Synthesis and Application of Aerogel

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Processing and Engineering".

Deadline for manuscript submissions: 15 January 2025 | Viewed by 7793

Special Issue Editor


E-Mail Website
Guest Editor
National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
Interests: aerogel; metamaterial; advanced ceramic; alumina

Special Issue Information

Dear Colleagues,

Aerogels are highly porous networks of nanoparticles that have long been prized for their exceptionally high surface area; they are the smallest density solids in the world. Aerogels are usually developed by drying with supercritical fluids, most frequently CO2, freeze drying, or evaporative drying, from wet gels that were originally created using sol–gel methods. Aerogel has outstanding material properties because of its complex network of nanoparticles and fibers, which are created more by the microstructure of the material than by its physical characteristics. Although aerogel is light and has a low density, it can bear a lot of pressure. Due to their material properties, aerogels can be useful in a range of applications, such as thermal protection, catalysis, sorption media, sensors, electrodes in solid oxide fuel cells, and drug delivery. We welcome submissions of experimental and theoretical studies that explore the potential applications of aerogel materials. This Special Issue will comprise original research articles as well as comprehensive reviews, communications, and perspectives, and will provide a platform to guide the future direction in the subject matter.

Prof. Dr. Guanglei Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aerogel
  • synthesis
  • property
  • application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 9594 KiB  
Article
Exploring the Impact of the Synthesis Variables Involved in the Polyurethane Aerogels-like Materials Design
by Esther Pinilla-Peñalver, Darío Cantero, Amaya Romero and Luz Sánchez-Silva
Gels 2024, 10(3), 209; https://doi.org/10.3390/gels10030209 - 20 Mar 2024
Cited by 4 | Viewed by 1837
Abstract
This research presents a novel approach to synthesising polyurethane (PUR)-based aerogels at the pilot scale, optimizing synthesis variables such as the gelation solvent, solids content, chain extender/isocyanate ratio, and dispersion mode. The solids content (2–11 wt.%) is the parameter with the most influence [...] Read more.
This research presents a novel approach to synthesising polyurethane (PUR)-based aerogels at the pilot scale, optimizing synthesis variables such as the gelation solvent, solids content, chain extender/isocyanate ratio, and dispersion mode. The solids content (2–11 wt.%) is the parameter with the most influence on the density of the aerogels, with a clear decrease in this property as the solids content decreases. On the other hand, it was demonstrated that minimizing the excess of ethylenediamine (used as chain extender) in relation to the isocyanate is a valuable consideration to improve the thermal conductivity of the aerogel. Related to the chain extender/isocyanate ratio, a compromise situation where the initial isocyanate reacts almost completely is crucial. Fourier-transform infrared spectroscopy was used to conduct such monitoring during the reaction. Once the conditions were optimised, the aerogel showing improved properties was synthesised using ethyl acetate as the gelling solvent, a 3.7 wt.% solids content, an ethylenediamine/isocyanate ratio of 0.20, and sonication as the dispersion mode, attaining a thermal conductivity of 0.030 W m−1 K−1 and a density of 0.046 g cm−3. Therefore, the synthesized aerogel emerges as a promising candidate for use in the construction and automotive industries. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel)
Show Figures

Graphical abstract

15 pages, 12491 KiB  
Article
One-Pot Sol–Gel Synthesis of Highly Insulative Hybrid P(AAm-CO-AAc)-Silica Aerogels with Improved Mechanical and Thermal Properties
by Akshay A. Ransing, Rushikesh P. Dhavale, Vinayak G. Parale, Uzma K. H. Bangi, Haryeong Choi, Wonjun Lee, Jiseung Kim, Qi Wang, Varsha D. Phadtare, Taehee Kim, Wook Ki Jung and Hyung-Ho Park
Gels 2023, 9(8), 651; https://doi.org/10.3390/gels9080651 - 12 Aug 2023
Cited by 3 | Viewed by 1582
Abstract
Silica aerogels and their derivatives have outstanding thermal properties with exceptional values in the thermal insulation industry. However, their brittle nature restricts their large-scale commercialization. Thus, enhancing their mechanical strength without affecting their thermal insulating properties is essential. Therefore, for the first time, [...] Read more.
Silica aerogels and their derivatives have outstanding thermal properties with exceptional values in the thermal insulation industry. However, their brittle nature restricts their large-scale commercialization. Thus, enhancing their mechanical strength without affecting their thermal insulating properties is essential. Therefore, for the first time, highly thermally stable poly(acrylamide-co-acrylic acid) partial sodium salt is used as a reinforcing polymer to synthesize hybrid P(AAm-CO-AAc)-silica aerogels via epoxy ring-opening polymerization in the present study. Functional groups in P(AAm-CO-AAc) partial sodium salts, such as CONH2 and COOH, acted as nucleophiles for the epoxy ring-opening reaction with (3-glycidyloxypropyl)trimethoxysilane, which resulted in a seven-fold enhancement in mechanical strength compared to that of pristine silica aerogel while maintaining thermal conductivity at less than 30.6 mW/mK and porosity of more than 93.68%. Moreover, the hybrid P(AAm-CO-AAc)-silica aerogel demonstrated improved thermal stability up to 343 °C, owing to the synergetic effect between the P(AAm-CO-AAc) and the silica aerogel, corresponding to the thermal stability and strong covalent bonding among them. These excellent results illustrate that this new synthetic approach for producing hybrid P(AAm-CO-AAc)-silica aerogels is useful for enhancing the mechanical strength of pristine silica aerogel without impairing its thermal insulating property and shows potential as an industrial heat insulation material. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel)
Show Figures

Graphical abstract

13 pages, 3841 KiB  
Article
Mesoporous Starch Cryoaerogel Material as an Emerging Platform for Oral Drug Delivery: Synthesis and In Vitro Evaluation
by Samira Jafari, Farzaneh Khodaensaf, Cédric Delattre, Vahid Bazargan and Paolina Lukova
Gels 2023, 9(8), 623; https://doi.org/10.3390/gels9080623 - 2 Aug 2023
Cited by 2 | Viewed by 1304
Abstract
In this study, a starch cryoaerogel formulation was developed as a carrier for poorly water-soluble drugs, like atorvastatin. Cryoaerogels were generated through a sol–gel method combined with a freeze-drying technique, and atorvastatin was incorporated into the obtained mesoporous systems during the solvent exchange [...] Read more.
In this study, a starch cryoaerogel formulation was developed as a carrier for poorly water-soluble drugs, like atorvastatin. Cryoaerogels were generated through a sol–gel method combined with a freeze-drying technique, and atorvastatin was incorporated into the obtained mesoporous systems during the solvent exchange stage. The formulated drug-loaded polymer structures were characterized in terms of their physicochemical properties, solid-state behavior, and cytotoxicity. They had a pore size of 27.56 nm and a drug loading size of 38.60%. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analyses indicated that atorvastatin was successfully incorporated into the cryoaerogel pores. The amorphous nature of the loaded drug was confirmed via X-ray diffraction (XRD). Furthermore, after the atorvastatin incorporation into the cryogel, the volume of nitrogen adsorbed on one gram of cryoaerogel (Vm), as well as the specific surface area (aBET) were reduced. The comparison between the drug release profiles of crystalline atorvastatin and the loaded formulation of atorvastatin showed that by including the drug into the pores of the developed cryoaerogel matrix its solubility was significantly improved—the time for the dissolution of 30% pure atorvastatin (t30%) was approximately 4 h, whereas the determined t30% for the formulated cryoaerogels was only 1 h. Moreover, the data from the MTT assay illustrated that the designed cryoaerogel could be used as a safe oral atorvastatin delivery system. According to obtained results, it could be concluded that the starch cryoaerogel formulation is a promising candidate for oral delivery of poorly water-soluble therapeutic agents. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel)
Show Figures

Graphical abstract

Review

Jump to: Research

15 pages, 3011 KiB  
Review
A Review of High-Temperature Aerogels: Composition, Mechanisms, and Properties
by Conghui Wang, Letian Bai, Hongxin Xu, Shengjian Qin, Yanfang Li and Guanglei Zhang
Gels 2024, 10(5), 286; https://doi.org/10.3390/gels10050286 - 23 Apr 2024
Cited by 3 | Viewed by 2520
Abstract
High-temperature aerogels have garnered significant attention as promising insulation materials in various industries such as aerospace, automotive manufacturing, and beyond, owing to their remarkable thermal insulation properties coupled with low density. With advancements in manufacturing techniques, the thermal resilience of aerogels has considerable [...] Read more.
High-temperature aerogels have garnered significant attention as promising insulation materials in various industries such as aerospace, automotive manufacturing, and beyond, owing to their remarkable thermal insulation properties coupled with low density. With advancements in manufacturing techniques, the thermal resilience of aerogels has considerable improvements. Notably, polyimide-based aerogels can endure temperatures up to 1000 °C, zirconia-based aerogels up to 1300 °C, silica-based aerogels up to 1500 °C, alumina-based aerogels up to 1800 °C, and carbon-based aerogels can withstand up to 2500 °C. This paper systematically discusses recent advancements in the thermal insulation performance of these five materials. It elaborates on the temperature resistance of aerogels and elucidates their thermal insulation mechanisms. Furthermore, it examines the impact of doping elements on the thermal conductivity of aerogels and consolidates various preparation methods aimed at producing aerogels capable of withstanding temperatures. In conclusion, by employing judicious composition design strategies, it is anticipated that the maximum tolerance temperature of aerogels can surpass 2500 °C, thus opening up new avenues for their application in extreme thermal environments. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel)
Show Figures

Figure 1

Back to TopTop