Abiotic Stress Responses in Plants

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 18290

Special Issue Editors


E-Mail Website
Guest Editor
Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
Interests: plant research for the development of bioinspired soft robotics; plant growth; stress; auxin

E-Mail Website
Guest Editor
Department of Botany, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-787 Warsaw, Poland
Interests: plant responses to abiotic stress; legume-rhizobia symbiosis; mycorrhiza; functioning of the host plants and their symbionts under abiotic stress
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Abiotic stress is a significant concern due to its effects on plant survival and productivity; it is responsible for significant losses in crop production worldwide. Abiotic stress can be defined as all the negative impacts caused by non-living factors on an organism. These include drought, salinity, low or high temperatures, contamination, and other extreme conditions. Plants have adapted multiple responses to abiotic stress, making it more challenging to counteract than biotic stress. Therefore, more research is needed to understand the mechanisms different plant species exploit in response to abiotic stress on molecular, cellular, tissue, anatomical, morphological, and physiological levels. This Special Issue of Plants proposes to collect as much information as possible on the responses of plants to abiotic stress and to propose novel solutions to increase the adaptability of the plants to the stress perceived.

Dr. Marilena Ronzan
Dr. Marzena Sujkowska-Rybkowska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 3621 KiB  
Article
Au-Based Nanoparticles Enhance Low Temperature Tolerance in Wheat by Regulating Some Physiological Parameters and Gene Expression
by Yuliya Venzhik, Alexander Deryabin and Kseniya Zhukova
Plants 2024, 13(9), 1261; https://doi.org/10.3390/plants13091261 - 30 Apr 2024
Viewed by 371
Abstract
One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in [...] Read more.
One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents. When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5–50 µg mL−1) on cold tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs’ influence on the cold tolerance of wheat varieties were considered. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

24 pages, 5235 KiB  
Article
Alterations of Photosynthetic and Oxidative Processes Influenced by the Presence of Different Zinc and Cadmium Concentrations in Maize Seedlings: Transition from Essential to Toxic Functions
by Ildikó Jócsák, Ferenc Csima and Katalin Somfalvi-Tóth
Plants 2024, 13(8), 1150; https://doi.org/10.3390/plants13081150 - 20 Apr 2024
Viewed by 472
Abstract
Background: The study examined the impact of varying the concentrations of zinc (Zn) on plant responses, particularly on photosynthetic and oxidative metabolic processes. This investigation aimed to distinguish between the beneficial and harmful effects of Zn on plants, highlighting significant nutrient supply concerns. [...] Read more.
Background: The study examined the impact of varying the concentrations of zinc (Zn) on plant responses, particularly on photosynthetic and oxidative metabolic processes. This investigation aimed to distinguish between the beneficial and harmful effects of Zn on plants, highlighting significant nutrient supply concerns. Methods: The investigation methods were centered around non-invasive methods, such as biophoton emission (delayed fluorescence—DF, ultra-weak bioluminescence—UWLE), fluorescence induction (Fv/Fm) measurements, chlorophyll content estimation (SPAD) and vegetation index (NDVI) determination. Furthermore, the analytical determination of lipid oxidation (MDA level) and antioxidant capacity (FRAP) as well as gene expression studies of the antioxidative enzymes glutathione reductase (GR), glutathione S-transferase (GST) and lipoxygenase (LOX) for essential Zn and nonessential cadmium (Cd) were also carried out in order to clarify toxic symptoms through different Zn investigation approaches. Results: It was possible to identify a metabolic enhancement from 1000 µM; however, stress symptoms from the 2000 µM Zn treatment were noted for both the investigated photosynthetic and oxidative processes. The outcomes of this research contribute to the improvement of Zn mineral-supplementation technology, which is essential for maize growth, and the optimization of agricultural practices. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

17 pages, 3668 KiB  
Article
Changes in Growth and Heavy Metal and Phenolic Compound Accumulation in Buddleja cordata Cell Suspension Culture under Cu, Fe, Mn, and Zn Enrichment
by Alicia Monserrat Vazquez-Marquez, Antonio Bernabé-Antonio, José Correa-Basurto, Cristina Burrola-Aguilar, Carmen Zepeda-Gómez, Francisco Cruz-Sosa, Aurelio Nieto-Trujillo and María Elena Estrada-Zúñiga
Plants 2024, 13(8), 1147; https://doi.org/10.3390/plants13081147 - 19 Apr 2024
Viewed by 489
Abstract
Buddleja cordata cell suspension cultures could be used as a tool for investigating the capabilities of this species to tolerate heavy metals (HMs) and for assessing the effects of HMs on the accumulation of phenolic compounds in this species. It grows in a [...] Read more.
Buddleja cordata cell suspension cultures could be used as a tool for investigating the capabilities of this species to tolerate heavy metals (HMs) and for assessing the effects of HMs on the accumulation of phenolic compounds in this species. It grows in a wide range of habitats in Mexico, including ultramafic soils, and mobilizes some HMs in the soil. The mobilization of these HMs has been associated with phenolic substances. In addition, this species is used in Mexican traditional medicine. In the present study, a B. cordata cell suspension culture was grown for 18 days in a culture medium enriched with Cu (0.03–0.25 mM), Fe (0.25–1.5 mM), Mn (0.5–3.0 mM), or Zn (0.5–2.0 mM) to determine the effects of these HMs on growth and HM accumulation. We also assessed the effects of the HMs on phenolic compound accumulation after 1 and 18 days of HM exposure. Cells were able to grow at almost all tested HM concentrations and accumulated significant amounts of each HM. The highest accumulation levels were as follows: 1160 mg Cu kg−1, 6845 mg Fe kg−1, 3770 mg Mn kg−1, and 6581 mg Zn kg−1. Phenolic compound accumulation was affected by the HM exposure time and corresponded to each HM and its concentration. Future research should analyze whole plants to determine the capabilities of Buddleja cordata to accumulate abnormally high amounts of HM and to evaluate the physiological impact of changes in the accumulation of phenolic compounds. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

20 pages, 2854 KiB  
Article
Copper Oxide Nanoparticles Induced Growth and Physio-Biochemical Changes in Maize (Zea mays L.) in Saline Soil
by Hina Shafiq, Muhammad Yousaf Shani, Muhammad Yasin Ashraf, Francesco De Mastro, Claudio Cocozza, Shahid Abbas, Naila Ali, Zaib-un-Nisa, Aqsa Tahir, Muhammad Iqbal, Zafran Khan, Nimra Gul and Gennaro Brunetti
Plants 2024, 13(8), 1080; https://doi.org/10.3390/plants13081080 - 11 Apr 2024
Viewed by 503
Abstract
Research on nanoparticles (NPs) is gaining great attention in modulating abiotic stress tolerance and improving crop productivity. Therefore, this investigation was carried out to evaluate the effects of copper oxide nanoparticles (CuO-NPs) on growth and biochemical characteristics in two maize hybrids (YH-5427 and [...] Read more.
Research on nanoparticles (NPs) is gaining great attention in modulating abiotic stress tolerance and improving crop productivity. Therefore, this investigation was carried out to evaluate the effects of copper oxide nanoparticles (CuO-NPs) on growth and biochemical characteristics in two maize hybrids (YH-5427 and FH-1046) grown under normal conditions or subjected to saline stress. A pot-culture experiment was carried out in the Botanical Research Area of “the University of Lahore”, Lahore, Pakistan, in a completely randomized design. At two phenological stages, both maize hybrids were irrigated with the same amount of distilled water or NaCl solution (EC = 5 dS m−1) and subjected or not to foliar treatment with a suspension of CuO-NPs. The salt stress significantly reduced the photosynthetic parameters (photosynthetic rate, transpiration, stomatal conductance), while the sodium content in the shoot and root increased. The foliar spray with CuO-NPs improved the growth and photosynthetic attributes, along with the N, P, K, Ca, and Mg content in the roots and shoots. However, the maize hybrid YH-5427 responded better than the other hybrid to the saline stress when sprayed with CuO-NPs. Overall, the findings of the current investigation demonstrated that CuO-NPs can help to reduce the adverse effects of salinity stress on maize plants by improving growth and physio-biochemical attributes. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

17 pages, 4222 KiB  
Article
Determination of Morpho-Physiological Traits for Assessing Drought Tolerance in Sugarcane
by Warodom Wirojsirasak, Patcharin Songsri, Nakorn Jongrungklang, Sithichoke Tangphatsornruang, Peeraya Klomsa-ard and Kittipat Ukoskit
Plants 2024, 13(8), 1072; https://doi.org/10.3390/plants13081072 - 11 Apr 2024
Viewed by 534
Abstract
Drought is a significant constraint to sugarcane productivity. Therefore, understanding how different varieties of sugarcane respond to drought stress can facilitate breeding programs and set up criteria for selecting drought-tolerant varieties. In the present study, we examined eight morpho-physiological traits to distinguish 40 [...] Read more.
Drought is a significant constraint to sugarcane productivity. Therefore, understanding how different varieties of sugarcane respond to drought stress can facilitate breeding programs and set up criteria for selecting drought-tolerant varieties. In the present study, we examined eight morpho-physiological traits to distinguish 40 sugarcane genotypes categorized into four groups based on significant differences in cane yield under non-stressed conditions and reduction of cane yield under drought-stressed conditions. The study was conducted during the formative stage in a greenhouse, encompassing both control and drought conditions. Drought treatments resulted in significant changes and differences in the mean values of various morpho-physiological traits. The hierarchical clustering analysis, utilizing stay-green traits such as higher chlorophyll fluorescence ratio (Fv/Fm), leaf chlorophyll content (SPAD), leaf relative water content (RWC), and lower leaf rolling score (LR), leaf drying score (LD), and drought recovery score (DR), successfully grouped 40 sugarcane genotypes into four major clusters, similar to the previously categorized groups. Correlation analysis showed significant relationships among cane yield, reduction of cane yield under drought conditions, and the stay-green traits. Our results demonstrated that morpho-physiological traits contributing to the “stay-green” phenotypes could be useful as selection criteria for drought tolerance in sugarcane. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

15 pages, 9048 KiB  
Article
Relative Water Content, Chlorophyll Index, and Photosynthetic Pigments on Lotus corniculatus L. in Response to Water Deficit
by Luis Ángel González-Espíndola, Aurelio Pedroza-Sandoval, Ricardo Trejo-Calzada, María del Rosario Jacobo-Salcedo, Gabino García de los Santos and Jesús Josafath Quezada-Rivera
Plants 2024, 13(7), 961; https://doi.org/10.3390/plants13070961 - 26 Mar 2024
Viewed by 567
Abstract
This study aimed to evaluate different L. corniculatus L. ecotypes under water-deficit conditions to identify changes in relative water content and photosynthetic pigments as indicators of physiological responses during different years’ seasons. The experiment was conducted in a randomized block design with three [...] Read more.
This study aimed to evaluate different L. corniculatus L. ecotypes under water-deficit conditions to identify changes in relative water content and photosynthetic pigments as indicators of physiological responses during different years’ seasons. The experiment was conducted in a randomized block design with three replicates. Ten treatments were performed as a factorial of 2 × 5, where the first variation factor was the soil water content—no water deficit (NDW) with 100% field capacity (FC), and water deficit (DW) corresponding to 85.4% of the FC—and the second variation factor comprised four ecotypes and one variety of L. corniculatus. A significant effect was identified on the concentration of photosynthetic pigments, mainly total chlorophyll, with chlorophyll a in the 255301 ecotype with records of 187.8, 167.5, and 194.6 mg g−1 FW in WD, corresponding to an increase of 86.0%, 172.6%, and 16.6%, respectively, in relation the lower values obtained in the ecotype 202700 under NWD. In carotenoids, higher concentrations were observed in the 255301 and 202700 ecotypes and the Estanzuela Ganador variety under WD in most seasonal periods, except summer; a similar response was found in the 202700 ecotype and the Estanzuela Ganador variety during the winter season, also in WD. The results showed that the first two principal components accounted for 71.8% of the total variation, with PC1 representing chlorophyll a, chlorophyll b, and total chlorophyll, and PC2 representing carotenoids, temperature, relative chlorophyll index, and relative water content. The observations were grouped based on soil moisture content, with the optimal moisture group exhibiting higher chlorophyll and carotenoid concentrations. The findings suggest that soil moisture content significantly affects the performance of L. corniculatus ecotypes, and the plant shows seasonal variations in response to water-deficit conditions. This research contributes to understanding the physiological responses of L. corniculatus and its potential as a water-efficient forage crop for promoting sustainable agriculture and enhancing food security. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

15 pages, 1442 KiB  
Article
Mycorrhizas Affect Physiological Performance, Antioxidant System, Photosynthesis, Endogenous Hormones, and Water Content in Cotton under Salt Stress
by De-Jian Zhang, Cui-Ling Tong, Qiong-Shan Wang and Shu Bie
Plants 2024, 13(6), 805; https://doi.org/10.3390/plants13060805 - 12 Mar 2024
Viewed by 575
Abstract
Saline–alkali stress seriously endangers the normal growth of cotton (Gossypium hirsutum). Arbuscular mycorrhizal fungi (AMF) could enhance salt tolerance by establishing symbiotic relationships with plants. Based on it, a pot experiment was conducted to simulate a salt environment in which cotton [...] Read more.
Saline–alkali stress seriously endangers the normal growth of cotton (Gossypium hirsutum). Arbuscular mycorrhizal fungi (AMF) could enhance salt tolerance by establishing symbiotic relationships with plants. Based on it, a pot experiment was conducted to simulate a salt environment in which cotton was inoculated with Paraglomus occultum to explore its effects on the saline–alkali tolerance of cotton. Our results showed that salt stress noticeably decreased cotton seedling growth parameters (such as plant height, number of leaves, dry weight, root system architecture, etc.), while AMF exhibited a remarkable effect on promoting growth. It was noteworthy that AMF significantly mitigated the inhibitory effect of salt on cotton seedlings. However, AMF colonization in root and soil hyphal length were collectively descended via salt stress. With regard to osmotic regulating substances, Pro and MDA values in roots were significantly increased when seedlings were exposed to salt stress, while AMF only partially mitigated these reactions. Salt stress increased ROS levels in the roots of cotton seedlings and enhanced antioxidant enzyme activity (SOD, POD, and CAT), while AMF mitigated the increases in ROS levels but further strengthened antioxidant enzyme activity. AMF inoculation increased the photosynthesis parameters of cotton seedling leaves to varying degrees, while salt stress decreased them dramatically. When inoculated with AMF under a salt stress environment, only partial mitigation of these photosynthesis values was observed. Under saline–alkali stress, AMF improved the leaf fluorescence parameters (φPSII, Fv′/Fm′, and qP) of cotton seedlings, leaf chlorophyll levels, and root endogenous hormones (IAA and BR); promoted the absorption of water; and maintained nitrogen balance, thus alleviating the damage from salt stress on the growth of cotton plants to some extent. In summary, mycorrhizal cotton seedlings may exhibit mechanisms involving root system architecture, the antioxidant system, photosynthesis, leaf fluorescence, endogenous hormones, water content, and nitrogen balance that increase their resistance to saline–alkali environments. This study provide a theoretical basis for further exploring the application of AMF to enhance the salt tolerance of cotton. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

20 pages, 5389 KiB  
Article
Foliar Application of Amino Acids and Nutrients as a Tool to Mitigate Water Stress and Stabilize Sugarcane Yield and Bioenergy Generation
by Lucas Moraes Jacomassi, Marcela Pacola, Letusa Momesso, Josiane Viveiros, Osvaldo Araújo Júnior, Gabriela Ferraz de Siqueira, Murilo de Campos and Carlos Alexandre Costa Crusciol
Plants 2024, 13(3), 461; https://doi.org/10.3390/plants13030461 - 5 Feb 2024
Viewed by 1270
Abstract
Extended periods of water stress negatively affect sugarcane crop production. The foliar application of supplements containing specific nutrients and/or organic molecules such as amino acids can improve sugarcane metabolism, stalk and sugar yields, and the quality of the extracted juice. The present study [...] Read more.
Extended periods of water stress negatively affect sugarcane crop production. The foliar application of supplements containing specific nutrients and/or organic molecules such as amino acids can improve sugarcane metabolism, stalk and sugar yields, and the quality of the extracted juice. The present study assessed the effectiveness of the foliar application of an abiotic stress protection complement (ASPC) composed of 18 amino acids and 5 macronutrients. The experiments were carried out in the field with two treatments and twelve replicates. The two treatments were no application of ASPC (control) and foliar application of ASPC. The foliar application of ASPC increased the activity of antioxidant enzymes. The Trolox-equivalent antioxidant capacity (DPPH) was higher in ASPC-treated plants than in control plants, reflecting higher antioxidant enzyme activity and lower malondialdehyde (MDA) levels. The level of H2O2 was 11.27 nM g−1 protein in plants treated with ASPC but 23.71 nM g−1 protein in control plants. Moreover, the application of ASPC increased stalk yield and sucrose accumulation, thus increasing the quality of the raw material. By positively stabilizing the cellular redox balance in sugarcane plants, ASPC application also increased energy generation. Therefore, applying ASPC is an effective strategy for relieving water stress while improving crop productivity. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

21 pages, 8803 KiB  
Article
Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host Are Sensitive to Soil Flooding
by Elizabeth Kordyum, Yuri Akimov, Oleksandr Polishchuk, Ihor Panas, Sergiy Stepanov and Liudmyla Kozeko
Plants 2024, 13(3), 413; https://doi.org/10.3390/plants13030413 - 30 Jan 2024
Cited by 1 | Viewed by 748
Abstract
While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes—sand plants—to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and the [...] Read more.
While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes—sand plants—to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and the synthesis of alcohol dehydrogenase (ADH), heat shock proteins 70 (HSP70), and ethylene in seedlings of psammophytes Alyssum desertorum and Secale sylvestre using electron microscopy, chlorophyll a fluorescence induction, and biochemical methods. It was found that seedlings growing under soil flooding differed from those growing in stationary conditions with such traits as chloroplast ultrastructure, pigment content, chlorophyll fluorescence induction, and the dynamics of ADH, HSP, and ethylene synthesis. Although flooding caused no apparent damage to the photosynthetic apparatus in all the variants, a significant decrease in total photosynthesis efficiency was observed in both studied plants, as indicated by decreased values of φR0 and PIABS,total. More noticeable upregulation of ADH in S. sylvestre, as well as increasing HSP70 level and more intensive ethylene emission in A. desertorum, indicate species-specific differences in these traits in response to short-term soil flooding. Meanwhile, the absence of systemic anaerobic metabolic adaptation to prolonged hypoxia causes plant death. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

17 pages, 4957 KiB  
Article
Nanopore Direct RNA Sequencing Reveals the Short-Term Salt Stress Response in Maize Roots
by Shidong He, Hui Wang, Minghao Lv, Shun Li, Junhui Song, Rongxin Wang, Shaolong Jiang, Lijun Jiang, Shuxin Zhang and Xiang Li
Plants 2024, 13(3), 405; https://doi.org/10.3390/plants13030405 - 30 Jan 2024
Viewed by 1092
Abstract
Transcriptome analysis, relying on the cutting-edge sequencing of cDNA libraries, has become increasingly prevalent within functional genome studies. However, the dependence on cDNA in most RNA sequencing technologies restricts their ability to detect RNA base modifications. To address this limitation, the latest Oxford [...] Read more.
Transcriptome analysis, relying on the cutting-edge sequencing of cDNA libraries, has become increasingly prevalent within functional genome studies. However, the dependence on cDNA in most RNA sequencing technologies restricts their ability to detect RNA base modifications. To address this limitation, the latest Oxford Nanopore Direct RNA Sequencing (ONT DRS) technology was employed to investigate the transcriptome of maize seedling roots under salt stress. This approach aimed to unveil both the RNA transcriptional profiles and alterations in base modifications. The analysis of the differential expression revealed a total of 1398 genes and 2223 transcripts that exhibited significant variation within the maize root system following brief exposure to salt stress. Enrichment analyses, such as the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway assessments, highlighted the predominant involvement of these differentially expressed genes (DEGs) in regulating ion homeostasis, nitrogen metabolism, amino acid metabolism, and the phytohormone signaling pathways. The protein–protein interaction (PPI) analysis showed the participation of various proteins related to glycolytic metabolism, nitrogen metabolism, amino acid metabolism, abscisic acid signaling, and the jasmonate signaling pathways. It was through this intricate molecular network that these proteins collaborated to safeguard root cells against salt-induced damage. Moreover, under salt stress conditions, the occurrence of variable shear events (AS) in RNA modifications diminished, the average length of poly(A) tails underwent a slight decrease, and the number of genes at the majority of the variable polyadenylation (APA) sites decreased. Additionally, the levels of N5-methylcytosine (m5C) and N6-methyladenosine (m6A) showed a reduction. These results provide insights into the mechanisms of early salt tolerance in maize. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

20 pages, 18287 KiB  
Article
Characterization of the Heat Shock Transcription Factor Family in Lycoris radiata and Its Potential Roles in Response to Abiotic Stresses
by Ning Wang, Xiaochun Shu, Fengjiao Zhang, Guowei Song and Zhong Wang
Plants 2024, 13(2), 271; https://doi.org/10.3390/plants13020271 - 17 Jan 2024
Viewed by 745
Abstract
Heat shock transcription factors (HSFs) are an essential plant-specific transcription factor family that regulates the developmental and growth stages of plants, their signal transduction, and their response to different abiotic and biotic stresses. The HSF gene family has been characterized and systematically observed [...] Read more.
Heat shock transcription factors (HSFs) are an essential plant-specific transcription factor family that regulates the developmental and growth stages of plants, their signal transduction, and their response to different abiotic and biotic stresses. The HSF gene family has been characterized and systematically observed in various species; however, research on its association with Lycoris radiata is limited. This study identified 22 HSF genes (LrHSFs) in the transcriptome-sequencing data of L. radiata and categorized them into three classes including HSFA, HSFB, and HSFC, comprising 10, 8, and 4 genes, respectively. This research comprises basic bioinformatics analyses, such as protein sequence length, molecular weight, and the identification of its conserved motifs. According to the subcellular localization assessment, most LrHSFs were present in the nucleus. Furthermore, the LrHSF gene expression in various tissues, flower developmental stages, two hormones stress, and under four different abiotic stresses were characterized. The data indicated that LrHSF genes, especially LrHSF5, were essentially involved in L. radiata development and its response to different abiotic and hormone stresses. The gene–gene interaction network analysis revealed the presence of synergistic effects between various LrHSF genes’ responses against abiotic stresses. In conclusion, these results provided crucial data for further functional analyses of LrHSF genes, which could help successful molecular breeding in L. radiata. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

11 pages, 2959 KiB  
Communication
Species Survey of Leaf Hyponasty Responses to Warming Plus Elevated CO2
by Michael D. Thomas, Reagan Roberts, Scott A. Heckathorn and Jennifer K. Boldt
Plants 2024, 13(2), 204; https://doi.org/10.3390/plants13020204 - 11 Jan 2024
Viewed by 726
Abstract
Atmospheric carbon dioxide (CO2) concentrations are increasing and may exceed 800 ppm by 2100. This is increasing global mean temperatures and the frequency and severity of heatwaves. Recently, we showed for the first time that the combination of short-term warming and [...] Read more.
Atmospheric carbon dioxide (CO2) concentrations are increasing and may exceed 800 ppm by 2100. This is increasing global mean temperatures and the frequency and severity of heatwaves. Recently, we showed for the first time that the combination of short-term warming and elevated carbon dioxide (eCO2) caused extreme upward bending (i.e., hyponasty) of leaflets and leaf stems (petioles) in tomato (Solanum lycopersicum), which reduced growth. Here, we examined additional species to test the hypotheses that warming + eCO2-induced hyponasty is restricted to compound-leaved species, and/or limited to the Solanaceae. A 2 × 2 factorial experiment with two temperatures, near-optimal and supra-optimal, and two CO2 concentrations, ambient and elevated (400, 800 ppm), was imposed on similarly aged plants for 7–10 days, after which final petiole angles were measured. Within Solanaceae, compound-leaf, but not simple-leaf, species displayed increased hyponasty with the combination of warming + eCO2 relative to warming or eCO2 alone. In non-solanaceous species, hyponasty, leaf-cupping, and changes in leaf pigmentation as a result of warming + eCO2 were variable across species. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

27 pages, 28232 KiB  
Article
Salt Stress Induces Contrasting Physiological and Biochemical Effects on Four Elite Date Palm Cultivars (Phoenix dactylifera L.) from Southeast Morocco
by Ibtissame Benaceur, Reda Meziani, Jamal El Fadile, Jan Hoinkis, Edgardo Canas Kurz, Ulrich Hellriegel and Fatima Jaiti
Plants 2024, 13(2), 186; https://doi.org/10.3390/plants13020186 - 10 Jan 2024
Viewed by 826
Abstract
Understanding the response of date palm (Phoenix dactylifera L.) cultivars to salt stress is essential for the sustainable management of phoeniculture in Tafilalet, Morocco. It offers a promising avenue for addressing the challenges presented by the increasing salinity of irrigation waters, especially [...] Read more.
Understanding the response of date palm (Phoenix dactylifera L.) cultivars to salt stress is essential for the sustainable management of phoeniculture in Tafilalet, Morocco. It offers a promising avenue for addressing the challenges presented by the increasing salinity of irrigation waters, especially because farmers in these regions often lack the necessary knowledge and resources to make informed decisions regarding cultivar selection. This study addresses this issue by investigating the performance of the most relied on cultivars by farmers in Tafilalet, namely Mejhoul, Boufeggous, Nejda, and Bouskri. These cultivars were exposed to a sodium chloride treatment of 154 mM, and their performances were evaluated over a three-month period. We examined the growth rate, photosynthesis-related parameters, pigments, water status in plants, and biochemical compounds associated with oxidative stress, osmotic stress, and ionic stress. Principle component analysis (PCA) effectively categorized the cultivars into two distinct groups: salt-sensitive (Mejhoul and Nejda) and salt-tolerant (Boufeggous and Bouskri). These findings provide valuable insights for farmers, highlighting the advantages of cultivating Boufeggous and Bouskri cultivars due to their superior adaptation to salt conditions. These cultivars exhibited moderate decrease in shoot growth (25%), enhanced catalase activity, a smaller increase in anthocyanin content, and greater enhancement in organic osmolytes compared with salt-sensitive cultivars like Mejhoul (experiencing an 87% reduction in shoot elongation) and Nejda (exhibiting the highest reduction in leaf area). Furthermore, the Na+/K+ ratio was positively influenced by salt stress, with Mejhoul and Nejda recording the highest values, suggesting its potential as an indicator of salt stress sensitivity in date palms. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Graphical abstract

17 pages, 5135 KiB  
Article
Characterization and Identification of Drought-Responsive ABA-Aldehyde Oxidase (AAO) Genes in Potato (Solanum tuberosum L.)
by Panfeng Yao, Chunli Zhang, Dan Zhang, Tianyuan Qin, Xiaofei Xie, Yuhui Liu, Zhen Liu, Jiangping Bai, Zhenzhen Bi, Junmei Cui, Jingwen Liang and Chao Sun
Plants 2023, 12(22), 3809; https://doi.org/10.3390/plants12223809 - 9 Nov 2023
Viewed by 1448
Abstract
Abscisic acid (ABA) is an important stress hormone that affects plants’ tolerance to stress. Changes in the content of abscisic can have an impact on plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a crucial role in the final [...] Read more.
Abscisic acid (ABA) is an important stress hormone that affects plants’ tolerance to stress. Changes in the content of abscisic can have an impact on plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a crucial role in the final step in the synthesis of abscisic acid; therefore, understanding the function of the AAO gene family is of great significance for insight into plants’ response to abiotic stresses. In this study, Solanum tuberosum AAO (StAAO) members were exhaustively explored using genome databases, and nine StAAOs were identified. Chromosomal location analysis indicated that StAAO genes mapped to 4 of the 14 potato chromosomes. Further analyses of gene structure and motif composition showed that members of the specific StAAO subfamily showed relatively conserved characteristics. Phylogenetic relationship analysis indicated that StAAOs proteins were divided into three major clades. Promoter analysis showed that most StAAO promoters contained cis-elements related to abiotic stress response and plant hormones. The results of tissue-specific expression analysis indicated that StAAO4 was predominantly expressed in the roots. Analysis of transcriptome data revealed that StAAO2/4/6 genes responded significantly to drought treatments. Moreover, further qRT-PCR analysis results indicated that StAAO2/4/6 not only significantly responded to drought stress but also to various phytohormone (ABA, SA, and MeJA) and abiotic stresses (salt and low temperature), albeit with different expression patterns. In summary, our study provides comprehensive insights into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of the StAAO gene family. These findings lay the foundation for a deeper understanding of the StAAO gene family and offer a potential genetic resource for breeding drought-resistant potato varieties. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

20 pages, 7688 KiB  
Article
Genome-Wide Identification and Characterization of the bHLH Gene Family and Its Response to Abiotic Stresses in Carthamus tinctorius
by Zhengwei Tan, Dandan Lu, Yongliang Yu, Lei Li, Wei Dong, Lanjie Xu, Qing Yang, Xiufu Wan and Huizhen Liang
Plants 2023, 12(21), 3764; https://doi.org/10.3390/plants12213764 - 3 Nov 2023
Viewed by 1119
Abstract
The basic helix–loop–helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not [...] Read more.
The basic helix–loop–helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

18 pages, 2880 KiB  
Article
The Influence of Cadmium on Fountain Grass Performance Correlates Closely with Metabolite Profiles
by Zhaorong Mi, Pinlin Liu, Lin Du, Tao Han, Chao Wang, Xifeng Fan, Huichao Liu, Songlin He and Juying Wu
Plants 2023, 12(21), 3713; https://doi.org/10.3390/plants12213713 - 29 Oct 2023
Viewed by 873
Abstract
The relationship between metabolite changes and biological endpoints in response to cadmium (Cd) stress remains unclear. Fountain grass has good Cd enrichment and tolerance abilities and is widely used in agriculture and landscaping. We analyzed the metabolic responses by detecting the metabolites through [...] Read more.
The relationship between metabolite changes and biological endpoints in response to cadmium (Cd) stress remains unclear. Fountain grass has good Cd enrichment and tolerance abilities and is widely used in agriculture and landscaping. We analyzed the metabolic responses by detecting the metabolites through UPLC-MS and examined the relationships between metabolite changes and the characteristics of morphology and physiology to different Cd stress in fountain grass. Our results showed that under Cd stress, 102 differential metabolites in roots and 48 differential metabolites in leaves were detected, with 20 shared metabolites. Under Cd stress, most of the carbohydrates in leaves and roots decreased, which contributed to the lowered leaf/root length and fresh weight. In comparison, most of the differential amino acids and lipids decreased in the leaves but increased in the roots. Almost all the differential amino acids in the roots were negatively correlated with root length and root fresh weight, while they were positively correlated with malondialdehyde content. However, most of the differential amino acids in the leaves were positively correlated with leaf length and leaf fresh weight but negatively correlated with malondialdehyde content. Metabolic pathway analysis showed that Cd significantly affects seven and eight metabolic pathways in the leaves and roots, respectively, with only purine metabolism co-existing in the roots and leaves. Our study is the first statement on metabolic responses to Cd stress and the relationships between differential metabolites and biological endpoints in fountain grass. The coordination between various metabolic pathways in fountain grass enables plants to adapt to Cd stress. This study provides a comprehensive framework by explaining the metabolic plasticity and Cd tolerance mechanisms of plants. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

16 pages, 5680 KiB  
Article
Coordination of m6A mRNA Methylation and Gene Transcriptome in Sugarcane Response to Drought Stress
by Jinju Wei, Haibi Li, Yiyun Gui, Hui Zhou, Ronghua Zhang, Kai Zhu and Xihui Liu
Plants 2023, 12(21), 3668; https://doi.org/10.3390/plants12213668 - 24 Oct 2023
Viewed by 1012
Abstract
The N6-methyladenosine (m6A) methylation of mRNA is involved in biological processes essential for plant growth. To explore the m6A modification of sugarcane and reveal its regulatory function, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was used to construct the [...] Read more.
The N6-methyladenosine (m6A) methylation of mRNA is involved in biological processes essential for plant growth. To explore the m6A modification of sugarcane and reveal its regulatory function, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was used to construct the m6A map of sugarcane. In this study, m6A sites of sugarcane transcriptome were significantly enriched around the stop codon and within 3′-untranslated regions (3′UTR). Gene ontology (GO) analysis showed that the m6A modification genes are associated with metabolic biosynthesis. In addition, the m6A modification of drought-resistant transcript mRNA increased significantly under drought (DR) treatment, resulting in enhanced mRNA stability, which is involved in regulating sugarcane drought resistance. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that differentially methylated peak (DMP) modification of differentially expressed genes (DEGs) in DR were particularly associated with abscisic acid (ABA) biosynthesis. The upregulated genes were significantly enriched in the ABA metabolism, ethylene response, fatty acid metabolism, and negative regulation of the abscisic acid activation signaling pathway. These findings provide a basis and resource for sugarcane RNA epigenetic studies and further increase our knowledge of the functions of m6A modifications in RNA under abiotic stress. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

18 pages, 3271 KiB  
Article
Effect of Different Rootstocks on the Salt Stress Tolerance and Fruit Quality of Grafted Eggplants (Solanum melongena L.)
by Maryam Mozafarian, Barbara Hawrylak-Nowak and Noémi Kappel
Plants 2023, 12(20), 3631; https://doi.org/10.3390/plants12203631 - 20 Oct 2023
Viewed by 954
Abstract
Vegetable grafting is considered a rapid, non-chemical alternative method to relatively slow and expensive breeding to overcome the adverse effect of salinity. Therefore, a soilless experiment was performed to determine the salinity tolerance of eggplant (Solanum melongena) cv. Madonna grafted onto [...] Read more.
Vegetable grafting is considered a rapid, non-chemical alternative method to relatively slow and expensive breeding to overcome the adverse effect of salinity. Therefore, a soilless experiment was performed to determine the salinity tolerance of eggplant (Solanum melongena) cv. Madonna grafted onto two different rootstocks, Solanum grandifolium × Solanum melongena (SH) and Solanum torvum (ST), as well as self-grafted (SG) and self-rooted (SR) as controls. All groups of plants were treated with 0 mM NaCl or 80 mM NaCl. A significant decrease in the relative leaf chlorophyll content (SPAD value) and chlorophyll concentrations were found in response to NaCl. However, the grafted plants had a higher photosynthetic pigment level than the non-grafted plants grown under saline conditions. Grafting eggplants onto SH significantly enhanced the total fruit yield as compared to the self-rooted plants exposed to salinity by increasing the average fruit weight. Moreover, salt stress significantly increased the whitening index and oxidation potential of fruits. The plants grafted onto SH or ST accumulated more Na+ in their roots than in their fruit or leaves, thus the Na+ partitioning between the above-ground and root parts most probably determines the increased salinity tolerance of the grafted ST and SH plants. To conclude, both the SH and ST rootstocks protected the scions against salinity; the scion showed both increased photosynthetic pigment concentration and chlorophyll fluorescence parameters as well as a lower Na+ concentration under stress that resulted in a higher fruit yield and quality. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

22 pages, 3467 KiB  
Article
Strategies of NaCl Tolerance in Saline–Alkali-Tolerant Green Microalga Monoraphidium dybowskii LB50
by Haijian Yang, Jing Zhang and Hua Li
Plants 2023, 12(19), 3495; https://doi.org/10.3390/plants12193495 - 7 Oct 2023
Viewed by 894
Abstract
Studying how freshwater cells modify metabolism and membrane lipids in response to salt stress is important for understanding how freshwater organisms adapt to salt stress and investigating new osmoregulatory ways. Physiological, biochemical, metabolic, and proteomic analyses were applied in a novel saline–alkali-tolerant microalga [...] Read more.
Studying how freshwater cells modify metabolism and membrane lipids in response to salt stress is important for understanding how freshwater organisms adapt to salt stress and investigating new osmoregulatory ways. Physiological, biochemical, metabolic, and proteomic analyses were applied in a novel saline–alkali-tolerant microalga Monoraphidium dybowskii LB50 under different NaCl concentrations. Cells adopt a variety of strategies to adapt to salt stress, including increasing ion transport and osmolytes, regulating cell cycle and life history, and accumulating triacylglycerol (TAG). A large number of metabolic activities point to TAG accumulation. With increasing NaCl concentration, the C resource for TAG accumulation went from photosynthetically fixed C and a small amount of lipid remodeling to macromolecule degradation and a mass of lipid remodeling, respectively. The energy for TAG accumulation went from linear electron transfer and oxidative phosphate pentose pathway to cyclic electron flow, substrate phosphorylation, oxidation phosphorylation, and FA oxidation. Additionally, digalacturonic acid and amino acids of the N-acetyl group, which usually were the osmotica for marine organisms, were important for M. dybowskii LB50. Freshwater organisms evolved many biological ways to adapt to salt stress. This insight enriches our understanding of the adaptation mechanisms underlying abiotic stress. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 353 KiB  
Review
Advanced Biotechnological Interventions in Mitigating Drought Stress in Plants
by Özhan Şimşek, Musab A. Isak, Dicle Dönmez, Akife Dalda Şekerci, Tolga İzgü and Yıldız Aka Kaçar
Plants 2024, 13(5), 717; https://doi.org/10.3390/plants13050717 - 4 Mar 2024
Viewed by 1359
Abstract
This comprehensive article critically analyzes the advanced biotechnological strategies to mitigate plant drought stress. It encompasses an in-depth exploration of the latest developments in plant genomics, proteomics, and metabolomics, shedding light on the complex molecular mechanisms that plants employ to combat drought stress. [...] Read more.
This comprehensive article critically analyzes the advanced biotechnological strategies to mitigate plant drought stress. It encompasses an in-depth exploration of the latest developments in plant genomics, proteomics, and metabolomics, shedding light on the complex molecular mechanisms that plants employ to combat drought stress. The study also emphasizes the significant advancements in genetic engineering techniques, particularly CRISPR-Cas9 genome editing, which have revolutionized the creation of drought-resistant crop varieties. Furthermore, the article explores microbial biotechnology’s pivotal role, such as plant growth-promoting rhizobacteria (PGPR) and mycorrhizae, in enhancing plant resilience against drought conditions. The integration of these cutting-edge biotechnological interventions with traditional breeding methods is presented as a holistic approach for fortifying crops against drought stress. This integration addresses immediate agricultural needs and contributes significantly to sustainable agriculture, ensuring food security in the face of escalating climate change challenges. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Back to TopTop