ijms-logo

Journal Browser

Journal Browser

Heavy Metal Toxicity: Molecular Mechanisms and Potential Therapies

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Toxicology".

Deadline for manuscript submissions: 20 September 2024 | Viewed by 4877

Special Issue Editor

School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
Interests: pharmacology; toxicology

Special Issue Information

Dear Colleagues,

Heavy metals are widely used in many industries and have widespread occupational and environmental exposure concerns. Many heavy metals are human and animal carcinogens and have the potential to cause other diseases in animals and humans. The focus of this Special Issue in the International Journal of Molecular Sciences is to present novel areas of research to advance our understanding of how heavy metals cause toxicity or disease and potential therapeutics or interventions for those exposed to heavy metals.

We invite investigators working in all fields related to heavy metals to submit original research articles or reviews describing and discussing the recent advancements or developments in the field of heavy metal toxicity, the underlying mechanisms of toxicity, and potential therapies or interventions.

Research Areas may include, but are not limited to:

  • Mechanisms of disease following heavy metal exposure (in vitro or in vivo);
  • Cellular and molecular mechanisms of heavy metal-induced diseases;
  • Therapies or treatments to ameliorate or block heavy metal impacts;
  • Human exposures to heavy metals and effects on health.

Dr. James Wise
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heavy metals
  • wildlife exposures
  • human exposure
  • metal toxicity
  • contamination
  • hexavalent chromium
  • nickel
  • lead
  • arsenic
  • cadmium
  • uranium
  • tungsten

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 3637 KiB  
Article
Hexavalent Chromium Targets Securin to Drive Numerical Chromosome Instability in Human Lung Cells
by Jennifer H. Toyoda, Julieta Martino, Rachel M. Speer, Idoia Meaza, Haiyan Lu, Aggie R. Williams, Alicia M. Bolt, Joseph Calvin Kouokam, Abou El-Makarim Aboueissa and John Pierce Wise, Sr.
Int. J. Mol. Sci. 2024, 25(1), 256; https://doi.org/10.3390/ijms25010256 - 23 Dec 2023
Cited by 2 | Viewed by 690
Abstract
Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we [...] Read more.
Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis. Full article
(This article belongs to the Special Issue Heavy Metal Toxicity: Molecular Mechanisms and Potential Therapies)
Show Figures

Figure 1

17 pages, 3469 KiB  
Article
Increased Lipogenesis Is Important for Hexavalent Chromium-Transformed Lung Cells and Xenograft Tumor Growth
by James T. F. Wise and Kazuya Kondo
Int. J. Mol. Sci. 2023, 24(23), 17060; https://doi.org/10.3390/ijms242317060 - 02 Dec 2023
Viewed by 974
Abstract
Hexavalent chromium, Cr(VI), is a known carcinogen and environmental health concern. It has been established that reactive oxygen species, genomic instability, and DNA damage repair deficiency are important contributors to the Cr(VI)-induced carcinogenesis mechanism. However, some hallmarks of cancer remain under-researched regarding the [...] Read more.
Hexavalent chromium, Cr(VI), is a known carcinogen and environmental health concern. It has been established that reactive oxygen species, genomic instability, and DNA damage repair deficiency are important contributors to the Cr(VI)-induced carcinogenesis mechanism. However, some hallmarks of cancer remain under-researched regarding the mechanism behind Cr(VI)-induced carcinogenesis. Increased lipogenesis is important to carcinogenesis and tumorigenesis in multiple types of cancers, yet the role increased lipogenesis has in Cr(VI) carcinogenesis is unclear. We report here that Cr(VI)-induced transformation of three human lung cell lines (BEAS-2B, BEP2D, and WTHBF-6) resulted in increased lipogenesis (palmitic acid levels), and Cr(VI)-transformed cells had an increased expression of key lipogenesis proteins (ATP citrate lyase [ACLY], acetyl-CoA carboxylase [ACC1], and fatty acid synthase [FASN]). We also determined that the Cr(VI)-transformed cells did not exhibit an increase in fatty acid oxidation or lipid droplets compared to their passage-matched control cells. Additionally, we observed increases in ACLY, ACC1, and FASN in lung tumor tissue compared with normal-adjacent lung tissue (in chromate workers that died of chromate-induced tumors). Next, using a known FASN inhibitor (C75), we treated Cr(VI)-transformed BEAS-2B with this inhibitor and measured cell growth, FASN protein expression, and growth in soft agar. We observed that FASN inhibition results in a decreased protein expression, decreased cell growth, and the inhibition of colony growth in soft agar. Next, using shRNA to knock down the FASN protein in Cr(VI)-transformed BEAS-2B cells, we saw a decrease in FASN protein expression and a loss of the xenograft tumor development of Cr(VI)-transformed BEAS-2B cells. These results demonstrate that FASN is important for Cr(VI)-transformed cell growth and cancer properties. In conclusion, these data show that Cr(VI)-transformation in vitro caused an increase in lipogenesis, and that this increase is vital for Cr(VI)-transformed cells. Full article
(This article belongs to the Special Issue Heavy Metal Toxicity: Molecular Mechanisms and Potential Therapies)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 624 KiB  
Review
Toxicity Mechanisms of Gadolinium and Gadolinium-Based Contrast Agents—A Review
by Susana Coimbra, Susana Rocha, Nícia Reis Sousa, Cristina Catarino, Luís Belo, Elsa Bronze-da-Rocha, Maria João Valente and Alice Santos-Silva
Int. J. Mol. Sci. 2024, 25(7), 4071; https://doi.org/10.3390/ijms25074071 - 06 Apr 2024
Viewed by 638
Abstract
Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with gadolinium release and [...] Read more.
Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with gadolinium release and tissue deposition that may cause short- and long-term toxicity in several organs, including the kidney, the main excretion organ of most GBCAs. Considering the increasing prevalence of chronic kidney disease worldwide and that most of the complications following GBCA exposure are associated with renal dysfunction, the mechanisms underlying GBCA toxicity, especially renal toxicity, are particularly important. A better understanding of the gadolinium mechanisms of toxicity may contribute to clarify the safety and/or potential risks associated with the use of GBCAs. In this work, a review of the recent literature concerning gadolinium and GBCA mechanisms of toxicity was performed. Full article
(This article belongs to the Special Issue Heavy Metal Toxicity: Molecular Mechanisms and Potential Therapies)
Show Figures

Figure 1

19 pages, 1014 KiB  
Review
Hemochromatosis: Ferroptosis, ROS, Gut Microbiome, and Clinical Challenges with Alcohol as Confounding Variable
by Rolf Teschke
Int. J. Mol. Sci. 2024, 25(5), 2668; https://doi.org/10.3390/ijms25052668 - 25 Feb 2024
Viewed by 2036
Abstract
Hemochromatosis represents clinically one of the most important genetic storage diseases of the liver caused by iron overload, which is to be differentiated from hepatic iron overload due to excessive iron release from erythrocytes in patients with genetic hemolytic disorders. This disorder is [...] Read more.
Hemochromatosis represents clinically one of the most important genetic storage diseases of the liver caused by iron overload, which is to be differentiated from hepatic iron overload due to excessive iron release from erythrocytes in patients with genetic hemolytic disorders. This disorder is under recent mechanistic discussion regarding ferroptosis, reactive oxygen species (ROS), the gut microbiome, and alcohol abuse as a risk factor, which are all topics of this review article. Triggered by released intracellular free iron from ferritin via the autophagic process of ferritinophagy, ferroptosis is involved in hemochromatosis as a specific form of iron-dependent regulated cell death. This develops in the course of mitochondrial injury associated with additional iron accumulation, followed by excessive production of ROS and lipid peroxidation. A low fecal iron content during therapeutic iron depletion reduces colonic inflammation and oxidative stress. In clinical terms, iron is an essential trace element required for human health. Humans cannot synthesize iron and must take it up from iron-containing foods and beverages. Under physiological conditions, healthy individuals allow for iron homeostasis by restricting the extent of intestinal iron depending on realistic demand, avoiding uptake of iron in excess. For this condition, the human body has no chance to adequately compensate through removal. In patients with hemochromatosis, the molecular finetuning of intestinal iron uptake is set off due to mutations in the high-FE2+ (HFE) genes that lead to a lack of hepcidin or resistance on the part of ferroportin to hepcidin binding. This is the major mechanism for the increased iron stores in the body. Hepcidin is a liver-derived peptide, which impairs the release of iron from enterocytes and macrophages by interacting with ferroportin. As a result, iron accumulates in various organs including the liver, which is severely injured and causes the clinically important hemochromatosis. This diagnosis is difficult to establish due to uncharacteristic features. Among these are asthenia, joint pain, arthritis, chondrocalcinosis, diabetes mellitus, hypopituitarism, hypogonadotropic hypogonadism, and cardiopathy. Diagnosis is initially suspected by increased serum levels of ferritin, a non-specific parameter also elevated in inflammatory diseases that must be excluded to be on the safer diagnostic side. Diagnosis is facilitated if ferritin is combined with elevated fasting transferrin saturation, genetic testing, and family screening. Various diagnostic attempts were published as algorithms. However, none of these were based on evidence or quantitative results derived from scored key features as opposed to other known complex diseases. Among these are autoimmune hepatitis (AIH) or drug-induced liver injury (DILI). For both diseases, the scored diagnostic algorithms are used in line with artificial intelligence (AI) principles to ascertain the diagnosis. The first-line therapy of hemochromatosis involves regular and life-long phlebotomy to remove iron from the blood, which improves the prognosis and may prevent the development of end-stage liver disease such as cirrhosis and hepatocellular carcinoma. Liver transplantation is rarely performed, confined to acute liver failure. In conclusion, ferroptosis, ROS, the gut microbiome, and concomitant alcohol abuse play a major contributing role in the development and clinical course of genetic hemochromatosis, which requires early diagnosis and therapy initiation through phlebotomy as a first-line treatment. Full article
(This article belongs to the Special Issue Heavy Metal Toxicity: Molecular Mechanisms and Potential Therapies)
Show Figures

Figure 1

Back to TopTop