endodontic Instruments Using Matching Artificial Root Canals at Body Temperature In Vitro. Materials 2024, 17, 827. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.; Adeodato, C.; Barbosa, I.; Aboud, L.; Scelza, P.; Zaccaro Scelza, M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: A systematic review. Int. Endod. J. 2017, 50, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Van der Vyver, P.J.; Vorster, M.; Paleker, F.; Predin Djuric, N. Forward reciprocation of conventional rotary instruments—Literature review and clinical case reports. Int. Dent. Afr. Ed. 2020, 10, 46–52. [Google Scholar]
- Hülsmann, M.; Donnermeyer, D.; Schäfer, E. A critical appraisal of studies on cyclic fatigue resistance of engine-driven endodontic instruments. Int. Endod. J. 2019, 52, 1427–1445. [Google Scholar] [CrossRef]
- Özyürek, T.; Gündoǧar, M.; Uslu, G.; Yılmaz, K.; Staffoli, S.; Nm, G.; Plotino, G.; Polimeni, A. Cyclic fatigue resistances of Hyflex EDM, WaveOne gold, Reciproc blue and 2shape NiTi rotary files in different artificial canals. Odontology 2018, 106, 408–413. [Google Scholar] [CrossRef]
PTU | PTG | M3 | |||||
---|---|---|---|---|---|---|---|
CR | FRM | CR | FRM | CR | FRM | ||
TTF (s) | Average | 50 | 156 | 21 | 105 | 19 | 115 |
St. deviation | 7.6 | 21.6 | 3.3 | 7.2 | 1.27 | 8.4 | |
NCF (r) | Average | 333 | 1040 | 144 | 702 | 131 | 766 |
St. deviation | 51.2 | 144 | 22.4 | 48.1 | 8.4 | 56.2 |
Type of Motion × Type of File | Difference (s) | p Value |
---|---|---|
CR × PTU vs. CR × M3 | 30.329 | <0.0001 |
CR × PTU vs. CR × PTG | 28.478 | <0.0001 |
CR × PTG vs. CR × M3 | 1.851 | 0.998707 |
FRM × PTU vs. FRM × PTG | 50.778 | <0.0001 |
FRM × PTU vs. FRM × M3 | 41.099 | <0.0001 |
FRM × M3 vs. FRM × PTG | 9.679 | 0.323732 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaconu, C.T.; Diaconu, A.E.; Tuculina, M.J.; Mihai, L.L.; Gheorghiță, M.; Gheorghiță, L.M.; Mărășescu, P.; Gliga, A.; Diaconu, O.A. Assessment of the Cyclic Fatigue Performance of the Novel Protaper Ultimate File System Used in Different Kinematics: An In Vitro Study. J. Funct. Biomater. 2024, 15, 85. https://doi.org/10.3390/jfb15040085
Diaconu CT, Diaconu AE, Tuculina MJ, Mihai LL, Gheorghiță M, Gheorghiță LM, Mărășescu P, Gliga A, Diaconu OA. Assessment of the Cyclic Fatigue Performance of the Novel Protaper Ultimate File System Used in Different Kinematics: An In Vitro Study. Journal of Functional Biomaterials. 2024; 15(4):85. https://doi.org/10.3390/jfb15040085
Chicago/Turabian StyleDiaconu, Cezar Tiberiu, Anca Elena Diaconu, Mihaela Jana Tuculina, Laurența Lelia Mihai, Mircea Gheorghiță, Lelia Mihaela Gheorghiță, Petre Mărășescu, Alexandru Gliga, and Oana Andreea Diaconu. 2024. "Assessment of the Cyclic Fatigue Performance of the Novel Protaper Ultimate File System Used in Different Kinematics: An In Vitro Study" Journal of Functional Biomaterials 15, no. 4: 85. https://doi.org/10.3390/jfb15040085