Trendings in Biobased Polymers and Biocomposites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 3709

Special Issue Editors


E-Mail Website
Guest Editor
National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
Interests: biobased polymers; biodegradable polymers; biomaterials; biopolymers; biocomposites; circular economy; polymers biodegradation; biobased additives; antioxidants; biowastes; byproducts; renewable feedstocks; pecan nutshell; lignin

E-Mail Website
Guest Editor
Departament of Engineering, Programa of Agroindustrial Science, Universidad Popular del Cesar Seccional Aguachica, Cesar, Colombia
Interests: biodegradation; polymers; biopolymers; ecology; biomolecules; renewable feedstocks; biogenerated polymers

E-Mail Website
Guest Editor
National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
Interests: biodegradation; polymers; biopolymers; sustainability

Special Issue Information

Dear Colleagues,

Since the discovery of synthetic polymers in 1869, plastic materials have been considered a practical and economical solution for almost everything. Unfortunately, along with their popularity has also come a negative environmental impact.

Thus, bio-based materials have become the current trend. Even so, the search for new technologies and sustainable materials now also includes the search for a circular economy. In this scenario, bio-based polymers play an important role due to their renewable nature and the potential benefits of large-scale production.

In this framework, we are pleased to publish this Special Issue focused on the different applications of bio-based polymers, biodegradable polymers and biocomposites, applications, trendings, and the current state towards a circular economy.

Dr. Sarai Agustin-Salazar
Dr. Margarita del Rosario Salazar Sánchez
Dr. Gennaro Scarinzi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bio-based polymers
  • biodegradable polymers
  • biomaterials
  • biopolymers
  • biocomposites
  • life cycle assessment
  • sustainability
  • circular economy

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1652 KiB  
Article
Reactive Blending of Modified Thermoplastic Starch Chlorhexidine Gluconate and Poly(butylene succinate) Blending with Epoxy Compatibilizer
by Nanthicha Thajai, Pornchai Rachtanapun, Sarinthip Thanakkasaranee, Winita Punyodom, Patnarin Worajittiphon, Yuthana Phimolsiripol, Noppol Leksawasdi, Sukunya Ross, Pensak Jantrawut and Kittisak Jantanasakulwong
Polymers 2023, 15(16), 3487; https://doi.org/10.3390/polym15163487 - 21 Aug 2023
Cited by 1 | Viewed by 938
Abstract
Biodegradable starch-based polymers were developed by melt-blending modified thermoplastic starch (MTPS) with poly(butylene succinate) (PBS) blended with epoxy resin (Er). A modified thermoplastic starch blend with chlorhexidine gluconate (MTPSCh) was prepared by melt-blending cassava starch with glycerol and chlorhexidine gluconate (CHG) 1.0% wt. [...] Read more.
Biodegradable starch-based polymers were developed by melt-blending modified thermoplastic starch (MTPS) with poly(butylene succinate) (PBS) blended with epoxy resin (Er). A modified thermoplastic starch blend with chlorhexidine gluconate (MTPSCh) was prepared by melt-blending cassava starch with glycerol and chlorhexidine gluconate (CHG) 1.0% wt. The Er was melt-blended with PBS (PBSE) at concentrations of 0.50%, 1.0%, 2.5%, and 5.0% (wt%/wt%). The mechanical properties, water resistance, and morphology of the MTPSCh/PBSE blends were investigated. The MTPSCh/PBSE2.5% blend showed an improvement in tensile strength (8.1 MPa) and elongation at break (86%) compared to the TPSCh/PBS blend (2.6 MPa and 53%, respectively). In addition, water contact angle measurements indicated an increase in the hydrophobicity of the MTPSCh/PBSE blends. Thermogravimetric analysis showed an improvement in thermal stability when PBS was added to the MTPSCh blends. Fourier transform infrared spectroscopy data confirmed a new reaction between the amino groups of CHG in MTPSCh and the epoxy groups of Er in PBSE, which improved the interfacial adhesion of the MTPSCh/PBSE blends. This reaction improved the mechanical properties, water resistance, morphology, and thermal stability of the TPSCh/PBSE blends. Full article
(This article belongs to the Special Issue Trendings in Biobased Polymers and Biocomposites)
Show Figures

Figure 1

14 pages, 3639 KiB  
Article
Property Improvements of Silica-Filled Styrene Butadiene Rubber/Butadiene Rubber Blend Incorporated with Fatty-Acid-Containing Palm Oil
by Siwarote Boonrasri, Parichat Thipchai, Pongdhorn Sae-Oui, Sarinthip Thanakkasaranee, Kittisak Jantanasakulwong and Pornchai Rachtanapun
Polymers 2023, 15(16), 3429; https://doi.org/10.3390/polym15163429 - 17 Aug 2023
Cited by 3 | Viewed by 1311
Abstract
Using vegetable oils as a plasticizer or processing aid in green rubber products is becoming popular due to environmental concerns. However, differences in vegetable oil processing result in varying amounts of low-molecular-weight (low-MW) free fatty acids (FFAs) in their composition, which range from [...] Read more.
Using vegetable oils as a plasticizer or processing aid in green rubber products is becoming popular due to environmental concerns. However, differences in vegetable oil processing result in varying amounts of low-molecular-weight (low-MW) free fatty acids (FFAs) in their composition, which range from 2% to 30%. This research investigated how the properties of silica-filled styrene butadiene rubber (SBR) and butadiene rubber (BR) blends were affected by the presence of FFAs in palm oil (PO). The rubber compounds containing a 70/30 SBR/BR blend, 30 phr of silica, and 2 phr of bis-(3-triethoxysilylpropyl) tetrasulfide (TESPT), and the vulcanizing agents were prepared and tested. The PO content was kept constant at 20 phr, while the number of FFAs, i.e., lauric acid (LA), palmitic acid (PA), and oleic acid (OA), in PO varied from 10–30%. The viscosity, dynamic mechanical properties, morphology, cure characteristics, and mechanical properties of the rubber blend were then measured. Regardless of the FFA types, increasing FFA content in PO decreased scorch time, cure time, minimum torque, and viscosity. As the FFA content increased, the torque difference and crosslink density also increased, which led to higher hardness, modulus, tensile strength, and abrasion resistance. The FFA types had a slight effect on the vulcanizate properties, even though LA showed slightly better mechanical properties than PA and OA. The results reveal that FFAs in PO not only improve processability but also function as a co-activator in silica-filled sulfur-vulcanized SBR/BR blend compounds. Full article
(This article belongs to the Special Issue Trendings in Biobased Polymers and Biocomposites)
Show Figures

Graphical abstract

Review

Jump to: Research

82 pages, 9093 KiB  
Review
Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives
by Luis F. F. F. Gonçalves, Rui L. Reis and Emanuel M. Fernandes
Polymers 2024, 16(9), 1286; https://doi.org/10.3390/polym16091286 - 3 May 2024
Viewed by 513
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, [...] Read more.
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials. Full article
(This article belongs to the Special Issue Trendings in Biobased Polymers and Biocomposites)
Show Figures

Figure 1

Back to TopTop