Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2915 KiB  
Article
Morphological, Phytochemical, and Photosynthetic Performance of Grafted Tomato Seedlings in Response to Different LED Light Qualities under Protected Cultivation
by Seyedreza Soltani, Hossein Arouiee, Reza Salehi, Seyed Hossein Nemati, Moein Moosavi-Nezhad, Nazim S. Gruda and Sasan Aliniaeifard
Horticulturae 2023, 9(4), 471; https://doi.org/10.3390/horticulturae9040471 - 9 Apr 2023
Cited by 7 | Viewed by 1820
Abstract
Healing and acclimatization are critical in vegetable grafting under controlled environments. Here, we investigated the impacts of LED light qualities on the morphological traits and photosynthetic performance of grafted tomato seedlings. Seeds of the tomatoes “DRW 7806 F1” and “Maxifort” (Solanum lycopersicum × Solanum [...] Read more.
Healing and acclimatization are critical in vegetable grafting under controlled environments. Here, we investigated the impacts of LED light qualities on the morphological traits and photosynthetic performance of grafted tomato seedlings. Seeds of the tomatoes “DRW 7806 F1” and “Maxifort” (Solanum lycopersicum × Solanum habrochaites) used as scion and rootstock were planted in 104-cell plug trays into a mixture of cocopeat and perlite (volume ratio: 3 to 1). Survival ratio, above- and underground growth, photosynthetic performance, soluble carbohydrate content, pigmentation, and antioxidant enzymes activity were evaluated following 20 days of exposure to different light qualities, including white (35% B, 49% intermediate spectra, 16% R) light as control, blue, red, and a combination of red (68%) and blue with the same light intensity of 75 ± 5 µmol m−2 s−1. The lowest scion diameter, leaf area, root and shoot dry weight, SPAD value, and the highest scion length and amount of soluble carbohydrate were detected in R-exposed seedlings. Moreover, R-exposed seedlings showed leaf epinasty and reduced photosynthetic performance. On the other hand, RB-exposed seedlings showed the highest leaf area, shoot and root dry weight, plant fresh and dry weight, scion stem diameter and photosystem II efficiency. In addition, superoxide dismutase activity was increased in R-exposed seedlings, while guaiacol peroxidase activity was enhanced in seedlings grown in RB. In conclusion, a combination of R and B is suggested as the suitable light spectrum to promote plant growth and photosynthetic performance in grafted tomato seedlings. Full article
Show Figures

Figure 1

13 pages, 1403 KiB  
Article
Effects of Different Types of Potassium Fertilizers on Nutrient Uptake by Grapevine
by Wenjie Hu, Jin Wang, Qunxian Deng, Dong Liang, Hui Xia, Lijin Lin and Xiulan Lv
Horticulturae 2023, 9(4), 470; https://doi.org/10.3390/horticulturae9040470 - 8 Apr 2023
Cited by 2 | Viewed by 2041
Abstract
Potassium (K) is the most important element for fruit quality improvement. This study aimed at determining the best K fertilizer type that can promote grape growth and nutrient uptake. Specifically, four types of K fertilizers (complex fertilizer, potassium nitrate, potassium sulfate, and potassium [...] Read more.
Potassium (K) is the most important element for fruit quality improvement. This study aimed at determining the best K fertilizer type that can promote grape growth and nutrient uptake. Specifically, four types of K fertilizers (complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate) were applied to grapevines grown in plastic pots, and then their effects on grape growth and nutrient uptake were explored. Results showed that the complex fertilizer and potassium nitrate treatments increased the biomass of the grapevine plants, whereas the other fertilizers had no significant effects on the biomass. Only the potassium nitrate treatment increased the contents of photosynthetic pigments in grapevine leaves. The complex fertilizer and potassium nitrate treatments increased the total N content in the grapevine plants to some extent, whereas the other fertilizer treatments decreased the total N content to some extent. It was also evident that all four K fertilizers increased the total P and K contents in the grapevine plants. Compared to the control, the complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate treatments increased the scion total P content by 20.18%, 9.77%, 12.52%, and 30.81%, respectively, and increased the scion total K content by 15.37%, 8.41%, 20.15%, and 26.48%, respectively. In addition, correlation and grey relational analyses showed that the rootstock stem total N content, rootstock root biomass, and soil alkali-hydrolyzable N concentration were the top three indicators most closely associated with the scion total N content, whereas the rootstock root total P content, soil available P concentration, and rootstock stem total P content were the top three indicators most closely associated with the scion total P content. Additionally, the rootstock root total K content, soil available K concentration, and rootstock root total P content were the top three indicators most closely associated with the scion total K content. Overall, the different K fertilizers can all promote the uptake of P and K by grapevine plants, and the potassium dihydrogen phosphate fertilizer is the best choice. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

15 pages, 3367 KiB  
Article
Comparative Analysis of Glucosinolate and Phenolic Compounds in Green and Red Kimchi Cabbage (Brassica rapa L. ssp. pekinensis) Hairy Roots after Exposure to Light and Dark Conditions
by Sook Young Lee, Haejin Kwon, Jae Kwang Kim, Chang Ha Park, Ramaraj Sathasivam and Sang Un Park
Horticulturae 2023, 9(4), 466; https://doi.org/10.3390/horticulturae9040466 - 7 Apr 2023
Cited by 6 | Viewed by 1675
Abstract
Brassica rapa L. ssp. pekinensis (Lour.) Hanelt (kimchi cabbage) is a major vegetable cultivated in Korea, and its hairy roots (HRs) are rich in glucosinolates and phenolic compounds. This study aimed to induce HRs from cotyledon explants via the transformation of the Agroacterium [...] Read more.
Brassica rapa L. ssp. pekinensis (Lour.) Hanelt (kimchi cabbage) is a major vegetable cultivated in Korea, and its hairy roots (HRs) are rich in glucosinolates and phenolic compounds. This study aimed to induce HRs from cotyledon explants via the transformation of the Agroacterium rhizogenes strain R1000 and examine the glucosinolate and phenolic compounds present in the HRs of two kimchi cabbage (green and red) cultivars after exposure to 16 h light/8 h dark conditions (photosynthetic photon flux density of 54.6 µmol m−2 s−1) and continuous dark conditions. The highest HR production was achieved in the green kimchi cabbage grown under dark conditions (0.37 ± 0.01 DW g/30 mL). The highest glucosinolate and phenolic contents were neoglucobrassicin and catechin hydrate, which were highest in the green kimchi HRs grown under dark (GKHD) conditions (5268.29 ± 292.84 µg/g DW) and green HRs grown under light (GKHL) conditions (203.49 ± 4.70 µg/g DW), respectively. A heat map showed that the red kimchi HRs grown under dark conditions (RKHD) and the GKHL condition accumulated the highest glucosinolate and phenolic contents. Principal component (PCA) and partial least-squares discriminant (PLS-DA) analyses of the 13 identified metabolites showed a clear separation. According to a variable importance in projection (VIP) analysis, quercetin was the most important metabolite, leading to a clear separation. The most suitable conditions for enhancing the glucosinolate and phenolic contents were the GKHD and GKHL conditions, respectively, whereas both compounds were enhanced in the RKHD condition. HRs cultures cultivated under light and dark conditions are a promising method to enhance the production of specific health-promoting bioactive metabolites, which might be helpful in the pharmaceutical and nutraceutical industries. Full article
(This article belongs to the Special Issue Morphology, Palynology and Phytochemicals of Medicinal Plants)
Show Figures

Figure 1

12 pages, 992 KiB  
Review
Review of the Current Research Progress of Seed Germination Inhibitors
by Peng Chenyin, Wu Yu, Shi Fenghou and Shen Yongbao
Horticulturae 2023, 9(4), 462; https://doi.org/10.3390/horticulturae9040462 - 5 Apr 2023
Cited by 3 | Viewed by 6674
Abstract
Germination inhibitors, which inhibit the germination of seeds, spores and other plant reproductive material, are abundant in the plant kingdom and include phenols, cyanides, alkaloids, essential oils, amino acids, etc. These inhibitors can be classified as germination destructors and germination retarders depending on [...] Read more.
Germination inhibitors, which inhibit the germination of seeds, spores and other plant reproductive material, are abundant in the plant kingdom and include phenols, cyanides, alkaloids, essential oils, amino acids, etc. These inhibitors can be classified as germination destructors and germination retarders depending on whether they harm the morphology, structure and physiology of the seed. Germination retarders are closely related to seed dormancy, and exogenous retarders can be used to extend the “dormancy” period of non-dormant seeds or perishable seeds by applying the proper dosage. They have significant potential applications as preservatives for seed preservation following harvest or for the storage of long-term germplasm resources. Germination destructors, as a type of relatively high-efficiency, low-specificity “toxic chemicals”, are of significant benefit in the application of effective and environmentally benign herbicides. At present, the main problems related to the research methods of germination inhibitors include difficulty in determining the specific endogenous substances and the minimum inhibitory concentration to induce dormancy, as well as whether the application of exogenous inhibitors will cause physiological damage to seeds. In the future, we should strengthen the tracking of germination inhibitors, explore the mechanisms of action of specific substances and deeper molecular mechanisms and finally explore new developments and new applications of different inhibitors. Full article
(This article belongs to the Collection Seed Dormancy and Germination of Horticultural Plants)
Show Figures

Figure 1

13 pages, 2394 KiB  
Article
Antibacterial Activity of Ginkgo biloba Extracts against Clavibacter michiganensis subsp. michiganensis, Pseudomonas spp., and Xanthomonas vesicatoria
by Eva Sánchez-Hernández, Vicente González-García, Ana Palacio-Bielsa, Belén Lorenzo-Vidal, Laura Buzón-Durán, Jesús Martín-Gil and Pablo Martín-Ramos
Horticulturae 2023, 9(4), 461; https://doi.org/10.3390/horticulturae9040461 - 5 Apr 2023
Cited by 7 | Viewed by 2354
Abstract
Phytopathogenic bacteria represent a risk to global food production by impacting a variety of crops. The aim of this study was to characterize the contents of bioactive constituents in extracts from Ginkgo biloba L. leaves and fruits and test their activity against six [...] Read more.
Phytopathogenic bacteria represent a risk to global food production by impacting a variety of crops. The aim of this study was to characterize the contents of bioactive constituents in extracts from Ginkgo biloba L. leaves and fruits and test their activity against six phytopathogenic bacteria that affect horticultural crops. Gas chromatography–mass spectrometry (GC−MS) was used for the chemical profiling of the aqueous methanol extracts, and their bacteriostatic activity against Clavibacter michiganensis subsp. michiganensis, Pseudomonas cichorii, Pseudomonas syringae pv. pisi, Pseudomonas syringae pv. syringae, Pseudomonas syringae pv. tomato, and Xanthomonas vesicatoria (formerly Xanthomonas campestris pv. vesicatoria) was determined in vitro through the agar dilution method. The protective effect of the leaf extract was tested in vivo against the most relevant bacterial pathogens based on their economic/scientific importance, i.e., C. michiganensis subsp. michiganensis and P. syringae pv. pisi, in tomato (Solanum lycopersicum L.) and pea (Pisum sativum L.) plants, respectively, under greenhouse conditions. The GC−MS characterization of G. biloba extracts revealed the presence of dihydro-4-hydroxy-2(3H)-furanone, 2,4-dimethyl-3-hexanol, catechol, 3-O-methyl-D-fructose, 4,6-di-O-methyl-α-D-galactose, methyl 2-O-methyl-α-D-xylofuranoside, and 3-methyl mannoside. In vitro growth inhibition tests showed that, while the fruit extract had no activity, the leaf extract exhibited minimum inhibitory concentrations between 500 and 1000 μg mL−1, which may be attributed to the presence of 2,4-dimethyl-3-hexanol and catechol. In vivo tests of the leaf extract demonstrated full protection in tomato and pea plants at 1000 and 1500 μg∙mL−1, respectively. The results indicate that G. biloba leaves may be employed as a biorational source for integrated pest management in horticulture. Full article
Show Figures

Graphical abstract

19 pages, 1580 KiB  
Article
Fatty Acids and Minerals as Markers Useful to Classify Hass Avocado Quality: Ripening Patterns, Internal Disorders, and Sensory Quality
by Pablo Rodríguez, Iris Soto, Jairo Villamizar and Alexander Rebolledo
Horticulturae 2023, 9(4), 460; https://doi.org/10.3390/horticulturae9040460 - 4 Apr 2023
Cited by 3 | Viewed by 2055
Abstract
Hass avocado quality varies by origin, season, and production practices. However, there is a lack of methodologies to guarantee that fruit reaching the market has consistent quality. The aim of this work was to identify predictive markers for quality management. Fruit samples produced [...] Read more.
Hass avocado quality varies by origin, season, and production practices. However, there is a lack of methodologies to guarantee that fruit reaching the market has consistent quality. The aim of this work was to identify predictive markers for quality management. Fruit samples produced under different nutrient management, elevation, date-to-harvest, and growth cycle conditions were analyzed. Dry matter, oil content, internal disorders, sensory attributes, minerals, and fatty acids were evaluated as quality variables. The results highlighted soil and weather differences among orchards. Nutrient management practices based on index balancing in some samples increased both productivity and fruit size. High variability was observed in the dry matter related to the age of the fruit at harvest. Ripening heterogeneity was very large in low-elevation orchards where the fruit was picked relatively early. High flesh mineral contents delayed fruit ripening. At low growing temperatures, more oleic and linoleic acids were present in fruits. The sensory texture and taste descriptors were affected by the fruit age and related to the flesh composition. Logistic, PLS-DA, and biplot models effectively represented the variabilities in the ripening pattern, composition, and sensory profile of avocado fruits and allowed the samples to be grouped according to the internal fruit quality. Full article
Show Figures

Figure 1

18 pages, 5923 KiB  
Article
Effect of Nanopriming with Selenium Nanocomposites on Potato Productivity in a Field Experiment, Soybean Germination and Viability of Pectobacterium carotovorum
by Alla I. Perfileva, Anastasia R. Kharasova, Olga A. Nozhkina, Alexander V. Sidorov, Irina A. Graskova and Konstantin V. Krutovsky
Horticulturae 2023, 9(4), 458; https://doi.org/10.3390/horticulturae9040458 - 3 Apr 2023
Cited by 3 | Viewed by 1988
Abstract
In recent decades, the use of nanocomposites (NCs) in crop production has been actively studied. We have previously shown that chemically synthesized selenium nanocomposites (Se NCs) based on natural polymeric matrices of arabinogalactan (Se/AG NCs), carrageenan (Se/CAR NCs), and starch (Se/ST NCs) stimulated [...] Read more.
In recent decades, the use of nanocomposites (NCs) in crop production has been actively studied. We have previously shown that chemically synthesized selenium nanocomposites (Se NCs) based on natural polymeric matrices of arabinogalactan (Se/AG NCs), carrageenan (Se/CAR NCs), and starch (Se/ST NCs) stimulated the growth and development of potatoes in vitro and had an antibacterial effect against the phytopathogen Clavibacter sepedonicus. It is important to confirm that the results obtained in the laboratory are also reproducible in the field conditions of crop cultivation. In addition, the applications of NCs can be expanded if a wider range of their biological activity is revealed, and the effect on other types of cultivated plants and phytopathogens is shown. In this regard, the purpose of this research was to study the effect of nanopriming with Se NCs on the productivity of potatoes in a field experiment, the germination of soybeans, and the viability of the phytopathogen Pectobacterium carotovorum under in vitro conditions. The study included the use of traditional methods of conducting a field experiment in natural growing conditions, also using microbiological cultures and studying the bacterial profile from the endosphere of potato tubers by the imprint method, germinating Glycine max L. soybean seeds after nanopriming in Petri dishes, followed by the measurement of morphometric and biochemical parameters such as the activity of antioxidant enzymes and content of diene conjugates. Based on the results of field experiments, it was found that the preplant treatment of tubers with Se/AG and Se/CAR NCs stimulated a significant increase in the number of stems in potato plants and tubers per plant, but for Se/AG NC, the increase was observed only in 2020 and 2022, and the stimulating effect of Se/AG and Se/CAR NCs on the weight of tubers was observed only in 2020. In the yield structure, the proportion of marketable seed tubers was increased under the influence of all Se NCs. Endosphere cultures from tubers showed that bacteria were present in only 56% of the tubers in the control, while 78% of the tubers obtained from plants grown from seed tubers treated with Se/AG NC and 100% of the tubers from plants grown from seed tubers treated with Se/ST and Se/CAR NCs contained bacteria. The bacteria were represented by both spore-forming Gram-positive and Gram-negative bacteria of various sizes. The results presented in this article and previously published data showed that the maximum diversity of bacteria was observed after treatment with Se/ST NC. Experiments on potatoes showed that Se/AG NC had the greatest biological effect. In addition, the growth-stimulating effect of these NCs on the biomass of the roots of soybean seedlings was shown. It activated the antioxidant enzymes and reduced the level of diene conjugates (DCs), the amount of which increased significantly after seed biopriming with the phytopathogen Pectobacterium carotovorum. The antibacterial effect of Se/AG NC in relation to the P. carotovorum was observed as a reduction in the growth of the bacterial culture, biofilm formation, and dehydrogenase activity of cells. Thus, it has been shown that Se/AG NC has a stimulating effect on such agriculturally important crops as potatoes and soybeans, as well as an antibacterial effect against Gram-negative and Gram-positive phytopathogenic bacteria. Full article
Show Figures

Figure 1

19 pages, 3714 KiB  
Essay
Identification of Nutritional Ingredients and Medicinal Components of Hawk Tea and Insect Tea Using Widely Targeted Secondary Metabolomics
by Qi Sheng, Xinzhuan Yao, Hufang Chen, Hu Tang and Litang Lu
Horticulturae 2023, 9(4), 457; https://doi.org/10.3390/horticulturae9040457 - 2 Apr 2023
Cited by 1 | Viewed by 1389
Abstract
In this study, the metabolites in insect tea and hawk tea were analyzed by ultra-high performance liquid chromatography–triple quadrupole mass spectrometry. We found 49 metabolites in insect tea and hawk tea that can be used as key active components in traditional Chinese medicine, [...] Read more.
In this study, the metabolites in insect tea and hawk tea were analyzed by ultra-high performance liquid chromatography–triple quadrupole mass spectrometry. We found 49 metabolites in insect tea and hawk tea that can be used as key active components in traditional Chinese medicine, as well as 98 metabolites that can be used as active components of pharmaceutical preparations for the treatment of cancers, hypertension, cardiovascular diseases, etc. Comparative analysis found that insect tea and hawk tea had significant differences in their metabolic profiles. Insect tea contains more metabolites beneficial to human health than hawk tea; insect tea also has higher antioxidant activity in vitro than hawk tea. The results of this study will contribute to the development of new health foods using insect tea. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

15 pages, 2436 KiB  
Article
Growth, Anatomical, and Biochemical Responses of the Space Farming Candidate Brassica rapa L. Microgreens to Low-LET Ionizing Radiation
by Sara De Francesco, Chiara Amitrano, Ermenegilda Vitale, Giulia Costanzo, Mariagabriella Pugliese, Cecilia Arrichiello, Gianluca Ametrano, Paolo Muto, Carmen Arena and Veronica De Micco
Horticulturae 2023, 9(4), 452; https://doi.org/10.3390/horticulturae9040452 - 1 Apr 2023
Cited by 2 | Viewed by 2309
Abstract
An adequate and balanced diet is fundamental in preserving the health of astronauts from several space-induced diseases. Therefore, the integration of a diet with fresh food, rich in bioactive compounds such as microgreens produced directly onboard, may be useful in space for human [...] Read more.
An adequate and balanced diet is fundamental in preserving the health of astronauts from several space-induced diseases. Therefore, the integration of a diet with fresh food, rich in bioactive compounds such as microgreens produced directly onboard, may be useful in space for human nutrition. However, ionizing radiation (IR) in space represents a significant hindrance for organisms, with potential critical outcomes on plant morpho-anatomical, eco-physiological, and biochemical aspects, depending on the plant and IR features (e.g., species, developmental stage, IR dose, and type). In this study, we analyzed the effect of different doses of X-rays (0-control, 0.3, 1, 10, 20, and 30 Gy) on the morpho-anatomical and nutritional traits of microgreens of Brassica rapa L., irradiated at the stage of germinated seeds. After the irradiation, microgreens were cultivated in controlled conditions. At harvest, the morpho-biometric traits were analyzed, along with the leaf functional anatomical traits and the phytochemical content of the aboveground biomass. The results showed that X-ray exposure does not induce detrimental effects on growth, while it stimulates the production of antioxidants, improving plant defense and nutritional value. The overall results support the idea of using this species in space as a supplemental functional food. Full article
Show Figures

Figure 1

20 pages, 2165 KiB  
Review
A Status Review on the Importance of Mulberry (Morus spp.) and Prospects towards Its Cultivation in a Controlled Environment
by Ecaterina-Daniela Baciu, Gabriela-Maria Baci, Adela Ramona Moise and Daniel Severus Dezmirean
Horticulturae 2023, 9(4), 444; https://doi.org/10.3390/horticulturae9040444 - 28 Mar 2023
Cited by 5 | Viewed by 4265
Abstract
One of the major challenges that global society is facing nowadays is finding sustainable and safe methods for crop growth and development. Besides the traditional crops cultivated worldwide (tomatoes, potatoes, lettuce, strawberries, etc.), there is a general trend in the exploitation of polyvalent [...] Read more.
One of the major challenges that global society is facing nowadays is finding sustainable and safe methods for crop growth and development. Besides the traditional crops cultivated worldwide (tomatoes, potatoes, lettuce, strawberries, etc.), there is a general trend in the exploitation of polyvalent plants. Mulberry (Morus spp.) faced no exception; with its undeniable proprieties, it became suitable not only to be used in the sericulture industry, but in the food chain, the pharma industry, and environmental safety. Spare parts of the plants can be used in a very wide range, starting from introducing mulberry leaves in supplements to increase the protein content of a meal to extracting biologically active compounds from fruits and roots to be used in phytotherapy. However, the outstanding proprieties of this plant come with some requirements related to space availability and watering; requirements that can be easily surpassed by using vertical farming methods, such as hydroponic, aeroponic, or aquaponic systems. The present paper aims to evaluate vertical farming techniques’ applicability to mulberry propagation in a controlled environment and their prospects for a more sustainable and safer agricultural practice. Full article
Show Figures

Figure 1

11 pages, 433 KiB  
Article
A Predictive Model of Nutrient Recovery from RAS Drum-Screen Effluent for Reuse in Aquaponics
by Joseph Tetreault, Rachel L. Fogle, Ashly Ramos and Michael B. Timmons
Horticulturae 2023, 9(3), 403; https://doi.org/10.3390/horticulturae9030403 - 21 Mar 2023
Cited by 1 | Viewed by 1846
Abstract
Controlled environment agriculture (CEA) optimizes growth parameters for vegetable and aquaculture production and can be used to address growing global food insecurity. Recirculating aquaculture systems (RAS) generate a nutrient-dense effluent that may result in environmental pollution, but with treatment and integration with hydroponic [...] Read more.
Controlled environment agriculture (CEA) optimizes growth parameters for vegetable and aquaculture production and can be used to address growing global food insecurity. Recirculating aquaculture systems (RAS) generate a nutrient-dense effluent that may result in environmental pollution, but with treatment and integration with hydroponic vegetable production may be repurposed as a naturally derived nutrient solution. This work developed a preliminary model using the system feed rate to calculate a plant-essential nutrient discharge rate in RAS effluent. Loading rate equations were created to calculate the daily mass of nutrients entering the system through fish feed, and discharge rate equations were created to calculate the grams of each nutrient discharged in the effluent per kilogram of feed. Data from previous published work were used for validation. The loading-rate percentage discharged for nutrients present in the effluent was between 2.71% and 64.5%, with several nutrients being prominent pollutants and all being required for vegetable growth. This work provides the preliminary framework for calculating nutrient discharge rates, which can be used to mitigate pollution or develop more precise, naturally derived hydroponic nutrient solutions for a circular bioeconomy in CEA. Full article
(This article belongs to the Special Issue Using Residual Materials as Fertilizers)
Show Figures

Graphical abstract

17 pages, 5226 KiB  
Article
The Effect of Drip Irrigation on the Length and Distribution of Apple Tree Roots
by Pavel Svoboda, Jan Haberle, Michal Moulik, Ivana Raimanová, Gabriela Kurešová and Martin Mészáros
Horticulturae 2023, 9(3), 405; https://doi.org/10.3390/horticulturae9030405 - 21 Mar 2023
Cited by 4 | Viewed by 1783
Abstract
In a three-year experiment (2019–2021), the roots of 7-year-old apple trees (Malus domestica cv. ‘Red Jonaprince’) grown under drip irrigation were studied. The aim of the study was to determine the effect of irrigation on root density at different depths and distances [...] Read more.
In a three-year experiment (2019–2021), the roots of 7-year-old apple trees (Malus domestica cv. ‘Red Jonaprince’) grown under drip irrigation were studied. The aim of the study was to determine the effect of irrigation on root density at different depths and distances from the trunk. The working hypothesis assumed that irrigation significantly affects the total length of apple roots. The irrigation treatments corresponding to the calculated water evapotranspiration (ET100), 50% of the calculated ET (ET50), a control (ET0, no irrigation, under rainfed conditions), and a treatment using double-drip lines (2Drops) were monitored. Soil cores were collected in spring and autumn. The total length of the roots (TRLt) and the length of new vital roots (TRLv) to a depth of 80 cm were evaluated. The effects of treatments were mostly insignificant for the TRLt; only in the dry season in 2019 were the TRLt values of the irrigated treatments (ET50 and ET100) significantly higher, 18.67 km·m−2 and 17.45 km·m−2, in comparison to 11.16 km·m−2 for the ET0, at a 10 cm distance from the tree trunk. The irrigation treatments had a statistically significant effect on the TRLv values near the trunk in 2019 and 2020, while in autumn 2020 and 2021, irrigation significantly affected the TRLv at greater distances from the tree trunk. In summary, the irrigation treatments mostly had no significant effect on the total root length. However, an effect of irrigation on the root length of new vital roots was observed at certain sampling dates and distances from the trunk. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

16 pages, 1215 KiB  
Review
Mechanisms Underlying the C3–CAM Photosynthetic Shift in Facultative CAM Plants
by Shuo Qiu, Ke Xia, Yanni Yang, Qiaofen Wu and Zhiguo Zhao
Horticulturae 2023, 9(3), 398; https://doi.org/10.3390/horticulturae9030398 - 19 Mar 2023
Cited by 5 | Viewed by 3902
Abstract
Crassulacean acid metabolism (CAM), one of three kinds of photosynthesis, is a water-use efficient adaptation to an arid environment. CAM is characterized by CO2 uptake via open stomata during the nighttime and refixation CO2 via the Calvin cycle during the daytime. [...] Read more.
Crassulacean acid metabolism (CAM), one of three kinds of photosynthesis, is a water-use efficient adaptation to an arid environment. CAM is characterized by CO2 uptake via open stomata during the nighttime and refixation CO2 via the Calvin cycle during the daytime. Facultative CAM plants can shift the photosynthesis from C3 to CAM and exhibit greater plasticity in CAM expression under different environments. Though leaf thickness is an important anatomical feature of CAM plants, there may be no anatomical feature changes during the C3–CAM transition for all facultative CAM plants. The shift from C3 photosynthesis to CAM in facultative CAM plants is accompanied by significant changes in physiology including stomata opening, CO2 gas exchange and organic acid fluxes; the activities of many decarboxylating enzymes increase during the shift from C3 to CAM; the molecular changes occur during the photosynthesis C3–CAM shift involved DNA hypermethylation, transcriptional regulation, post-transcriptional regulation and protein level regulation. Recently, omics approaches were used to discover more proceedings underling the C3–CAM transition. However, there are few reviews on the mechanisms involved in this photosynthetic shift in facultative CAM plants. In this paper, we summarize the progress in the comparative analysis of anatomical, physiological, metabolic and molecular properties of facultative CAM plants between C3 and CAM photosynthesis. Facultative CAM plants also show the potential for sustainable food crop and biomass production. We also discuss the implications of the photosynthesis transition from C3 to CAM on horticultural crops and address future directions for research. Full article
(This article belongs to the Special Issue Physiological and Molecular Biology Research on Ornamental Flower)
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
Optimization of Applied Irrigation Water for High Marketable Yield, Fruit Quality and Economic Benefits of Processing Tomato Using a Low-Cost Wireless Sensor
by Antonio El Chami, Raffaele Cortignani, Davide Dell’Unto, Roberto Mariotti, Piero Santelli, Roberto Ruggeri, Giuseppe Colla and Mariateresa Cardarelli
Horticulturae 2023, 9(3), 390; https://doi.org/10.3390/horticulturae9030390 - 17 Mar 2023
Cited by 2 | Viewed by 1387
Abstract
Water management is a key factor to optimize fruit quality and yield of processing tomatoes which are site-specific and influenced by environmental conditions e.g., soil, temperature, precipitation. The aim of this study was to evaluate the efficacity of a low-cost wireless soil moisture [...] Read more.
Water management is a key factor to optimize fruit quality and yield of processing tomatoes which are site-specific and influenced by environmental conditions e.g., soil, temperature, precipitation. The aim of this study was to evaluate the efficacity of a low-cost wireless soil moisture sensor in determining the irrigation level for optimizing the marketable yield, fruit quality and economic profit of processing tomato. A two-years (2017–2018) trial was conducted in open field, applying nine drip irrigation levels controlled by wireless soil moisture capacitance sensors. The irrigation levels were as follows: 13.2, 16.7, 25.4, 33.3, 50.0, 62.3, 82.5, 100 and 186.8% of water restitution based on soil moisture sensor readings. Because of the crop stress induced by heavy rainfalls occurring in 2018 growing season, total and marketable yields reached higher maximum values in 2017 than 2018. In 2017, total and marketable yields were maximized by supplying 92.8% and 96.2% of irrigation level, respectively. Moreover, 95.6% and 91.2% of irrigation level were necessary in 2018 to maximize total and marketable yield, respectively. In both growing seasons, marketable yield variation was due to changes of both fruit number and fruit mean weight. Total soluble solids of fruit juice linearly decreased by increasing the irrigation level with a more pronounced effect in the driest growing season (2017). Economic analysis demonstrated that 100% of irrigation level should be preferred by the Italian farmers since it maximized the operating margins of processing tomatoes in both years. To conclude, the use of the tested low-cost wireless soil moisture sensor is an effective tool to manage the level of irrigation and optimize the processing tomato yield and economic benefits for farmers. Full article
Show Figures

Figure 1

14 pages, 1636 KiB  
Article
Diagnostics and Description of a New Subspecies of Calluna vulgaris (L.) Hull from Western Siberia
by Olga Cherepanova, Irina Petrova, Stanislav Sannikov and Yulia Mishchihina
Horticulturae 2023, 9(3), 386; https://doi.org/10.3390/horticulturae9030386 - 16 Mar 2023
Cited by 1 | Viewed by 1037
Abstract
The article presents the results of the study of fifty populations of common heather (Calluna vulgaris (L.) Hull) collected throughout its range. A phased comparative analysis (genetic, biochemical, anatomical, morphological, and ecological) was carried out with the estimation of indicators that included [...] Read more.
The article presents the results of the study of fifty populations of common heather (Calluna vulgaris (L.) Hull) collected throughout its range. A phased comparative analysis (genetic, biochemical, anatomical, morphological, and ecological) was carried out with the estimation of indicators that included two key populations—Zavodouspenskoe (Pritobolye, Western Siberia) and Luga (Baltic, Eastern Europe). It was concluded that heather growing in Western Siberia should be identified as a separate taxonomic group, giving it the status of a subspecies. The gene pool of Pritobolye populations (including Zavodouspenskoe) is represented by the completely dominant (100%) monohaplotype S, which is not found anywhere else. The heather plant growing in Zavodouspenskoe has a longer lifespan. It is distinguished by larger linear leaf dimensions (length 2.06 ± 0.09 mm), thicker cuticle (4.77 ± 0.33 μm), increased number of trichomes (18.98 ± 0.56), and a reduced number of stomata (13.60 ± 0.63) than that growing in Luga. The new subspecies differs in biochemical composition: twice less content of epicatechin (average 1.992 ± 0.005 mg g−1), three times more myricetin (average 2.975 ± 0.005 mg g−1), twice as much chlorogenic acid (average 2.763 ± 0.004 mg g−1). An ecological feature is that C. vulgaris does not grow in the swamps of Western Siberia and has a small population. This species has a high horticultural potential and requires protection as its population in Western Siberia continues to decline rapidly. Full article
(This article belongs to the Special Issue Horticultural Crop Physiology under Biotic and Abiotic Stresses)
Show Figures

Figure 1

11 pages, 1039 KiB  
Article
A Water Stress–Tolerant Pepper Rootstock Improves the Behavior of Pepper Plants under Deficit Irrigation through Root Biomass Distribution and Physiological Adaptation
by Ramón Gisbert-Mullor, Rodrigo Martín-García, Iva Bažon Zidarić, Nuria Pascual-Seva, Bernardo Pascual, Yaiza Gara Padilla, Ángeles Calatayud and Salvador López-Galarza
Horticulturae 2023, 9(3), 362; https://doi.org/10.3390/horticulturae9030362 - 10 Mar 2023
Cited by 3 | Viewed by 1297
Abstract
The use of rootstocks tolerant to water stress in pepper crops is a complementary technique for saving irrigation water without affecting yields by means of particular rootstock physiological traits, which changes the scion’s perception stress. The present study aimed to analyze the morphological [...] Read more.
The use of rootstocks tolerant to water stress in pepper crops is a complementary technique for saving irrigation water without affecting yields by means of particular rootstock physiological traits, which changes the scion’s perception stress. The present study aimed to analyze the morphological and physiological adaptation of the ‘Cuerno’ pepper cultivar grafted onto tolerant rootstock NIBER® subjected to capacitance sensor-based deficit irrigation. The stomatal conductance, relative water content and leaf water potential parameters were used to confirm the degree of crop stress. Leaf dry weight and root volume were higher in the grafted plants under the control irrigation and stress treatment conditions. Total fresh root biomass and root volume percentage of grafted plants under water stress were 24% and 33% higher, respectively, than the ungrafted plants. The grafted plants subjected to both water stress and control conditions had a higher marketable production than the ungrafted plants. The higher yields obtained using tolerant rootstocks were explained by the reduced blossom-end rot incidence. Full article
(This article belongs to the Special Issue Irrigation in Horticulture Production: Latest Advances and Prospects)
Show Figures

Figure 1

18 pages, 4483 KiB  
Review
Studies on the Molecular Basis of Heterosis in Arabidopsis thaliana and Vegetable Crops
by Saaya Shiraki, Kazumasa Fujiwara, Yoshiki Kamiya, Mst. Arjina Akter, Elizabeth S. Dennis, Ryo Fujimoto and Hasan Mehraj
Horticulturae 2023, 9(3), 366; https://doi.org/10.3390/horticulturae9030366 - 10 Mar 2023
Cited by 1 | Viewed by 2312
Abstract
Heterosis is an important phenomenon for high-yield crop breeding and is utilized for breeding F1 varieties in horticultural crops. However, its molecular mechanism has not been elucidated, and compared to cereals, heterosis is less explored at the molecular level in horticultural crops. [...] Read more.
Heterosis is an important phenomenon for high-yield crop breeding and is utilized for breeding F1 varieties in horticultural crops. However, its molecular mechanism has not been elucidated, and compared to cereals, heterosis is less explored at the molecular level in horticultural crops. In this review, we compiled the new genetic and epigenetic studies on heterosis in horticultural crops. Because of the difficulty of predicting the level of heterosis from the parental genetic distance, molecular approaches are being used to study its molecular basis in horticultural crops. Transcriptome analyses in vegetables have identified photosynthesis-related genes as important in heterosis. Analysis of noncoding RNAs has suggested their involvement in regulating the heterosis of vegetative and fruit tissues. Quantitative trait locus (QTL) analysis has revealed the association of heterozygosity of a specific locus or multiple loci with heterosis of vegetative and fruit tissues. A higher level of DNA methylation was noted in the heterotic F1 of Brassica rapa leafy vegetables, while the roles of other epigenetic modifications such as histone marks have not been explored. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

17 pages, 6880 KiB  
Article
Influence of Different Liquid Spray Pollination Parameters on Pollen Activity of Fruit Trees—Pear Liquid Spray Pollination as an Example
by Limin Liu, Ziyan Liu, Hu Han, Yulin Jiang, Xiongkui He, Yajia Liu, Dongsheng Wang, Xianping Guo and Zhao Liang
Horticulturae 2023, 9(3), 350; https://doi.org/10.3390/horticulturae9030350 - 7 Mar 2023
Cited by 2 | Viewed by 2087
Abstract
Liquid spray pollination (LSP) is widely used in fruit tree pollination. However, the LSP parameters that affect the pollen activity are still unclear. In this study, three LSP parameters that mainly affect the pollen activity were studied: storage time of pollen suspensions, sprayer [...] Read more.
Liquid spray pollination (LSP) is widely used in fruit tree pollination. However, the LSP parameters that affect the pollen activity are still unclear. In this study, three LSP parameters that mainly affect the pollen activity were studied: storage time of pollen suspensions, sprayer parameters and unmanned aerial vehicle sprayer (UAVS) downwash airflow. In addition, sprayer parameters include the recirculation device, pump type, spraying pressure, nozzle size and revolutions per minute (rpm) of the rotary atomizer (RA). The results showed that, with the exception of nozzle size and UAVS downwash airflow, the pollen activity was significantly influenced by LSP parameters. The mean pollen activity decreased by 20.20% when the pollen suspension was stored for 30 min compared to 0 min. The activity of pollen in the tank was dramatically reduced using the recirculation device. The mean pollen activity decreases as the pump production maximum pressure increases. The mean pollen activity decreased from 40.7% to 29.02% when the spraying pressure increased from 0.3 MPa to 2.5 MPa. Additionally, the mean pollen activity decreased from 44.25% to 14.14% as the rpm of RA increased from 3000 rpm to 14,000 rpm. Our study demonstrated that pollen activity would be ensured by appropriate LSP parameters. This study provides a reliable theoretical basis for optimizing and advancing pear LSP technology. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

16 pages, 1447 KiB  
Article
Impact of Sodium Hypochlorite Applied as Nutrient Solution Disinfectant on Growth, Nutritional Status, Yield, and Consumer Safety of Tomato (Solanum lycopersicum L.) Fruit Produced in a Soilless Cultivation
by Maira Lykogianni, Eleftheria Bempelou, Ioannis Karavidas, Christos Anagnostopoulos, Konstantinos A. Aliferis and Dimitrios Savvas
Horticulturae 2023, 9(3), 352; https://doi.org/10.3390/horticulturae9030352 - 7 Mar 2023
Cited by 4 | Viewed by 3645
Abstract
Soilless crop production is spread worldwide. It is a cultivating technique that enhances yield quality and quantity, thus contributing to both food safety and food security. However, in closed-loop soilless crops, the risk of spreading soil-borne pathogens through the recycled nutrient solution makes [...] Read more.
Soilless crop production is spread worldwide. It is a cultivating technique that enhances yield quality and quantity, thus contributing to both food safety and food security. However, in closed-loop soilless crops, the risk of spreading soil-borne pathogens through the recycled nutrient solution makes the establishment of a disinfection strategy necessary. In the current study, sodium hypochlorite was applied to the recycled nutrient solution as a chemical disinfectant to assess its impact on plant growth, leaf gas exchange, fruit yield, tissue mineral composition, and possible accumulation of chlorate and perchlorate residues in tomato fruits. The application of 2.5, 5, and 7.5 mg L−1 of chlorine three times at fortnightly intervals during the cropping period had no impact on plant growth or gas exchange parameters. Furthermore, the application of 2.5 mg L−1 of chlorine led to a significant increase in the total production of marketable fruits (total fruit weight per plant). No consistent differences in nutrient concentrations were recorded between the treatments. Moreover, neither chlorate nor perchlorate residues were detected in tomato fruits, even though chlorate residues were present in the nutrient solution. Therefore, the obtained tomatoes were safe for consumption. Further research is needed to test the application of chlorine in combination with crop inoculation with pathogens to test the efficiency of chlorine as a disinfectant in soilless nutrient solutions. Full article
Show Figures

Graphical abstract

13 pages, 2158 KiB  
Article
Differential Responses of Cherry Tomatoes (Solanum lycopersicum) to Long-Term Heat Stress
by Bo-Mi Park, Hyo-Bong Jeong, Eun-Young Yang, Min-Kyoung Kim, Ji-Won Kim, Wonbyoung Chae, Oak-Jin Lee, Sang Gyu Kim and Sumin Kim
Horticulturae 2023, 9(3), 343; https://doi.org/10.3390/horticulturae9030343 - 6 Mar 2023
Cited by 4 | Viewed by 2402
Abstract
As global warming increases day/night temperatures as well as frequencies of heat waves, studying physiological responses in long-term heat stress is required for sustainable yield production in the future. In this study, effects of long-term heat stress on photosynthetic, morphological, and yield parameters [...] Read more.
As global warming increases day/night temperatures as well as frequencies of heat waves, studying physiological responses in long-term heat stress is required for sustainable yield production in the future. In this study, effects of long-term heat stress on photosynthetic, morphological, and yield parameters of three cherry tomato accessions, HR17, HR22, and HR24, were evaluated. The experiment was conducted under two temperature greenhouse conditions, where temperature set-point for ventilation was 30 °C and 35 °C during the day for 57 days, respectively. Plants were harvested on the 35th days and 57th days after heat treatments, and their physiological and morphological characteristics and yield traits were measured. Under control conditions, HR17 and HR22 had 0.5–0.6 harvest index, while HR24 had 0.3 harvest index. On 35th days after heat treatment, although yield loss percentage of HR17 was high (43%), it produced the highest fruit yield among all three accessions. However, after longer heat treatment, HR24 produced the highest fruit yields among all accessions with the smallest yield loss (34%). Furthermore, yield loss was highly associated with reductions in nitrogen use efficiency and water content in plant body under heat stress. The results of this study will provide breeders with a new insight into selecting heat-tolerant genotypes in cherry tomatoes. Full article
(This article belongs to the Special Issue Horticulture Plants Stress Physiology)
Show Figures

Figure 1

18 pages, 2206 KiB  
Article
Profile of Bioactive Compounds in Orange Juice Related to the Combination of Different Scion/Rootstocks, Packaging and Storage
by Rafaelly Calsavara Martins, Sarita Leonel, Jackson Mirellys Azevedo Souza, Giuseppina Pace Pereira Lima, Magali Leonel, Fernando Ferrari Putti, Gean Charles Monteiro, Patrícia Graosque Ülguim Züge, Gabriel Maluf Napoleão, Ricardo Figueira and Jaime Duarte Filho
Horticulturae 2023, 9(3), 347; https://doi.org/10.3390/horticulturae9030347 - 6 Mar 2023
Cited by 1 | Viewed by 1763
Abstract
Citrus scion/rootstock combinations alter the concentration of bioactive compounds in orange juice. The shelf life of freshly squeezed juice can be maximized through packaging and storage. The profiles of ascorbic (AA), dehydroascorbic acid (DHAA), and phenolic compounds were analyzed in juices of four [...] Read more.
Citrus scion/rootstock combinations alter the concentration of bioactive compounds in orange juice. The shelf life of freshly squeezed juice can be maximized through packaging and storage. The profiles of ascorbic (AA), dehydroascorbic acid (DHAA), and phenolic compounds were analyzed in juices of four sweet orange scions, Sanguínea de Mombuca (SM), Rubi (R), Lue Gin Gong (LGG), and Valência Delta Seedless (VDS), grafted onto ‘Rangpur’ lime (RL) and ‘Swingle’ citrumelo (SC) rootstocks. The juices obtained from the combination of the ‘Rubi’ orange in both rootstocks stood out by their higher concentration of ascorbic acid (AA) and dehydroascorbic acid (DHAA). Overall, all SC-grafted scions showed higher AA and DHAA and some phenolic compound concentrations. In all combinations, phenolic compounds showed the highest concentrations in the juices at the time of fruit extraction and decreased during storage. Dark packaging provided higher bioactive compounds in juices stored for longer periods. These findings can contribute to the diversification of scion/rootstock cultivars in order to increase the variety of orchards by choosing the best combinations for pasteurized orange juice with higher nutritional value. Full article
(This article belongs to the Special Issue Orchard Management under Climate Change)
Show Figures

Figure 1

19 pages, 1988 KiB  
Article
Antioxidant, Antimicrobial, and Anti-Insect Properties of Boswellia carterii Essential Oil for Food Preservation Improvement
by Petra Borotová, Natália Čmiková, Lucia Galovičová, Nenad L. Vukovic, Milena D. Vukic, Eva Tvrdá, Przemysław Łukasz Kowalczewski, Maciej Ireneusz Kluz, Czeslaw Puchalski, Marianna Schwarzová, Ladislav Bakay and Miroslava Kačániová
Horticulturae 2023, 9(3), 333; https://doi.org/10.3390/horticulturae9030333 - 3 Mar 2023
Cited by 7 | Viewed by 3091
Abstract
Boswellia carterii, known as frankincense, is a fragrant medicinal plant. The essential oil from this plant is often used in traditional medicine or aromatherapy. Due to its positive properties, it has potential applications as an antimicrobial agent in medicine and the food [...] Read more.
Boswellia carterii, known as frankincense, is a fragrant medicinal plant. The essential oil from this plant is often used in traditional medicine or aromatherapy. Due to its positive properties, it has potential applications as an antimicrobial agent in medicine and the food industry. The aim of this study was to evaluate the antimicrobial, anti-insect, and antioxidant activities of frankincense essential oil (FEO). The composition of volatile compounds was determined by GC/MS, and the main components were found to be α-pinene (37.0%), α-limonene (19.8%), and p-cymene (6.3%). The antioxidant activity was evaluated with DPPH and ABTS methods with the resulting inhibition of 73.88 ± 0.35% of DPPH radical (6.27 ± 0.17 TEAC) and 97.09 ± 0.48% of ABTS radical cation (5.21 ± 0.07 TEAC). The antimicrobial activity was the strongest against Candida species with inhibition zones in the range of 38.00–44.00 mm and MIC 50 and MIC 90 values of 11.72 and 12.58 μL/mL, respectively. The inhibition activity of the vapor phase was the highest against G+ and G bacteria growing on a carrot with inhibition ranging from 65.14 to 93.67%. The anti-insect activity against O. lavaterae was determined as 100% at 100% concentration and 50% at 25% concentration. The degradation of biofilm was tested with MALDI-TOF MS, and changes in the protein profile were observed. Full article
Show Figures

Figure 1

12 pages, 1225 KiB  
Article
Temperature and Light Spectrum Differently Affect Growth, Morphology, and Leaf Mineral Content of Two Indoor-Grown Leafy Vegetables
by Yun Kong, Joseph Masabni and Genhua Niu
Horticulturae 2023, 9(3), 331; https://doi.org/10.3390/horticulturae9030331 - 2 Mar 2023
Viewed by 2052
Abstract
This study was carried out to determine the effect of three commercial LEDs of different spectra with or without far red (FR) photons on the growth, morphology, and mineral content of two leafy vegetables under two temperatures (30 °C and 21 °C). The [...] Read more.
This study was carried out to determine the effect of three commercial LEDs of different spectra with or without far red (FR) photons on the growth, morphology, and mineral content of two leafy vegetables under two temperatures (30 °C and 21 °C). The two leafy greens were ‘Cegolaine’ lettuce (Lactuca sativa) and ‘Petite Star’ pak choy (Brassica rapa subsp. Chinensis). In each temperature, there were three light spectra: red and blue LED, and white LED with or without FR. All spectra of lights were adjusted to a total photon flux density of 250 μmol m−2 s−1 at the top of the plant canopy. Results indicated that temperature treatment had a significant influence on most measured parameters. When temperature increased from 21 to 30 °C, lettuce shoot fresh and dry weights increased by 30% and 53%, respectively, while those of pak choy increased by approximately 22%. For both species, plants at high temperature had a larger leaf area but lower mineral content compared to those at low temperature. The spectrum treatment had a minor or no effect on the measured traits. In conclusion, the 5% FR did not impact the yield or biomass of either crop and the plant responses to spectra varied with temperature and species. The two temperatures resulted in significant differences in growth, morphology, and leaf mineral content in both species. Full article
(This article belongs to the Special Issue Use and Management of Artificial Light in Horticultural Plants)
Show Figures

Figure 1

32 pages, 1612 KiB  
Review
Fusarium Species Associated with Diseases of Major Tropical Fruit Crops
by Latiffah Zakaria
Horticulturae 2023, 9(3), 322; https://doi.org/10.3390/horticulturae9030322 - 1 Mar 2023
Cited by 22 | Viewed by 9518
Abstract
Mango, banana, papaya, pineapple, and avocado are categorized as major tropical fruits grown for local consumption, export, and sources of income to the growers. These fruit crops are susceptible to infection by Fusarium in the field, and after harvest, it causes root rot, [...] Read more.
Mango, banana, papaya, pineapple, and avocado are categorized as major tropical fruits grown for local consumption, export, and sources of income to the growers. These fruit crops are susceptible to infection by Fusarium in the field, and after harvest, it causes root rot, vascular wilt, stem rot, and fruit rot. Among the most common and economically important Fusarium species associated with diseases of major fruit are F. oxysporum and F. solani, which are prevalent in tropical regions. Other species include F. incarnatum, F. proliferatum, and F. verticilliodes. Most of these species have a wide host range and infect different parts of the plant. Due to the economic importance of these fruit crops, this review highlights the diseases and Fusarium species that infect fruit crops in the field as well as after harvest. Updated information on Fusarium species infecting major tropical fruit crops is important as disease management in the field and after harvest often relies on the causal pathogens. Moreover, major fruit crops are traded worldwide, and newly recorded species associated with these fruit crops are important for biosecurity purposes. Information on the diseases and causal pathogens may help to facilitate routine diagnosis and planning of suitable plant disease management methods. Full article
(This article belongs to the Special Issue Pathogens and Disease Control of Fruit Trees)
Show Figures

Graphical abstract

10 pages, 640 KiB  
Article
Sugar and Organic Acid Content Is Dependent on Tomato (Solanum Lycoperiscum L.) Peel Color
by Magdalena Anđelini, Nikola Major, Nina Išić, Tvrtko Karlo Kovačević, Dean Ban, Igor Palčić, Mira Radunić and Smiljana Goreta Ban
Horticulturae 2023, 9(3), 313; https://doi.org/10.3390/horticulturae9030313 - 28 Feb 2023
Cited by 3 | Viewed by 2311
Abstract
The sensory properties of fruit and vegetables are a result of taste and aroma caused by many volatile and nonvolatile compounds. The sum of organic acids (malic and citric acids) and soluble sugars (fructose and glucose), as well as their balanced combination and [...] Read more.
The sensory properties of fruit and vegetables are a result of taste and aroma caused by many volatile and nonvolatile compounds. The sum of organic acids (malic and citric acids) and soluble sugars (fructose and glucose), as well as their balanced combination and interaction, contributes to the characterization of the tomato flavour. The ratio of sugars and organic acids is the key to the sweetness and sourness of tomatoes. This study aimed to determine the sugar and organic acid content, as well as several physicochemical parameters, of eight tomato landraces from Croatia. All the parameters investigated differed between the tomato landraces. The PLS-DA analysis showed that the most important parameters in tomato landrace discriminatory character are malic acid, fructooligosaccharide content, citric acid, dry matter. The results obtained show a significant positive correlation between tomato dry matter and sugar content. At the same time, fructose and sucrose content is negatively correlated with the green to red hue of tomato peel, as well as positively with the blue to yellow hue, indicating that the sugar content increases with yellow color intensity. The blue to yellow hue of the peel color also positively correlates with citric acid content. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

41 pages, 610 KiB  
Review
Advances in the Strategic Approaches of Pre- and Post-Harvest Treatment Technologies for Peach Fruits (Prunus persica)
by Jin Song Shin, Han Sol Park, Ki Won Lee, Ji Seop Song, Hea Yeon Han, Hye Won Kim and Tae Jin Cho
Horticulturae 2023, 9(3), 315; https://doi.org/10.3390/horticulturae9030315 - 28 Feb 2023
Cited by 5 | Viewed by 4437
Abstract
Peach (Prunus persica) is one of the representative climacteric fruits susceptible to environmental stresses, including microbial contamination. This article analyzed major findings from the literature on pre- and post-harvest technologies for maintaining the quality of peach fruit to figure out the [...] Read more.
Peach (Prunus persica) is one of the representative climacteric fruits susceptible to environmental stresses, including microbial contamination. This article analyzed major findings from the literature on pre- and post-harvest technologies for maintaining the quality of peach fruit to figure out the strengths and limitations of each treatment strategy. The key implication from studies of pre-harvest agents directly applied to the fruit surface or supplemented as fertilizer was the application of a mixture regarding substances with diverse working mechanisms to prevent excessive use of the agent. The common objectives of previous research on pre-harvest treatments were not only the improvement in the quality of harvested fruit but also the storability during long-term refrigeration due to the short lifespan of peaches. In the case of post-harvest treatments, the efficacy was considerably affected by various determinant factors (e.g., a cultivar of fruit, the sort of technologies, and storage environments), and thus operating conditions optimized for peach fruit were described in this article. Whereas, although the combined treatment of technologies categorized into principles (physical, chemical, and biological approaches) has been adopted to achieve the synergistic effect, undesirable antagonistic effects (i.e., the inhibition of efficacies expectable from singular treatments) were also reported to highlight the importance for exploring adequate treatment conditions. Full article
Show Figures

Figure 1

16 pages, 3900 KiB  
Article
Effects of Sewage Treatment Water Supply on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation
by Takahiro Suzuki, Masaru Sakamoto, Hiroshi Kubo, Yui Miyabe and Daisuke Hiroshima
Horticulturae 2023, 9(3), 309; https://doi.org/10.3390/horticulturae9030309 - 24 Feb 2023
Viewed by 1886
Abstract
To develop a way to mass-produce sweet potatoes (Ipomoea batatas (L.) Lam.) as an energy crop to replace fossil fuels, the effects of using a sewage supply as a fertilizer and heat source were investigated. When 25 pots planted with sweet potato [...] Read more.
To develop a way to mass-produce sweet potatoes (Ipomoea batatas (L.) Lam.) as an energy crop to replace fossil fuels, the effects of using a sewage supply as a fertilizer and heat source were investigated. When 25 pots planted with sweet potato vine seedlings were arranged in three layers and cultivated for 160 days from June to November by supplying treated sewage to the root zone, the yield of tuberous roots reached 19.5 kg m−2 due to the massive growth of leaves. In addition, when sweet potato seedlings were replanted in December and treated sewage was supplied to maintain the irrigation water temperature above 15 °C even in winter, overwintering cultivation was successful and 8.4 kg m−2 of tuberous roots were harvested in July. As a result, the annual production rate for 12 months increased to 25.3 kg m−2, about 10 times the national average of 2.4 kg m−2 for open-field cultivation. The results far exceed previously reported maximum production of resource crops, such as sugarcane and eucalyptus, suggesting that the mass production of sweet potatoes by supplying treated sewage could provide an alternative to fossil fuels on a large scale. Full article
(This article belongs to the Special Issue Using Residual Materials as Fertilizers)
Show Figures

Figure 1

16 pages, 3642 KiB  
Article
Effect of Different Cultivation Patterns on Amomum villosum Yield and Quality Parameters, Rhizosphere Soil Properties, and Rhizosphere Soil Microbes
by Butian Wang, Hongmei Chen, Peng Qu, Rong Lin, Suming He, Weifeng Li, Chuanli Zhang, Xuedong Shi, Yi Liu, Huabo Du and Yu Ge
Horticulturae 2023, 9(3), 306; https://doi.org/10.3390/horticulturae9030306 - 23 Feb 2023
Viewed by 1128
Abstract
The forest–medicinal plant management system has benefited the commercial production of Amomum villosum. However, little is known about the influence of different forestlands on the cultivation of A. villosum. The present study investigated the potential differences in the A. villosum yield [...] Read more.
The forest–medicinal plant management system has benefited the commercial production of Amomum villosum. However, little is known about the influence of different forestlands on the cultivation of A. villosum. The present study investigated the potential differences in the A. villosum yield and quality parameters, rhizosphere soil properties, and rhizosphere soil microbiota between a rubber plantation (RP) and a natural secondary forest (NSF). No significant differences in yield or rhizosphere soil properties of A. villosum were observed between RP and NSF, although most of the A. villosum yield parameters, the rhizosphere soil physicochemical properties, and soil enzyme activities were higher in NSF than in RP. Furthermore, the 38 volatile components had significantly higher relative abundances in NSF than in RP. Furthermore, the alpha diversity indices for the microbiota communities in the A. villosum rhizosphere soil indicated that the richness of the bacterial and fungal communities was significantly higher in NSF than in RP. These findings suggest that NSF conditions may be more appropriate than RP conditions for growing A. villosum. The data generated in this study may be useful for increasing the production of high-quality A. villosum via the exploitation of natural environments. Full article
(This article belongs to the Special Issue Advance in Breeding and Cultivation of Medicinal Plants)
Show Figures

Figure 1

11 pages, 1772 KiB  
Article
Differences in Growth and Water Use Efficiency in Four Almond Varieties Grafted onto Rootpac-20
by Sara Álvarez, Lidia Núñez, Hugo Martín, Enrique Barajas and José Manuel Mirás-Avalos
Horticulturae 2023, 9(3), 295; https://doi.org/10.3390/horticulturae9030295 - 22 Feb 2023
Viewed by 1370
Abstract
Almond cultivation in the Mediterranean area has undergone important changes leading to the current trend of intensification. In this scenario, low-vigor rootstocks have recently been developed, such as the ‘Rootpac®’ series, but knowledge about the rootstock’s influence on adaptation to high-density [...] Read more.
Almond cultivation in the Mediterranean area has undergone important changes leading to the current trend of intensification. In this scenario, low-vigor rootstocks have recently been developed, such as the ‘Rootpac®’ series, but knowledge about the rootstock’s influence on adaptation to high-density planting systems is very scarce. The objective of this work was to assess the morphological and physiological response of four almond cultivars grafted on ‘Rootpac-20’. To this end, one-year-old almond plants (Prunus dulcis (Mill) D. A. Webb.) cv ‘Penta’ (P), ‘Guara’ (G), ‘Vialfas’ (V) and ‘Soleta’ (S) were grown in pots, irrigated at field capacity (from June to September). Plant height and trunk diameter were measured periodically, and the water use efficiency of production was determined at the end of the trial. Evapotranspiration was measured throughout the experiment. The trunk diameter was greater in S and G at the end of the trial. Similarly, the tallest plants were G while the shortest ones were P. In general, G and S had a higher water use efficiency than V and P. ‘Soleta’ grafted on ‘Rootpac-20’ had higher evapotranspiration values (+25%), which is an important issue when selecting plant material, especially in the case of limited water availability for irrigation. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

16 pages, 2454 KiB  
Review
Recent Research Advances of Small Regulatory RNA in Fruit Crops
by Fatima Zaman, Meng Zhang, Rong Wu, Qinglin Zhang, Zhengrong Luo and Sichao Yang
Horticulturae 2023, 9(3), 294; https://doi.org/10.3390/horticulturae9030294 - 22 Feb 2023
Cited by 4 | Viewed by 2447
Abstract
MicroRNAs (miRNAs) are endogenous noncoding small RNAs containing 21–24 nucleotides (nt) that regulate gene expression precisely and efficiently at the posttranscriptional level through the negative regulation of target messenger RNA (mRNA) expression, such as translational inhibition or degradation. Likewise, as a controlling element, [...] Read more.
MicroRNAs (miRNAs) are endogenous noncoding small RNAs containing 21–24 nucleotides (nt) that regulate gene expression precisely and efficiently at the posttranscriptional level through the negative regulation of target messenger RNA (mRNA) expression, such as translational inhibition or degradation. Likewise, as a controlling element, miRNA itself is regulated by a variety of factors when performing its basic purposes, such as SNP detection, miRNA purging, methylation, and the circadian clock in model crops. In current years, miRNA-mediated controls have been intensely investigated in horticultural plants, leading to the discovery of numerous novel mechanisms that exhibit significantly greater mechanistic complexity and distinctive regulatory properties than those explored in model species. In fruit crops, miRNAs play a crucial role corresponding to various biological, metabolic functions and environmental challenges, including growth, expansion, response to biotic and abiotic stress, signaling of growth hormones, and the regulation of secondary product metabolism. In this study, we appraisal the current improvement of small regulatory RNA research in fruit crops, emphasizing miRNA mechanisms and their correlation with key trait rule. Considering that miRNAs engaged in the regulation of all aspects of fruit tree life activities, we focus here on their biosynthesis, target genes, function and regulatory network, as well as the mechanistic connection among them, to provide a theoretic base and breakthrough for upcoming exploration on miRNAs in fruit plants. Full article
Show Figures

Figure 1

18 pages, 2595 KiB  
Article
Spinach Responds to Minimal Nutrient Supplementation in Aquaponics by Up-Regulating Light Use Efficiency, Photochemistry, and Carboxylation
by Evangelia Tsoumalakou, Eleni Mente, Nikolaos Vlahos and Efi Levizou
Horticulturae 2023, 9(3), 291; https://doi.org/10.3390/horticulturae9030291 - 21 Feb 2023
Cited by 3 | Viewed by 2584
Abstract
Aquaponics is a promising cultivation technique for combined production of crops and fish, on the condition of tackling certain nutrients deficiencies. The aim of the present study was to examine the limitations imposed by the system on spinach (Spinacia oleracea) growth [...] Read more.
Aquaponics is a promising cultivation technique for combined production of crops and fish, on the condition of tackling certain nutrients deficiencies. The aim of the present study was to examine the limitations imposed by the system on spinach (Spinacia oleracea) growth and functional performance and to identify the minimum nutrient supplementation for their optimization. Spinach was co-cultivated with red tilapia under three treatments; iron (Fe) and iron with potassium (Fe+K) enrichment was compared with the no-external input control. During a 45-day experiment, the photosynthetic performance, photosynthetic machinery efficiency, total chlorophylls content, and leaf reflectance were monitored, along with leaf nutritional state, antioxidant activity, and growth responses of fish and crops. Control plants showed symptoms of Fe deficiency, extensive chlorosis, stunted growth, and functional impairment already from day 10. The latter consisted of a coordinated down-regulation of photochemistry, carboxylation, and light-use efficiency. Fe-treated plants exhibited similar growth and functional performance with Fe+K-treated plants but outperformed them in chlorophyll content, photosynthetic rates, and photochemical efficiency, mainly due to higher quantum yield of electron transport. Fish growth remained unaffected. Fe-deficiency was identified as the major bottleneck for spinach cultivation in closed-loop aquaponics, and our results demonstrate that only Fe supplementation may sufficiently improve spinach function and yield. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

12 pages, 1748 KiB  
Article
Mycorrhization Enhances Vegetative Growth, Leaf Gas Exchange, and Root Development of Micropropagated Philodendron bipinnatifidum Schott ex Endl. Plantlets during Acclimatization
by Yaser Hassan Dewir, Muhammad M. Habib, AbdulAziz A. AlQarawi, Thobayet S. Alshahrani, Ahmed Ali Alaizari, Jahangir A. Malik, Mona S. Alwahibi and Hosakatte Niranjana Murthy
Horticulturae 2023, 9(2), 276; https://doi.org/10.3390/horticulturae9020276 - 17 Feb 2023
Cited by 1 | Viewed by 1924
Abstract
Philodendron bipinnatifidum Schott ex Endl. is a popular ornamental plant that is normally propagated by tissue culture methods. However, the growth and acclimatization of micropropagated plants are tarrying processes. Therefore, in the present study we examined the effect of arbuscular mycorrhizal fungi (AMF) [...] Read more.
Philodendron bipinnatifidum Schott ex Endl. is a popular ornamental plant that is normally propagated by tissue culture methods. However, the growth and acclimatization of micropropagated plants are tarrying processes. Therefore, in the present study we examined the effect of arbuscular mycorrhizal fungi (AMF) Gigaspora albida and G. marginata on the success in the establishment, growth, and development of P. bipinnatifidum plantlets during the acclimatization phase. AMF plants had significantly more leaves (10.67 per plant), leaf area (75.63 cm2), plant height (14.17 cm), shoot fresh weight (3.30 g) and shoot dry weight (0.31 g), according to an analysis of growth characteristics. In comparison, non-AMF plants had lower values for these metrics. In addition, AMF plants had significantly longer main roots (23 cm), total length roots per plantlet (485.73 cm), average root diameter (4.58 mm) per plantlet, number of root tips (236) per plant, total root surface area (697.76 cm2), total root volume (79.98 cm3), roots fresh weight (1.51 g), roots dry weight (0.16 g) than non-AMF plants. AMF-treated plants showed better performance in leaf gas exchange, chlorophyll, and carotenoid content. These results emphasize the need for mycorrhization of micropropagated plants to promote vegetative growth, especially during the acclimatization stage. Full article
(This article belongs to the Special Issue Seed Germination and Micropropagation of Ornamental Plants)
Show Figures

Figure 1

13 pages, 4064 KiB  
Article
Red-TE Homozygous Alleles of MdMYB10 Confer Full-Red Apple Fruit Skin in a High-Temperature Region
by Meili Wang, Yarong Wang, Tiyu Ding, Zhenli Yan, Zhe Zhou, Cuiying Li, Jia-Long Yao and Hengtao Zhang
Horticulturae 2023, 9(2), 270; https://doi.org/10.3390/horticulturae9020270 - 17 Feb 2023
Cited by 1 | Viewed by 2083
Abstract
Apple is a major fruit crop grown worldwide and provides humans with an essential diet and health benefits. One of the health benefits is related to the accumulation of fruit anthocyanin, which also provides fruit with an attractive red colour. It is known [...] Read more.
Apple is a major fruit crop grown worldwide and provides humans with an essential diet and health benefits. One of the health benefits is related to the accumulation of fruit anthocyanin, which also provides fruit with an attractive red colour. It is known that an MdMYB10 allele containing a transposable element (TE) insertion in its promoter (termed Red-TE allele) underlies anthocyanin accumulation and red colouration in the fruit skin of cultivated apples. However, the distribution of this Red-TE allele in wider Malus germplasm accessions is not clear. In this study, we showed that MdMYB10 RNA in fruit skin was specifically expressed from the Red-TE allele by using allele-specific expression analysis of transcriptome data. Apple cultivars and hybrids with homozygous Red-TE alleles showed stronger red colour than those with heterozygous alleles after analysing 65 cultivars and 337 hybrids. Furthermore, both hetero- and homozygous plants growing in the same high-temperature conditions had different colourations. However, the Red-TE allele was not detected in 16 wild apple accessions showing red skin, indicating that the red skin colour of these wild apples was not conferred by the Red-TE allele. These findings provide guidance for selecting cultivars able to develop consistent red colouration under high growth temperature conditions and open the opportunity for identifying novel genetic variants underpinning fruit red colouration in wild apple species. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

21 pages, 99887 KiB  
Article
UAV Photogrammetry-Based Apple Orchard Blossom Density Estimation and Mapping
by Wenan Yuan, Weiyun Hua, Paul Heinz Heinemann and Long He
Horticulturae 2023, 9(2), 266; https://doi.org/10.3390/horticulturae9020266 - 16 Feb 2023
Cited by 4 | Viewed by 2216
Abstract
Thinning is an important routine for apple growers to manage crop load and improve fruit quality, which can be accomplished through manual, chemical, or mechanical manipulation of flowers and fruitlets. Traditionally, blossom thinning relies on human experts’ visual evaluation of the flower load, [...] Read more.
Thinning is an important routine for apple growers to manage crop load and improve fruit quality, which can be accomplished through manual, chemical, or mechanical manipulation of flowers and fruitlets. Traditionally, blossom thinning relies on human experts’ visual evaluation of the flower load, a leading indicator of crop load, which can be imprecise and prone to errors. This study aimed to develop an apple blossom density mapping algorithm utilizing point clouds reconstructed through unmanned aerial vehicle (UAV)-based red-green-blue (RGB) imagery and photogrammetry. The algorithm was based on grid average downsampling and white color thresholding, and it was able to generate top-view blossom density maps of user-defined tree height regions. A preliminary field experiment was carried out to evaluate the algorithm’s accuracy using manual blossom counts of apple tree row sections as ground truths, and a coefficient of determination (R2) of 0.85, a root mean square error (RMSE) of 1307, and a normalized RMSE (NRMSE) of 9.02% were achieved. The algorithm was utilized to monitor the blooming of the apple tree rows and was demonstrated to effectively show blossom density variations between different tree rows and dates. The study results suggested the potential of UAVs as a convenient tool to assist precise blossom thinning in apple orchards, while future research should further investigate the reliability of photogrammetry techniques under different image qualities and flight settings as well as the influence of blossom distribution on algorithm accuracy. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

11 pages, 1156 KiB  
Review
Genetic Components of Self-Incompatibility in Brassica Vegetables
by Fenghua Wang, Yufei Li, Guangyuan Li and Shuangchen Chen
Horticulturae 2023, 9(2), 265; https://doi.org/10.3390/horticulturae9020265 - 16 Feb 2023
Cited by 3 | Viewed by 2082
Abstract
Brassica vegetables are very important to human beings. Self-incompatibility (SI) is a common phenomenon in Brassica. Breeding by SI lines is an important way to utilize heterosis of Brassica vegetables. It is believed that the SI inheritance in Brassica species is controlled by [...] Read more.
Brassica vegetables are very important to human beings. Self-incompatibility (SI) is a common phenomenon in Brassica. Breeding by SI lines is an important way to utilize heterosis of Brassica vegetables. It is believed that the SI inheritance in Brassica species is controlled by three linkage genes on the S-locus, including SRK (S-locus receptor kinase), SCR (S-locus cystine-rich protein)/SP11 (S-locus protein 11), and SLG (S-locus glycoprotein). SRK is the female determinant and SCR/SP11 is the pollen S gene. The expression of SLG is necessary for SRK, and it enhances the SRK-mediated SI reaction. In addition to these three S-locus genes, some other functional molecules also have significant regulatory effects on SI, such as ARC1 (arm repeat containing 1), MLPK (M-locus protein kinase), Exo70A1 (exocyst compounds), THLl/THL2 (thioredoxin H-like), MOD (aquaporin), SLR (S-locus-related glycoprotein), BPCI (pollen calcium-binding protein I), etc. SI is also associated with the dominant/recessive relationship between S alleles. Here, the genetic elements and molecular mechanisms of SI, mainly in Brassica vegetables, are reviewed. Full article
(This article belongs to the Collection Genetic Engineering and Quality Improvement in Vegetable Crops)
Show Figures

Figure 1

13 pages, 2370 KiB  
Article
Application of a Generic Participatory Decision Support System for Irrigation Management for the Case of a Wine Grapevine at Epirus, Northwest Greece
by Ioannis L. Tsirogiannis, Nikolaos Malamos and Penelope Baltzoi
Horticulturae 2023, 9(2), 267; https://doi.org/10.3390/horticulturae9020267 - 16 Feb 2023
Cited by 3 | Viewed by 1379
Abstract
In southern Europe, irrigation is the major water user and thus, development of operational tools that support decisions aiming to improve irrigation management, is of great importance. In this study, a web-based participatory decision support system for irrigation management (DSS), based on the [...] Read more.
In southern Europe, irrigation is the major water user and thus, development of operational tools that support decisions aiming to improve irrigation management, is of great importance. In this study, a web-based participatory decision support system for irrigation management (DSS), based on the principles of UN FAO’s paper 56, without requirement for any special monitoring hardware to be installed in each field, is evaluated for the case of a commercial wine grapevine (Vitis vinifera ‘Vertzami’) located at Epirus (northwest Greece), for two successive years (2021 and 2022). The soil moisture time series that were generated by the DSS’s model were compared to those measured by soil moisture sensors. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) ranged between 2.98–3.22% and 3.63–4.06%, respectively, under various irrigation practices and goals. Irrigation resulted very high yields and Crop Water Productivity (WPC) was 20–44% improved when following the DSS’s recommendations. The results also confirm potential pitfalls of sensor-based soil moisture monitoring and rainfall estimations using mathematical models. Finally, the value of water meters as practical sensors, which could support efficient irrigation management, is underlined. In every case, mindful application of decision support systems that require minimum or no hardware to be installed in each field, could extensively support growers and agronomic consultants to test, document and disseminate good practices and calculate environmental indices. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

18 pages, 3505 KiB  
Article
The Effects of Shading and Nutrient Management on Yield Quality of Vegetable Fern
by Ornprapa Thepsilvisut, Rantiya Iad-ak and Preuk Chutimanukul
Horticulturae 2023, 9(2), 259; https://doi.org/10.3390/horticulturae9020259 - 15 Feb 2023
Viewed by 1961
Abstract
This study investigated the optimization of shading and organic fertilizer applications on vegetable fern growth and yield quality in order to develop guidelines for farmers interested in sustainable vegetable fern production. The experiment was conducted in a split-plot design in RCBD with four [...] Read more.
This study investigated the optimization of shading and organic fertilizer applications on vegetable fern growth and yield quality in order to develop guidelines for farmers interested in sustainable vegetable fern production. The experiment was conducted in a split-plot design in RCBD with four replications. There were three main plots; no shading, 75% shading, and 96% shading. The five sub-plots consisted of no fertilizer application (control), chemical fertilizer at a rate of 92.80 kg N ha−1, and cow manure at rates of 92.80, 185.60, and 278.40 kg N ha−1. A comparison between different shading and fertilizer treatments, combined, demonstrated that 75% shading with the application of cow manure at the rate of 185.60 kg N ha−1 was the most appropriate management for vegetable fern production, with the highest marketable yield recorded (1128.54 kg ha−1 month−1) and a 10-fold yield increase compared to the control (no shading and no fertilizer). This treatment also resulted in good yield quality (crunchy and tender), high concentrations of chlorophyll and vitamin C, and a safe amount of nitrate accumulation for consumers. Full article
Show Figures

Figure 1

13 pages, 4163 KiB  
Article
Genetic Mapping of a Candidate Gene ClIS Controlling Intermittent Stripe Rind in Watermelon
by Yinping Wang, Shixiang Duan, Qishuai Kang, Dongming Liu, Sen Yang, Huanhuan Niu, Huayu Zhu, Shouru Sun, Jianbin Hu, Junling Dou and Luming Yang
Horticulturae 2023, 9(2), 263; https://doi.org/10.3390/horticulturae9020263 - 15 Feb 2023
Cited by 1 | Viewed by 2016
Abstract
Rind pattern is one of the most important appearance qualities of watermelon, and the mining of different genes controlling rind pattern can enrich the variety of consumer choices. In this study, a unique intermittent rind stripe was identified in the inbred watermelon line [...] Read more.
Rind pattern is one of the most important appearance qualities of watermelon, and the mining of different genes controlling rind pattern can enrich the variety of consumer choices. In this study, a unique intermittent rind stripe was identified in the inbred watermelon line WT20. The WT20 was crossed with a green stripe inbred line, WCZ, to construct F2 and BC1 segregating populations and to analyze the genetic characterization of watermelon stripe. Genetic analysis showed that the intermittent stripe was a qualitative trait and controlled by a single dominant gene, ClIS. Fine mapping based on linkage analysis showed that the ClIS gene was located on the 160 Kb regions between 25.92 Mb and 26.08 Mb on watermelon chromosome 6. Furthermore, another inbred watermelon line with intermittent stripe, FG, was re-sequenced and aligned on the region of 160 Kb. Interestingly, only two SNP variants (T/C, A/T) were present in both WT20 and FG inbred lines at the same time. The two SNPs are located in 25,961,768 bp (T/C) and 25,961,773 bp (A/T) of watermelon chromosome 6, which is located in the promoter region of Cla019202. We speculate that Cla019202 is the candidate gene of ClIS which controls the intermittent stripe in watermelon. In a previous study, the candidate gene ClGS was proved to control dark green stripe in watermelon. According to the verification of the two genes ClIS and ClGS in 75 watermelon germplasm resources, we further speculate that the ClGS gene may regulate the color of watermelon stripe, while the ClIS gene regulates the continuity of watermelon stripe. The study provides a good entry point for studying the formation of watermelon rind patterns, as well as providing foundation insights into the breeding of special appearance quality in watermelon. Full article
(This article belongs to the Special Issue Advance in Molecular Mechanism of Horticultural Crops - Pathogens)
Show Figures

Figure 1

20 pages, 4516 KiB  
Article
Estimation of Heterosis and the Combining Ability Effect for Yield and Its Attributes in Field Pea (Pisum sativum L.) Using PCA and GGE Biplots
by Amit Sharma, Rajesh Yadav, Ravika Sheoran, Deepak Kaushik, Tapan Kumar Mohanta, Kartik Sharma, Alpa Yadav, Parmdeep Singh Dhanda and Prashant Kaushik
Horticulturae 2023, 9(2), 256; https://doi.org/10.3390/horticulturae9020256 - 14 Feb 2023
Cited by 6 | Viewed by 2326
Abstract
Field pea (Pisum sativum L.) is a highly nutritious winter-season pulse crop. It is used as food, feed, and fodder and offers nutritional security to low-income people in developing countries. Different graphical approaches like Principal Component Analysis (PCA) and Genotype + Genotype [...] Read more.
Field pea (Pisum sativum L.) is a highly nutritious winter-season pulse crop. It is used as food, feed, and fodder and offers nutritional security to low-income people in developing countries. Different graphical approaches like Principal Component Analysis (PCA) and Genotype + Genotype × Environment (GGE) biplots were used along with the conventional line × tester to identify efficient parents, combining ability effects and distinct heterotic groups in field pea (Pisum sativum L.). The study used a line tester design (9 × 3) for seed yield and its associated traits. In the conventional analysis, lines Aman and HFP 715 and the tester GP02/1108, as well as crosses HFP 715 × GP02/1108, Aman × GP02/1108, and Pant P-243 × HFP 1426 showed the best GCA (General Combining Ability) and SCA (Specific Combining Ability) effects, respectively, for seed yield and its attributes. The σ2SCA > σ2GCA, and σ2D > σ2A in almost all the traits indicated control of non-additive gene effects. High manifestations of heterobeltiosis for seed yield were evidenced by the superiority of 24 out of 27 crosses over the better parent. The highest significant heterobeltiosis was observed in the cross HFP 715 × GP02/1108, followed by IPF 14-16 × GP02/1108, IPF 14-16 × HFP 1426, DDR-23 × HFP 1426, DDR-23 × GP02/1108, and Aman × GP02/1108 for yield and its attributes. The biplot techniques were used to analyze data and compare their results with conventional line × tester analysis. Overall, graphical analysis results were very similar to those of traditional analysis. Consequently, it can surely be assumed that these methods could be helpful in presenting data from field pea breeding experiments carried out with line × tester design. Full article
Show Figures

Figure 1

18 pages, 1559 KiB  
Review
Crucial Roles of Effectors in Interactions between Horticultural Crops and Pathogens
by Ting Liu, Yong Chen, Shiping Tian and Boqiang Li
Horticulturae 2023, 9(2), 250; https://doi.org/10.3390/horticulturae9020250 - 12 Feb 2023
Cited by 2 | Viewed by 2000
Abstract
Horticultural crops suffer from bacterial, fungal, and oomycete pathogens. Effectors are one of the main weapons deployed by those pathogens, especially in the early stages of infection. Pathogens secrete effectors with diverse functions to avoid recognition by plants, inhibit or manipulate plant immunity, [...] Read more.
Horticultural crops suffer from bacterial, fungal, and oomycete pathogens. Effectors are one of the main weapons deployed by those pathogens, especially in the early stages of infection. Pathogens secrete effectors with diverse functions to avoid recognition by plants, inhibit or manipulate plant immunity, and induce programmed cell death. Most identified effectors are proteinaceous, such as the well-studied type-III secretion system effectors (T3SEs) in bacteria, RXLR and CRN (crinkling and necrosis) motif effectors in oomycetes, and LysM (lysin motifs) domain effectors in fungi. In addition, some non-proteinaceous effectors such as toxins and sRNA also play crucial roles in infection. To cope with effectors, plants have evolved specific mechanisms to recognize them and activate effector-triggered immunity (ETI). This review summarizes the functions and mechanisms of action of typical proteinaceous and non-proteinaceous effectors secreted by important horticultural crop pathogens. The defense responses of plant hosts are also briefly introduced. Moreover, potential application of effector biology in disease management and the breeding of resistant varieties is discussed. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

16 pages, 5548 KiB  
Article
Low Nitrogen Stress Promotes Root Nitrogen Uptake and Assimilation in Strawberry: Contribution of Hormone Networks
by Wenjie Zhang, Ting Zhang, Jia Zhang, Weiwei Lei, Lin Zhao, Shuai Wang, Mengyun Shi and Meng Wei
Horticulturae 2023, 9(2), 249; https://doi.org/10.3390/horticulturae9020249 - 12 Feb 2023
Cited by 4 | Viewed by 1942
Abstract
Low nitrogen stress severely impedes crop growth and productivity. There has been substantial research on root adaptation to low nitrogen conditions in many plant species. However, the mechanism underlying the morphological response of the strawberry (Fragaria × ananassa Duch.) root to low-NO [...] Read more.
Low nitrogen stress severely impedes crop growth and productivity. There has been substantial research on root adaptation to low nitrogen conditions in many plant species. However, the mechanism underlying the morphological response of the strawberry (Fragaria × ananassa Duch.) root to low-NO3 or low-NH4+ stress remains poorly understood. Strawberry plants were hydroponically cultivated under 1 mM NO3, 1 mM NH4+, and control (15 mM NO3) conditions to assess the physiological responses of their roots to low nitrogen stress. As a result, low nitrogen stresses increased the fresh weight of root, lateral root density, and root surface area, as well as enhanced the accumulation of indole-3-acetic acid and jasmonic acid while significantly reducing salicylic acid in the roots. Correspondingly, low nitrogen stresses increased PM H+-ATPase activity. Low-NO3 stress enhanced the activities of nitrate reductase and glutamine synthetase, whereas low-NH4+ treatment led to higher glutamine synthetase and glutamate synthase activities. Collectively, the present results demonstrate that low nitrogen stresses enhance nitrogen uptake of strawberry roots by regulating hormones (indole-3-acetic acid, jasmonic acid, and salicylic acid) and thereby mediating PM H+-ATPase activity, while promoting nitrogen metabolism by upregulating the activities of nitrate reductase, glutamine synthetase, and glutamate synthase. In conclusion, low nitrogen conditions may facilitate more efficient acquisition of available N from the soil by strawberry root system. Full article
Show Figures

Graphical abstract

14 pages, 3455 KiB  
Article
Antisense Overexpression of Gγ Subunit CsGG3.1-2 Reduces Soluble Sugar Content and Chilling Tolerance in Cucumber
by Longqiang Bai, Huixin Zhu, Yu Shi, Yaling Li, Yanxiu Miao, Xianchang Yu, Yi Zhang and Yansu Li
Horticulturae 2023, 9(2), 240; https://doi.org/10.3390/horticulturae9020240 - 10 Feb 2023
Cited by 2 | Viewed by 1436
Abstract
Plant G protein γ subunits have multiple functions in growth and development processes and in abiotic stress responses. Few functions of Gγ in horticultural crops have been revealed thus far. In this study, the potential function of CsGG3.1-2, one of the two [...] Read more.
Plant G protein γ subunits have multiple functions in growth and development processes and in abiotic stress responses. Few functions of Gγ in horticultural crops have been revealed thus far. In this study, the potential function of CsGG3.1-2, one of the two alternative splice variants of Gγ gene CsGG3.1 in cucumber (Cucumis sativus L.), was investigated using transgenic plants overexpressing antisense CsGG3.1-2 under the control of the 35S promoter. The tolerance to chilling stress in transgenic plants was significantly decreased. Cold stress-related physiological parameters and the expression of CBFs and their downstream target genes were then measured. Compared with WT, the maximum efficiency of photosystem II (Fv/Fm), antioxidative enzymes activities, soluble protein, and proline accumulation decreased significantly in transgenic plants treated with cold stress, whereas the malonaldehyde (MDA) content increased. However, the overexpression of antisense CsGG3.1-2 did not affect the induction of cold-inducible genes. Quantitative real-time PCR (qPCR) analysis showed the increased expression of CBF genes and their downstream target genes in transgenic plants, suggesting that CsGG3.1-2 affects cold responses via CBF-independent pathways in cucumber. At the same time, the sucrose and fructose contents decreased in transgenic plants under both normal and cold conditions. These findings suggest that soluble sugar deficiency is associated with chilling sensitivity in transgenic plants, and CsGG3.1-2 may have a role in regulating carbohydrate metabolism in cucumber. Full article
(This article belongs to the Special Issue Abiotic Stress Responses of Vegetable Crops)
Show Figures

Figure 1

15 pages, 3372 KiB  
Article
Variability in the Agronomic Behavior of 12 White Grapevine Varieties Grown under Severe Water Stress Conditions in the La Mancha Wine Region
by A. Sergio Serrano, Jesús Martínez-Gascueña, Gonzalo L. Alonso, Cristina Cebrián-Tarancón, M. Dolores Carmona, Adela Mena Morales and Juan L. Chacón-Vozmediano
Horticulturae 2023, 9(2), 243; https://doi.org/10.3390/horticulturae9020243 - 10 Feb 2023
Cited by 1 | Viewed by 1433
Abstract
Viticulture around the world is currently affected by climate change, which is causing an increasing scarcity of water resources necessary for the maintenance of vineyards. Despite the drought hardiness of grapevine (Vitis vinifera L.), this threat seriously compromises its cultivation in the [...] Read more.
Viticulture around the world is currently affected by climate change, which is causing an increasing scarcity of water resources necessary for the maintenance of vineyards. Despite the drought hardiness of grapevine (Vitis vinifera L.), this threat seriously compromises its cultivation in the near future, particularly in wine-growing areas with a semi-arid climate. Identifying varieties capable of producing suitable yields and good-quality grapes under drought conditions is integral to ensuring the sustainability of the wine sector. This study focuses on vines from both minority and widely grown varieties, which were supplied only with the water intended to ensure their survival. The carbon and oxygen isotope ratios, yield, and quality parameters were evaluated on the vines and musts during the period of 2018–2020. The results revealed that not all varieties responded equally well to drought. Albillo Real, Coloraillo, Macabeo, and Verdejo adapted well to drought conditions, simultaneously maintaining high yields and must quality. By contrast, Pedro Ximénez can be considered poorly adapted. This variety was the one that produced the lowest yield and had low acidity levels in the must. Full article
Show Figures

Figure 1

18 pages, 5508 KiB  
Article
Comparative Transcriptome Analysis Reveals Potential Genes Conferring Resistance or Susceptibility to Bacterial Canker in Tomato
by Shuozhen Deng, Ziyan Li, Xinyu Liu, Wencai Yang and Yuqing Wang
Horticulturae 2023, 9(2), 242; https://doi.org/10.3390/horticulturae9020242 - 10 Feb 2023
Cited by 1 | Viewed by 1971
Abstract
Bacterial canker of tomato is a systemic disease caused by Clavibacter michiganensis (Cm), which poses a grave threat to tomato production worldwide. Towards the identification of genes underlying resistance to Cm infection, the transcriptome of the resistant inbred backcross line IBL2353 [...] Read more.
Bacterial canker of tomato is a systemic disease caused by Clavibacter michiganensis (Cm), which poses a grave threat to tomato production worldwide. Towards the identification of genes underlying resistance to Cm infection, the transcriptome of the resistant inbred backcross line IBL2353 carrying the Rcm2.0 locus derived from Solanum habrochaites LA407 and the susceptible Solanum lycopersicum line Ohio88119 was comparatively analyzed after Cm inoculation, and the analysis focused on the genes with different expression patterns between resistant and susceptible lines. Gene ontology (GO) analysis revealed that top terms of differentially expressed genes comprised ubiquitin protein ligases, transcription factors, and receptor kinases. Then we screened out some genes which are potentially associated with the defense response against Cm infection in IBL2353 including the wall-associated receptor kinase-like 20 (WAKL20), and virus-induced gene silencing showed it contributes resistance to Cm infection. In addition to Cm-induced genes related to resistance, the expression of eight homologs from six susceptibility (S) gene families was analyzed. These putative resistance and susceptibility genes are valuable resources for molecular resistance breeding and contribute to the development of new control methods in tomato. Full article
(This article belongs to the Special Issue Genes, Genetics and Breeding of Tomato)
Show Figures

Figure 1

14 pages, 1329 KiB  
Article
Effects of Auxin-Type Plant Growth Regulators and Cold Stress on the Endogenous Polyamines in Pea Plants
by Elžbieta Jankovska-Bortkevič, Zornitsa Katerova, Dessislava Todorova, Jurga Jankauskienė, Rima Mockevičiūtė, Iskren Sergiev and Sigita Jurkonienė
Horticulturae 2023, 9(2), 244; https://doi.org/10.3390/horticulturae9020244 - 10 Feb 2023
Cited by 4 | Viewed by 1813
Abstract
The effect of pre-application of structural auxin analogues TA-12 (1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt) and TA-14 (1-[2-dimethylaminoethoxicarbonylmethyl] naphthalenechlormethylate) on biochemical parameters of pea (Pisum sativum L. cv. Jablo) plants subjected to low temperature (LT, −1 °C, for 24h) was studied. For the first [...] Read more.
The effect of pre-application of structural auxin analogues TA-12 (1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt) and TA-14 (1-[2-dimethylaminoethoxicarbonylmethyl] naphthalenechlormethylate) on biochemical parameters of pea (Pisum sativum L. cv. Jablo) plants subjected to low temperature (LT, −1 °C, for 24h) was studied. For the first time the effects of these auxin analogues, applied with or without LT were investigated on the endogenous polyamine (PA) content. The LT treatment increased free and bound putrescine (Put) and spermine (Spm), conjugated and bound spermidine (Spd), accompanied by a decrease in conjugated Put and Spm, and free Spd. Stress biomarkers hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as proline were augmented by LT treatment. The TAs application decreased conjugated polyamines (Put, Spm and Spd), free Spd, H2O2 and MDA but increased bound Spm and proline in pea plants. The application of TAs before LT lessened the alterations in PAs (mainly in free and bound fractions) and stress biomarkers content caused by LT, and enhanced conjugated Spd and phenolics, which contributed to increased plant cold tolerance. Full article
(This article belongs to the Special Issue Horticultural Crop Physiology under Biotic and Abiotic Stresses)
Show Figures

Figure 1

12 pages, 1519 KiB  
Article
Insights into the Key Genes in Cucumis melo and Cucurbita moschata ToLCNDV Resistance
by Belén Román, Pedro Gómez, Dirk Janssen and Leticia Ruiz
Horticulturae 2023, 9(2), 231; https://doi.org/10.3390/horticulturae9020231 - 8 Feb 2023
Cited by 1 | Viewed by 1890
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV, family Geminiviridae, genus Begomovirus) is a whitefly-transmitted virus that causes widespread damage in Cucurbitaceae and Solaneceae crops worldwide. The Spanish strain, ToLCNDV-ES, affects mainly cucurbit crops and has spread through the Mediterranean basin since [...] Read more.
Tomato leaf curl New Delhi virus (ToLCNDV, family Geminiviridae, genus Begomovirus) is a whitefly-transmitted virus that causes widespread damage in Cucurbitaceae and Solaneceae crops worldwide. The Spanish strain, ToLCNDV-ES, affects mainly cucurbit crops and has spread through the Mediterranean basin since its first detection in 2013 in the south of Spain. The control of the virus has been based on the adoption of measures to control the vector, which have not been sufficient to reduce production losses. Therefore, the identification of key genes for ToLCNDV resistance is essential for the development of resistant plants. Regarding genetic control of resistance in cucurbit crops, one major locus on chromosome 11 and two additional regions in chromosomes 12 and 2 of C. melo linked to ToLCNDV resistance have been described recently. Concerning C. moschata, a major QTL was also identified on chromosome 8 that resulted in synteny with a QTL on chromosome 11 of C. melo. In this work, we investigated the molecular basis of ToLCNDV resistance in contrasting accessions of C. melo and C. moschata by transcriptional characterization of 10 different candidate genes controlling host factors related to proviral or antiviral mechanisms. Two proviral factor genes, ARP4 in C. melo and SYTA in C. moschata, showed clear differences in expression levels when the susceptible and resistant accessions were compared. The knowledge of proviral factors associated with resistance could be used to screen an active mutagenesis TILLING platform. This is the case of C. pepo, in which no ToLCNDV resistance has been described to date. The relationship between the regulation of the genes ARP4 and SYTA, as well as the genome position of the described loci related to ToLCNDV resistance, is also discussed. Full article
(This article belongs to the Special Issue Plant Disease Management: Latest Advances and Prospects)
Show Figures

Figure 1

17 pages, 749 KiB  
Review
Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits
by Hao Wei, Shuai Kong, Vanitha Jayaraman, Dhivya Selvaraj, Prabhakaran Soundararajan and Abinaya Manivannan
Horticulturae 2023, 9(2), 224; https://doi.org/10.3390/horticulturae9020224 - 8 Feb 2023
Cited by 10 | Viewed by 8023
Abstract
Mentha arvensis L. and Mentha × piperita L. are herbal plants belonging to the Lamiaceae family and are widely cultivated for their essential oils and culinary uses. These herbs are commercially valuable mints used in the preparation of herbal formulations, cosmetics, pharmaceuticals, and [...] Read more.
Mentha arvensis L. and Mentha × piperita L. are herbal plants belonging to the Lamiaceae family and are widely cultivated for their essential oils and culinary uses. These herbs are commercially valuable mints used in the preparation of herbal formulations, cosmetics, pharmaceuticals, and in food industries. Due to the presence of potential secondary metabolites, mints were employed to treat various disorders since ancient times in traditional medicines. The extracts of M. arvensis and M. × piperita can improve the function of digestive system, central nervous system and respiratory system of the human body. Majority of the health benefits of these herbs are attributed by the essential oil components. In addition, the administration of M. arvensis and M. × piperita under various pathological conditions studied in vitro and in vivo facilitated the recovery of detrimental ailments. Due to the increasing demand for natural product-based medicines, research is focused on the utilization of phytochemicals to treat various ailments. In order to provide a comprehensive overview of health benefits of M. arvensis and M. × piperita, the present endeavor deals with the antioxidant property, anti-inflammatory property, anti-microbial, and anti-cancer activities of both species. However, a deeper knowledge on the specific metabolites of M. arvensis and M. × piperita and their mode of action against different disease targets will accelerate the discovery of novel natural drugs with less side effects and higher efficiency. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal and Aromatic Plants)
Show Figures

Figure 1

19 pages, 3465 KiB  
Article
Mutual Effects of Zinc Concentration and Ratio of Red-Blue Light on Growth and Nutritional Quality of Flowering Chinese Cabbage Sprouts
by Xiaopeng Li, Kaizhe Liu, Xinyang He, Yongkang Chen, Jiehui Tan, Haozhao Jiang, Rui He, Yamin Li and Houcheng Liu
Horticulturae 2023, 9(2), 226; https://doi.org/10.3390/horticulturae9020226 - 8 Feb 2023
Viewed by 1307
Abstract
The nutritional quality and biomass of various sprouts can be enhanced by Zn and red-blue light, especially the Brassica sprouts. However, the combined effects of this two on sprouts are rarely reported. In this study, different Zn concentrations (0, 1.74, 3.48, 10.43 and [...] Read more.
The nutritional quality and biomass of various sprouts can be enhanced by Zn and red-blue light, especially the Brassica sprouts. However, the combined effects of this two on sprouts are rarely reported. In this study, different Zn concentrations (0, 1.74, 3.48, 10.43 and 17.39 mM) were combined with two ratios of red-blue light-emitting diodes (LEDs) (R: B = 1:2, 1R2B; R: B = 2:1, 2R1B, at 70 μmol m−2 s−1 PPFD, 14 h/10 h, light/dark) to investigate their mutual effects on the growth, mineral elements, and nutritional quality in flowering Chinese cabbage sprouts (FCCS). Fresh weight, dry weight, contents of organic Zn, soluble sugar, vitamin C, total flavonoids, total polyphenol, FRAP (ferric ion-reducing antioxidant power) and DPPH (radical inhibition percentage of 1,1-diphenyl-2-picrylhydrazyl) were significantly increased by Zn supplement (10.43 and 17.39 mM) and 2R1B, while hypocotyl length and moisture content were decreased remarkably by Zn supplement. Total glucosinolates contents in the sprouts increased dramatically under 2R1B compared with 1R2B, while photosynthetic pigments contents decreased. Heat map and principal component analysis showed that 2R1B + 17.39 mM Zn was the optimal treatment for the accumulation of biomass and health-promoting compound in FCCS, suggesting that a suitable combination of light quality and Zn supplement might be beneficial to zinc-biofortified FCCS production. Full article
(This article belongs to the Collection Genetic Engineering and Quality Improvement in Vegetable Crops)
Show Figures

Graphical abstract

16 pages, 2542 KiB  
Article
Exogenous Melatonin Application Induced Morpho-Physiological and Biochemical Regulations Conferring Salt Tolerance in Ranunculus asiaticus L.
by Eman Abdelhakim Eisa, Péter Honfi, Andrea Tilly-Mándy and Iman Mirmazloum
Horticulturae 2023, 9(2), 228; https://doi.org/10.3390/horticulturae9020228 - 8 Feb 2023
Cited by 9 | Viewed by 1990
Abstract
This study presents the effects of exogenous melatonin application at different concentrations (50, 100, and 200 μM) on the morphological, physiological, and antioxidant defense systems of the buttercup plant under salinity stress (4.5 and 5.5 dS·m−1 EC). Expectedly, the salinity stress negatively [...] Read more.
This study presents the effects of exogenous melatonin application at different concentrations (50, 100, and 200 μM) on the morphological, physiological, and antioxidant defense systems of the buttercup plant under salinity stress (4.5 and 5.5 dS·m−1 EC). Expectedly, the salinity stress negatively affected the plant growth parameters, cell membrane stability, and POX enzyme activity of R. asiaticus compared to non-stressed plants. However, in a dose-dependent manner, exogenous melatonin foliar application decreased the salt stress-induced symptoms of retarded vegetative growth, physiological characteristics, and oxidative stress level. The results obtained, revealed the significant effectiveness of exogenous melatonin treatment at 200 μM concentration under salt stress conditions by enhancing the plant growth traits such as chlorophyll and carotenoids content, relative water content, proline content, peroxidase enzyme activity (POD), and by the decreased electrolyte leakage rate, and Na+ content, as well as delaying the emergence of flower buds under salinity stress. The salt tolerance index percentages (STI%) for all estimated characters are also calculated for all studied parameters. This study uncovered the beneficial effect of melatonin in reducing salt stress symptoms that can be used to reduce the salinity effect in ranunculus plant production. Full article
Show Figures

Figure 1

24 pages, 2523 KiB  
Review
Current Acquaintance on Agronomic Biofortification to Modulate the Yield and Functional Value of Vegetable Crops: A Review
by Beppe Benedetto Consentino, Michele Ciriello, Leo Sabatino, Lorena Vultaggio, Sara Baldassano, Sonya Vasto, Youssef Rouphael, Salvatore La Bella and Stefania De Pascale
Horticulturae 2023, 9(2), 219; https://doi.org/10.3390/horticulturae9020219 - 7 Feb 2023
Cited by 17 | Viewed by 2974
Abstract
Fresh vegetables and fruits have always been the mainstays of good nutrition as providers of fiber, beneficial phytochemicals (such as vitamins and phenolic compounds), and minerals. Today and in the future, biofortification is a promising strategy to increase the concentration of these compounds. [...] Read more.
Fresh vegetables and fruits have always been the mainstays of good nutrition as providers of fiber, beneficial phytochemicals (such as vitamins and phenolic compounds), and minerals. Today and in the future, biofortification is a promising strategy to increase the concentration of these compounds. Considering the importance of minerals in human health, the enrichment of fresh produce for consumption has been considered through specific agronomic approaches. This review discusses, in detail, the latest findings on vegetable agronomic biofortification, aimed at increasing the concentration of crucial minerals, such as iron (Fe), zinc (Zn), iodine (I), selenium (Se), molybdenum (Mo), and silicon (Si), in edible portions, focusing on the direct and indirect effects of this strategy. Although agronomic biofortification is considered a feasible technique, the approach is complex due to the many interactions between the microelement bioavailability for both plants and consumers. Therefore, the effects of biofortification on human health and the influence of beneficial and antinutritional compounds were discussed in detail to analyze the advantages and disadvantages of this practice. Full article
(This article belongs to the Special Issue Vegetable Biofortification: Strategies, Benefits and Challenges)
Show Figures

Figure 1

Back to TopTop