Assessing Stress Induced by Fluid Shifts and Reduced Cerebral Clearance during Robotic-Assisted Laparoscopic Radical Prostatectomy under Trendelenburg Positioning (UroTreND Study)
Abstract
:1. Introduction
2. Outcome Measures
2.1. Primary Endpoint
2.2. Secondary Endpoints
- The markers of endothelial and blood-brain barrier function in the blood (matrix metalloproteinases-2 and -9, zonulin, S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), GFAP, amyloid-β proteins 40 and 42 (Aβ40, Aβ42), and glycocalyx proteins (e.g., hyaluronan, syndecan-1, and heparan sulfate));
- The estimation of ICP through measuring the ONSD using ultrasound and a short screening of extracranial cervical blood vessels for valve insufficiencies;
- Neurocognitive function (MMSE, clock drawing test, Nu-DESC, memory test);
- The physiological parameters of stress (cortisol in saliva and urine, current stress test (CST));
- The presence and severity of headache;
- Immune analyses (differential, leukocyte subsets, plasma cytokines, cell adhesion molecules, markers of cellular activation, radical production, phagocytosis);
- The analysis of immune cell signaling cascades using transcriptional analysis (mRNA) and Western blot (whole blood, PBMCs, isolated neutrophils);
- Procedure-related parameters (end-tidal CO2, type of anesthesia protocol, use of anesthetic gas, blood loss, mean arterial pressure, incision–suture time, total time of anesthesia);
- An MRI scan of the cerebrum (optional).
3. Trial Design
3.1. Recruitment
3.2. Timeline for Each Patient
3.3. Anesthesiologic Management and Postoperative Care
3.4. Trial Population and Selection Criteria
3.4.1. Inclusion Criteria
- Able to legally state written informed consent;
- Age: >18 years and <80 years;
- Planned radical prostatectomy.
3.4.2. Exclusion Criteria
- Not able to give informed consent;
- Missing written informed consent;
- Known neurological disease with or without increased intracranial pressure;
- Known psychiatric disease with or without permanent medication;
- Known eye disease (e.g., glaucoma);
- Known severe lung disease;
- Immunosuppressive medication;
- Participation in a research project/clinical trial that conflicts with this study;
- Known severe autoimmune disease (ASA group III or higher);
- Known alcohol, drug, or medication abuse.
3.5. Sample Size Estimation
3.6. Statistical Evaluation
3.7. Ethics and Good Clinical Practice
3.8. Risk–Benefit Assessment
3.9. Data Management and Privacy
3.10. Quality Control and Assurance
4. Analysis Methods
4.1. Blood Processing
4.2. ONSD/Extracranial Blood Vessels
4.3. Neurocognitive Tests
- MMSE: The MMSE is an established screening instrument for testing spatial orientation, memory, attention, numeracy, and language. To test orientation, ten questions are asked about time and place.
- Clock drawing test: The patient will be asked to write the numbers 1–12 and the time 11:10 in a provided circle on a sheet of paper. This very simple test is used to assess instruction comprehension, execution planning, and working memory [34]. It will be carried out in combination with the MMSE.
- The Nursing Delirium Screening Scale (NU-DESC) is an established screening test for delirium evaluation in under 3 min [35].
- Memory test: This test will be computer-based. The patient will be asked to memorize and reproduce a series of words (episodic memory) and numbers (digit span test). Additionally, the attention and reaction time is tested by clicking on a red button (red button task).
- Learning of words with immediate recall;
- Red button task;
- Digit span forwards;
- Digit span backwards;
- Recall of words learned during part 1.
4.4. Questionnaires
4.5. Saliva Sampling and Processing
4.6. Urine Sampling and Processing
4.7. MRI Scan
5. Discussion
5.1. Limitations
5.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haas, S.; Haese, A.; Goetz, A.E.; Kubitz, J.C. Haemodynamics and cardiac function during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position. Int. J. Med. Robot. 2011, 7, 408–413. [Google Scholar] [CrossRef]
- Kalmar, A.F.; Foubert, L.; Hendrickx, J.F.; Mottrie, A.; Absalom, A.; Mortier, E.P.; Struys, M.M. Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br. J. Anaesth. 2010, 104, 433–439. [Google Scholar] [CrossRef]
- Halverson, A.L.; Barrett, W.L.; Iglesias, A.R.; Lee, W.T.; Garber, S.M.; Sackier, J.M. Decreased cerebrospinal fluid absorption during abdominal insufflation. Surg. Endosc. 1999, 13, 797–800. [Google Scholar] [CrossRef]
- Kotani, J.; Momota, Y.; Sugioka, S.; Umemura, A.; Ueda, Y. Effect of head-down tilt on intracranial pressure and sagittal sinus pressure during general anesthesia in cats. Anesth. Prog. 1992, 39, 209–211. [Google Scholar]
- Brosnan, R.J.; Steffey, E.P.; LeCouteur, R.A.; Imai, A.; Farver, T.B.; Kortz, G.D. Effects of body position on intracranial and cerebral perfusion pressures in isoflurane-anesthetized horses. J. Appl. Physiol. 2002, 92, 2542–2546. [Google Scholar] [CrossRef]
- Tatebayashi, K.; Asai, Y.; Maeda, T.; Shiraishi, Y.; Miyoshi, M.; Kawai, Y. Effects of head-down tilt on the intracranial pressure in conscious rabbits. Brain Res. 2003, 977, 55–61. [Google Scholar] [CrossRef]
- Halverson, A.; Buchanan, R.; Jacobs, L.; Shayani, V.; Hunt, T.; Riedel, C.; Sackier, J. Evaluation of mechanism of increased intracranial pressure with insufflation. Surg. Endosc. 1998, 12, 266–269. [Google Scholar] [CrossRef]
- Doi, M.; Kawai, Y. Mechanisms of increased intracranial pressure in rabbits exposed to head-down tilt. Jpn. J. Physiol. 1998, 48, 63–69. [Google Scholar] [CrossRef]
- Sitanaya, S.N.; Kamayanti, F.; Nugroho, H.A.; Prabowo, B. Comparing ultrasonographic optic nerve sheath diameter to head computed tomography scan to predict intracranial pressure elevation. SAGE Open Med. 2022, 10, 20503121221077834. [Google Scholar] [CrossRef]
- Oliveira, B.D.D.; Lima, F.O.; Homem, H.D.C.; Figueiredo, A.A.; Freire, V.M.B.; Maia Carvalho, F.M. Optic Nerve Sheath Diameter Detects Intracranial Hypertension in Acute Malignant Middle Cerebral Artery Infarction. J. Stroke Cerebrovasc. Dis. 2022, 31, 106276. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, Y.; Li, C.; Liu, Y.; Dong, Y.N.; Cui, L.; Xing, Y.Q. Ultrasonographic optic nerve sheath diameter as a noninvasive marker for intracranial hypotension. Ther. Adv. Neurol. Disord. 2022, 15, 17562864211069744. [Google Scholar] [CrossRef]
- Chin, J.H.; Seo, H.; Lee, E.H.; Lee, J.; Hong, J.H.; Hwang, J.H.; Kim, Y.K. Sonographic optic nerve sheath diameter as a surrogate measure for intracranial pressure in anesthetized patients in the Trendelenburg position. BMC Anesthesiol. 2015, 15, 43. [Google Scholar] [CrossRef]
- Kim, M.S.; Bai, S.J.; Lee, J.R.; Choi, Y.D.; Kim, Y.J.; Choi, S.H. Increase in intracranial pressure during carbon dioxide pneumoperitoneum with steep trendelenburg positioning proven by ultrasonographic measurement of optic nerve sheath diameter. J. Endourol. 2014, 28, 801–806. [Google Scholar] [CrossRef]
- Roh, G.U.; Kim, W.O.; Rha, K.H.; Lee, B.H.; Jeong, H.W.; Na, S. Prevalence and impact of incompetence of internal jugular valve on postoperative cognitive dysfunction in elderly patients undergoing robot-assisted laparoscopic radical prostatectomy. Arch. Gerontol. Geriatr. 2016, 64, 167–171. [Google Scholar] [CrossRef]
- Danic, M.J.; Chow, M.; Alexander, G.; Bhandari, A.; Menon, M.; Brown, M. Anesthesia considerations for robotic-assisted laparoscopic prostatectomy: A review of 1,500 cases. J. Robot. Surg. 2007, 1, 119–123. [Google Scholar] [CrossRef]
- Ficarra, V.; Novara, G.; Artibani, W.; Cestari, A.; Galfano, A.; Graefen, M.; Guazzoni, G.; Guillonneau, B.; Menon, M.; Montorsi, F.; et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: A systematic review and cumulative analysis of comparative studies. Eur. Urol. 2009, 55, 1037–1063. [Google Scholar] [CrossRef]
- Choi, E.S.; Jeon, Y.T.; Sohn, H.M.; Kim, D.W.; Choi, S.J.; In, C.B. Comparison of the effects of desflurane and total intravenous anesthesia on the optic nerve sheath diameter in robot assisted laparoscopic radical prostatectomy: A randomized controlled trial. Medicine 2018, 97, e12772. [Google Scholar] [CrossRef]
- Yu, J.; Hong, J.H.; Park, J.Y.; Hwang, J.H.; Cho, S.S.; Kim, Y.K. Propofol attenuates the increase of sonographic optic nerve sheath diameter during robot-assisted laparoscopic prostatectomy: A randomized clinical trial. BMC Anesthesiol. 2018, 18, 72. [Google Scholar] [CrossRef]
- Bang, Y.J.; Jeong, H.; Heo, B.Y.; Shin, B.S.; Sim, W.S.; Kim, D.K.; Lee, S.H.; Kim, J.S.; Shin, Y.H. Effects of Increased Optic Nerve Sheath Diameter on Inadequate Emergence from Anesthesia in Patients Undergoing Robot-Assisted Laparoscopic Prostatectomy: A Prospective Observational Study. Diagnostics 2021, 11, 2260. [Google Scholar] [CrossRef]
- Awad, H.; Walker, C.M.; Shaikh, M.; Dimitrova, G.T.; Abaza, R.; O’Hara, J. Anesthetic considerations for robotic prostatectomy: A review of the literature. J. Clin. Anesth. 2012, 24, 494–504. [Google Scholar] [CrossRef]
- Chen, K.; Wang, L.; Wang, Q.; Liu, X.; Lu, Y.; Li, Y.; Wong, G.T.C. Effects of pneumoperitoneum and steep Trendelenburg position on cerebral hemodynamics during robotic-assisted laparoscopic radical prostatectomy: A randomized controlled study. Medicine 2019, 98, e15794. [Google Scholar] [CrossRef]
- Barro, C.; Zetterberg, H. Neurological symptoms and blood neurofilament light levels. Acta Neurol. Scand. 2021, 144, 13–20. [Google Scholar] [CrossRef]
- Moseby-Knappe, M.; Mattsson, N.; Nielsen, N.; Zetterberg, H.; Blennow, K.; Dankiewicz, J.; Dragancea, I.; Friberg, H.; Lilja, G.; Insel, P.S.; et al. Serum Neurofilament Light Chain for Prognosis of Outcome After Cardiac Arrest. JAMA Neurol. 2019, 76, 64–71. [Google Scholar] [CrossRef]
- Moseby-Knappe, M.; Mattsson-Carlgren, N.; Stammet, P.; Backman, S.; Blennow, K.; Dankiewicz, J.; Friberg, H.; Hassager, C.; Horn, J.; Kjaergaard, J.; et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med. 2021, 47, 984–994. [Google Scholar] [CrossRef]
- Jungner, A.; Lennartsson, F.; Bjorkman-Burtscher, I.; Blennow, K.; Zetterberg, H.; Ley, D. Perioperative brain injury marker concentrations in neonatal open-heart surgery: A prospective observational study. Front. Pediatr. 2023, 11, 1186061. [Google Scholar] [CrossRef]
- Saller, T.; Petzold, A.; Zetterberg, H.; Kuhle, J.; Chappell, D.; von Dossow, V.; Klawitter, F.; Schurholz, T.; Hagl, C.; Reuter, D.A.; et al. A case series on the value of tau and neurofilament protein levels to predict and detect delirium in cardiac surgery patients. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2019, 163, 241–246. [Google Scholar] [CrossRef]
- Zu Eulenburg, P.; Buchheim, J.I.; Ashton, N.J.; Vassilieva, G.; Blennow, K.; Zetterberg, H.; Chouker, A. Changes in Blood Biomarkers of Brain Injury and Degeneration Following Long-Duration Spaceflight. JAMA Neurol. 2021, 78, 1525–1527. [Google Scholar] [CrossRef]
- Van Ombergen, A.; Jillings, S.; Jeurissen, B.; Tomilovskaya, E.; Rumshiskaya, A.; Litvinova, L.; Nosikova, I.; Pechenkova, E.; Rukavishnikov, I.; Manko, O.; et al. Brain ventricular volume changes induced by long-duration spaceflight. Proc. Natl. Acad. Sci. USA 2019, 116, 10531–10536. [Google Scholar] [CrossRef]
- Van Ombergen, A.; Jillings, S.; Jeurissen, B.; Tomilovskaya, E.; Ruhl, R.M.; Rumshiskaya, A.; Nosikova, I.; Litvinova, L.; Annen, J.; Pechenkova, E.V.; et al. Brain Tissue-Volume Changes in Cosmonauts. N. Engl. J. Med. 2018, 379, 1678–1680. [Google Scholar] [CrossRef]
- Alifier, M.; Olsson, B.; Andreasson, U.; Cullen, N.C.; Czyżewska, J.; Jakubów, P.; Sieśkiewicz, A.; Stasiak-Barmuta, A.; Hirnle, T.; Kornhuber, J.; et al. Cardiac Surgery is Associated with Biomarker Evidence of Neuronal Damage. J. Alzheimers Dis. 2020, 74, 1211–1220. [Google Scholar] [CrossRef]
- Nedelmann, M. Sonographie des Nervus opticus und der Zentralarterie. Das. Neurophysiol.-Labor. 2014, 36, 127–134. [Google Scholar] [CrossRef]
- Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, A.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 2016, 54, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Dubourg, J.; Messerer, M.; Karakitsos, D.; Rajajee, V.; Antonsen, E.; Javouhey, E.; Cammarata, A.; Cotton, M.; Daniel, R.T.; Denaro, C.; et al. Individual patient data systematic review and meta-analysis of optic nerve sheath diameter ultrasonography for detecting raised intracranial pressure: Protocol of the ONSD research group. Syst. Rev. 2013, 2, 62. [Google Scholar] [CrossRef]
- Soffer, M.; Butters, M.A.; Herrmann, N.; Black, S.E.; Kumar, S.; Pugh, B.; Rajji, T.K.; Tartaglia, M.C.; Tang-Wai, D.F.; Freedman, M. About time: Neurocognitive correlates of stimulus-bound and other time setting errors in the Clock Drawing Test. J. Int. Neuropsychol. Soc. 2023, 1–8. [Google Scholar] [CrossRef]
- Lutz, A.; Radtke, F.M.; Franck, M.; Seeling, M.; Gaudreau, J.D.; Kleinwachter, R.; Kork, F.; Zieb, A.; Heymann, A.; Spies, C.D. The Nursing Delirium Screening Scale (NU-DESC). Anasthesiol. Intensivmed. Notfallmed Schmerzther. 2008, 43, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Chouker, A.; Thiel, M.; Baranov, V.; Meshkov, D.; Kotov, A.; Peter, K.; Messmer, K.; Christ, F. Simulated microgravity, psychic stress, and immune cells in men: Observations during 120-day 6 degrees HDT. J. Appl. Physiol. 2001, 90, 1736–1743. [Google Scholar] [CrossRef]
- Bijlani, A.; Hebert, A.E.; Davitian, M.; May, H.; Speers, M.; Leung, R.; Mohamed, N.E.; Sacks, H.S.; Tewari, A. A Multidimensional Analysis of Prostate Surgery Costs in the United States: Robotic-Assisted versus Retropubic Radical Prostatectomy. Value Health 2016, 19, 391–403. [Google Scholar] [CrossRef]
- Schramm, P.; Treiber, A.H.; Berres, M.; Pestel, G.; Engelhard, K.; Werner, C.; Closhen, D. Time course of cerebrovascular autoregulation during extreme Trendelenburg position for robotic-assisted prostatic surgery. Anaesthesia 2014, 69, 58–63. [Google Scholar] [CrossRef]
- Closhen, D.; Treiber, A.H.; Berres, M.; Sebastiani, A.; Werner, C.; Engelhard, K.; Schramm, P. Robotic assisted prostatic surgery in the Trendelenburg position does not impair cerebral oxygenation measured using two different monitors: A clinical observational study. Eur. J. Anaesthesiol. 2014, 31, 104–109. [Google Scholar] [CrossRef]
- Goel, N.; Chowdhury, I.; Dubey, J.; Mittal, A.; Pathak, S. Quantitative rise in intraocular pressure in patients undergoing robotic surgery in steep Trendelenburg position: A prospective observational study. J. Anaesthesiol. Clin. Pharmacol. 2020, 36, 546–551. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peschke, T.; Feuerecker, M.; Siegl, D.; Schicktanz, N.; Stief, C.; Zu Eulenburg, P.; Choukér, A.; Buchheim, J.-I. Assessing Stress Induced by Fluid Shifts and Reduced Cerebral Clearance during Robotic-Assisted Laparoscopic Radical Prostatectomy under Trendelenburg Positioning (UroTreND Study). Methods Protoc. 2024, 7, 31. https://doi.org/10.3390/mps7020031
Peschke T, Feuerecker M, Siegl D, Schicktanz N, Stief C, Zu Eulenburg P, Choukér A, Buchheim J-I. Assessing Stress Induced by Fluid Shifts and Reduced Cerebral Clearance during Robotic-Assisted Laparoscopic Radical Prostatectomy under Trendelenburg Positioning (UroTreND Study). Methods and Protocols. 2024; 7(2):31. https://doi.org/10.3390/mps7020031
Chicago/Turabian StylePeschke, Tobias, Matthias Feuerecker, Daniel Siegl, Nathalie Schicktanz, Christian Stief, Peter Zu Eulenburg, Alexander Choukér, and Judith-Irina Buchheim. 2024. "Assessing Stress Induced by Fluid Shifts and Reduced Cerebral Clearance during Robotic-Assisted Laparoscopic Radical Prostatectomy under Trendelenburg Positioning (UroTreND Study)" Methods and Protocols 7, no. 2: 31. https://doi.org/10.3390/mps7020031