Structural Health Monitoring and Damage Identification of Engineering Structures

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: 1 April 2025 | Viewed by 1756

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Interests: bridge health monitoring; damage identification; optimization; large-scale structures; non-destructive testing

E-Mail Website
Guest Editor
College of Engineering and Computer Sciences, Marshall University, Huntington, WV 25755, USA
Interests: modeling, monitoring, and diagnosis of dynamical systems

Special Issue Information

Dear Colleagues,

This Special Issue aims to explore recent advances in structural health monitoring (SHM) and damage identification, especially in relation to engineering applications. Topics of interest for this Special Issue include, but are not limited to, the following:

  • Bridge health monitoring and damage identification;
  • Damage identification of large-scale structures;
  • Artificial intelligence in SHM;
  • Advanced signal process technologies in SHM;
  • Temperature effects on SHM;
  • Nondestructive testing.

As SHM is highly multi-disciplinary, we welcome original submissions from researchers with backgrounds in various disciplines.

Dr. Feng Xiao
Prof. Dr. Gang S. Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structural health monitoring
  • damage identification
  • bridge health monitoring
  • optimization
  • signal processing
  • temperature effects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 15832 KiB  
Article
Development of Indicator for Piled Pier Health Evaluation in Vietnam Using Impact Vibration Test Approach
by Thi Bach Duong Nguyen, Jungwon Huh, Thanh Thai Vu, Minh Long Tran and Van Ha Mac
Buildings 2024, 14(8), 2366; https://doi.org/10.3390/buildings14082366 - 1 Aug 2024
Viewed by 951
Abstract
Vietnam’s seaport system currently includes 298 ports with 588 wharves (a total length of approximately 92,275 m), which is vital in developing Vietnam’s marine economy. The piled pier, a type of wharf structure, is widely used and accounts for up to 90%, while [...] Read more.
Vietnam’s seaport system currently includes 298 ports with 588 wharves (a total length of approximately 92,275 m), which is vital in developing Vietnam’s marine economy. The piled pier, a type of wharf structure, is widely used and accounts for up to 90%, while the remaining 10% is made up of other types of wharf structures, such as gravity and sheet pile quay walls. Most wharves have been operating for over 10 years and some for even more than 50 years. Noticeably, wharves are highly vulnerable and degrade rapidly due to many factors, especially heavy load impacts and severe environmental conditions. Additionally, wharves have a higher risk of deterioration than other inland infrastructure, such as buildings and bridges. Consequently, determining a wharf’s health is an important task in maintaining normal working conditions, extending its lifecycle, and avoiding other severe damage that could lead to dangers to the safety of vehicles, facilities, and humans. Moreover, regulated quality inspections usually include only simple inspections, e.g., displacement, settlement, geometric height, and tilt; the visual inspection and determination of dimensions by simple length-measuring equipment; concrete strength testing by ultrasonic and rebound hammers; and the experimental identification of the chloride ion concentration, chloride diffusion coefficient, corrosion activity of rebar in concrete, and steel thickness. These testing methods often give local results depending on the number of test samples. Therefore, advanced diagnostic techniques for assessing the technical condition of piled piers need to be studied. The impact vibration test (IVT) is a powerful non-destructive evaluation method that indicates the overall health of structures, e.g., underground and foundation structures, according to official standards. Hence, the IVT is expected to help engineers detect the potential deterioration of overall structures. It is fundamental that, if a structure is degraded, its natural frequency will be affected. A structure’s health index and technical condition are determined based on this change. However, the IVT does not seem to be widely applied to piled piers, with no published standard; hence, controversial issues related to accuracy and reliability still remain. This motivates the present study to recommend an adjusted factor (equal to 1.16) for the health index (classified in official standards for other structures) through numerical and experimental approaches before officially applying the IVT method to piled piers. The current work focuses on the health index using the design natural frequency, which is more practical in common cases where previous historical data and the standard natural frequency are unavailable. This study also examines a huge number of influencing factors and situations through theoretical analysis, experience, and field experiments to propose an adjusted indicator. The results are achieved with several assumptions of damages, such as the degradation of materials and local damages to structural components. With the proposed adjusted indicator, the overall health of piled piers can be assessed quickly and accurately by IVT inspections in cases of incidents, accidents due to collisions, cargo falls during loading and unloading, or subsidence and erosion due to natural disasters, storms, and floods. Full article
Show Figures

Figure 1

Back to TopTop