Special Issue "Spintronics"


A special issue of Materials (ISSN 1996-1944).

Deadline for manuscript submissions: closed (30 June 2014)

Special Issue Editor

Guest Editor
Prof. Dr. Irene D'Amico

Information Centre, Market Square, Department of Physics, University of York, York YO10 5DD, UK
Website: http://www-users.york.ac.uk/~ida500/
Fax: +44 1904 322 214
Interests: spin transport; spin dynamics; spintronics; semiconductor quantum dots; quantum computation; density functional theory

Special Issue Information

Dear Colleagues,

Spintronics – or spin-electronics – is an emerging technology which aims to revolutionize traditional electronics by combining the well-known functionalities derived from the charge of carriers (usually electrons or “holes”) with the properties of their spin degrees of freedom. These can be exploited by engineering interactions between spins and electric or magnetic fields. Alternatively spin behaviour can be influenced by the environment offered by different materials, or by constraints due to the system geometry, or by its patterning with nano-structures.

‘Spintronics’ encompasses by now many different subfields and interlaces with spin-based quantum information. While valuable progress and discoveries have been made so far, important open questions remain, from optimizing spin injection in semiconductor device elements to improving understanding and control of spin dynamics and coherence. This special issue focuses on this mixture of prospective applications and open fundamental problems to provide exciting science and technology for many years to come.

Dr. Irene D'Amico
Guest Editor


Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs).


  • spintronics
  • spin injection
  • spin transport
  • spin coherence
  • spin diffusion
  • spin galvanic effect
  • spin Seebeck effect
  • spin Coulomb drag
  • spin Hall effect
  • spin torque
  • magnetic domain walls
  • magnetic semiconductors
  • topological insulators
  • quantum information
  • magnetic nanoparticles
  • magnetic recording
  • magnetoresistance
  • spin orbit coupling

Published Papers (5 papers)

Download All Papers
Sort by:
Display options:
Select articles Export citation of selected articles as:
Select/unselect all
Displaying article 1-5
p. 2795-2814
by , , ,  and
Materials 2014, 7(4), 2795-2814; doi:10.3390/ma7042795
Received: 11 November 2013 / Revised: 14 March 2014 / Accepted: 26 March 2014 / Published: 9 April 2014
Show/Hide Abstract | Cited by 2 | PDF Full-text (738 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Spintronics)
abstract graphic
p. 1652-1686
by , , ,  and
Materials 2014, 7(3), 1652-1686; doi:10.3390/ma7031652
Received: 9 September 2013 / Revised: 10 February 2014 / Accepted: 11 February 2014 / Published: 4 March 2014
Show/Hide Abstract | Cited by 4 | PDF Full-text (712 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Spintronics)
p. 1473-1482
by , , , , , , , , , ,  and
Materials 2014, 7(3), 1473-1482; doi:10.3390/ma7031473
Received: 2 December 2013 / Revised: 26 December 2013 / Accepted: 18 February 2014 / Published: 25 February 2014
Show/Hide Abstract | Cited by 4 | PDF Full-text (505 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Spintronics)
p. 106-129
by , , , , , , ,  and
Materials 2014, 7(1), 106-129; doi:10.3390/ma7010106
Received: 27 September 2013 / Revised: 16 December 2013 / Accepted: 16 December 2013 / Published: 27 December 2013
Show/Hide Abstract | Cited by 1 | PDF Full-text (1272 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Spintronics)
p. 4523-4531
by , , , , ,  and
Materials 2013, 6(10), 4523-4531; doi:10.3390/ma6104523
Received: 7 August 2013 / Revised: 16 September 2013 / Accepted: 8 October 2013 / Published: 15 October 2013
Show/Hide Abstract | Cited by 1 | PDF Full-text (211 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Spintronics)
Select/unselect all
Displaying article 1-5
Select articles Export citation of selected articles as:

Submitted Papers

Type of Paper: Article
Title: Topological defects in Topological Insulators and bound states at Topological Superconductor vortices
Authors: V. Parente1,2,3, G. Campagnano2, A. Tagliacozzo1,2 and F. Guinea3
Affiliations: 1 Università degli studi di Napoli “Federico II”, Napoli, Italy; 2 CNR-SPIN, Napoli, Italy; 3 Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Spain
Abstract: Scattering of Dirac electrons by topological defects and bound states have been proposed as the most relevant source of resistance in graphene [1]  and  at the boundary surfaces of three dimensional  Topological Insulators (3D-TI).  Striking enough, when a 3D-TI is proximized by a superconductor, a vortex  can bind a Majorana fermionic quasiparticle at the interface [2].

We will discuss the electron cross section for intravalley scattering at an edge dislocation in graphene and its contribution to the resistivity r within the Boltzmann  theory  of transport, including corrections coming from the local stress.  The result will be compared to the resistivity induced by a localized gaussian bump [3], curving the surface. The long wavelength continuous limit will be used throughout. The unifying scheme of the Dirac equation on  a curved space[4,5] allows us to consider topological  point-like defects and bumps for an unrelaxed lattice, on the same foot.  While r is proportional to the carrier concentration n when electrons scatter  off a bump,  an edge dislocation  provides the expected  inverse dependence rµn-1 [6]. Smooth potentials are likely not to change the isospin and the valley of the scattering electrons, nor their energy spectrum drastically, unless the strain  produces gaps or zero energy states[7,8].

Next we present the solution for a bound state at a  screw disclination in a two band 3D-TI like Bi2Se3. When the TI is proximized by a superconductor and a vortex pierces  the TI, a bound state forms at the interfaces in the vortex core, which acts in analogy with the singularity of a screw disclination. If the parity of the order parameter of the superconductor is even, the bound state excitation is a Majorana bound state. This is not the case if the parity is odd [9].


[1] M. I. Katsnelson, F. Guinea  and A. K. Geim,  Phys.Rev. B 2009, 79, 195426.
[2] L. Fu and C.L. Kane, Phys. Rev. Lett. 2008, 100, 096407.
[3] V. Parente, P. Vitale, A. Tagliacozzo and  F. Guinea, unpublished.
[4] F. De Juan, A. Cortijo and M.A. Vozmediano, Phys. Rev. B 2007, 76, 165409.
[5] V. Parente, P. Lucignano,  P. Vitale, A. Tagliacozzo and  F. Guinea, Phys. Rev. B 2011, 83, 075424.
[6] F.Guinea, J. Low. Temp. Phys.2008, 153, 359.
[7] V.M. Pereira, A.H. Castro Neto, and N.M.R. Peres, Phys. Rev. B 2009, 80, 045401.
[8] F. Guinea, M. I. Katsnelson and A. K. Geim, Nat.Phys. 2010, 6, 30.
[9] A. Tagliacozzo, P. Lucignano and F. Tafuri, Phys. Rev. B 2012, 86, 045435.

Keywords: Dirac electrons; topological effects; two band topological insulators; Majorana bound state

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Type of Paper: Article
Atomic Ordering Effects in Highly Spin-Polarized Co-based Full Heusler Alloys
Authors: P.J. Hasnip, C. Loach, J.H. Smith, M.I.J. Probert and V.K. Lazarov
Affiliation: Department of Physics, University of York, York YO10 5DD, UK
Abstract: Co-based full Heusler alloys are predicted to be half-metallic in bulk, making them excellent candidates for spintronics devices such as current-perpendicular-to-plane spin valves. This half-metallicity has yet to be realised in device or thin film heterostructures, a discrepancy often attributed to the level of chemical and structural disorder in the thin films. Such disorder ultimately reduces the spin polarization of the Heusler alloys at the Fermi level, destroying their half-metallicity.

We present a first principles study of the effect of disorder on the spin polarization of the bulk Co-based Heusler alloys Co2MnSi, Co2FeSi and Co2MnxFe1-xSi. The half-metallicity is shown to be lost in the presence of most types of disorder, though in several cases the spin polarization at the Fermi level remains high. Whilst the spin polarization is lost or even reversed when intermixing occurs between the Co sublattice and the Fe/Mn or Si sublattices, the polarization is relatively robust when the Co sublattice is kept intact. Calculations of the disordering energies show that it is particularly favourable energetically to keep the Co sublattice intact, suggesting that high spin polarization may be recovered by suitable annealing. A comparison of the disordering energies across the various Co-based Heuslers provides insight into the ordering trend amongst these materials and the qualitative benefits of annealing at various temperatures. This latter insight is important in guiding the future growth and post-growth treatment of such Heusler-based heterostructures.


Type of Paper: Review
Title: Spin and Charge Excitations in Low Dimensional Electron Liquids
Author: Florent Perez
Affiliation: Institut des NanoSciences de Paris, Université Pierre et Marie Curie, Paris, France
Abstract: We review 15 years of optical exploration of low energy spin and charge excitations, like plasmons, spin-plasmons, spin-waves and individual excitations, of electron gases confined in semi-conductor quantum wells and wires. The electronic Raman scattering probe has, during these years, proven its efficiency in the accurate determination of the dispersion of these excitations. These explorations aimed at improving the understanding of the Coulomb interaction between confined electrons. Recently, the introduction of test-bed spin-polarized electron gases gave an experimental access to spin-resolved Coulomb interactions. Very recently, intriguing interplay between spin-orbit and Coulomb interactions has been discovered.
Keywords: spin-plasmon, plasmon, spin-wave, electron gas, quantum wells, Coulomb interaction, spin-orbit interaction, Raman scattering

Last update: 12 February 2014

Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert