Oligomerization & Trafficking of Opioid Receptors

A special issue of Cells (ISSN 2073-4409).

Deadline for manuscript submissions: closed (15 October 2013) | Viewed by 14978

Special Issue Editors


E-Mail Website
Guest Editor
Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
Interests: enteric nervous system and microbiome-gut-brain axis

E-Mail Website
Guest Editor
Neuroscience, UMN Twin Cities, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
Interests: investigating the mechanisms underlying the constitutive induced heteromerization of opioid receptors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It has been found that mu-, delta- and kappa-opioid receptors that belong to G-protein-coupled receptors (GPCRs receptor group can form oligomeric complexes with each other (e.g., DOR-KOR, DOR-MOR) when co-expressed by the same cell. Pharmacological studies indicate that oligomers of opioid receptors react differently to opioid ligands in comparison to their corresponding homomers. Oligomerizatin can be both cell- and tissue-specific and can reflect a pathophysiological condition. There is a suggestion to treat oligomeric opioid receptors as a novel drug target group for which different opioid compounds have to be developed. In addition to differences in ligand selectivity and potency, it appears that desensitization/trafficking of oligomeric opioid receptors is controlled differently compared to homomeric receptors. Oligomerization of of opioid receptors represents a significant challenge in developing potent opioid analgesic compounds of high specificity and minimal negative side effects such as tolerance and dependence. In spite of recent advances in unraveling the process of oligomerization of opioid receptors the mechanisms underlying dynamic interactions between different types of opioid receptors to form heteromers/oligomers are not fully understood. It is not clear, for example, how many specific intracellular factors serve as shaperons that regulate oligomerization of opioid receptors and what controls their plasma membrane-cytoplasm cycling dynamics.
In this special guest issue on " Oligomerization & Trafficking of Opioid Receptors" in the Journal Cells, research articles, technical notes as well as reviews are grouped together to shed light on the mechanisms regulating oligomerization of opioid receptors and their trafficking within the cell. The intent of this special issue is to serve as a forum allowing cell biologists and pharmacologists to exchange their experimental data and theories that can help better understand cellular and biochemical mechanisms of the opioid receptor function.

Dr. Catia Sternini
Prof. Dr. Alexander E. Kalyuzhny
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mu-, delta- and kappa-opioid receptors
  • bivalent opioid ligand
  • FRET & BRET studies of oligomerization
  • immunocytochemical analysis of oligomerization
  • pain
  • tolerance and dependence
  • trafficking & desensitization of opioid receptors
  • signal transduction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

479 KiB  
Review
Molecular Perspectives for mu/delta Opioid Receptor Heteromers as Distinct, Functional Receptors
by Edmund W. Ong and Catherine M. Cahill
Cells 2014, 3(1), 152-179; https://doi.org/10.3390/cells3010152 - 5 Mar 2014
Cited by 22 | Viewed by 7735
Abstract
Opioid receptors are the sites of action for morphine and the other opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Understandings of the nature, behavior, and role of these opioid receptor heteromers are developing. [...] Read more.
Opioid receptors are the sites of action for morphine and the other opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Understandings of the nature, behavior, and role of these opioid receptor heteromers are developing. Owing to their constituent monomers’ involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. There is now considerable evidence demonstrating M/DOR to be an extant and physiologically relevant receptor species. Participating in the cellular environment as a distinct receptor type, M/DOR availability is complexly regulated and M/DOR exhibits unique pharmacology from that of other opioid receptors (ORs), including its constituents. M/DOR appears to have a range of actions that vary in a ligand- (or ligands-) dependent manner. These actions can meaningfully affect the clinical effects of opioid drugs: strategies targeting M/DOR may be therapeutically useful. This review presents and discusses developments in these understandings with a focus on the molecular nature and activity of M/DOR in the context of therapeutic potentials. Full article
(This article belongs to the Special Issue Oligomerization & Trafficking of Opioid Receptors)
Show Figures

Figure 1

261 KiB  
Review
Pharmacological Profiles of Oligomerized μ-Opioid Receptors
by Cynthia Wei-Sheng Lee and Ing-Kang Ho
Cells 2013, 2(4), 689-714; https://doi.org/10.3390/cells2040689 - 11 Oct 2013
Cited by 11 | Viewed by 6335
Abstract
Opioids are widely prescribed pain relievers with multiple side effects and potential complications. They produce analgesia via G-protein-protein coupled receptors: μ-, δ-, κ-opioid and opioid receptor-like 1 receptors. Bivalent ligands targeted to the oligomerized opioid receptors might be the key to developing analgesics [...] Read more.
Opioids are widely prescribed pain relievers with multiple side effects and potential complications. They produce analgesia via G-protein-protein coupled receptors: μ-, δ-, κ-opioid and opioid receptor-like 1 receptors. Bivalent ligands targeted to the oligomerized opioid receptors might be the key to developing analgesics without undesired side effects and obtaining effective treatment for opioid addicts. In this review we will update the biological effects of μ-opioids on homo- or hetero-oligomerized μ-opioid receptor and discuss potential mechanisms through which bivalent ligands exert beneficial effects, including adenylate cyclase regulation and receptor-mediated signaling pathways. Full article
(This article belongs to the Special Issue Oligomerization & Trafficking of Opioid Receptors)
Back to TopTop