Nanoparticle-Reinforced Polymers

A special issue of Polymers (ISSN 2073-4360).

Deadline for manuscript submissions: closed (15 September 2018) | Viewed by 114385

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor


E-Mail Website
Guest Editor
Facultad de Ciencias, Departamento de Química Analítica, Universidad de Alcalá, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
Interests: nanomaterials; polymers; nanocomposites; inorganic nanoparticles; antibacterial agents; surfactants; interphases
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer/nanoparticle nanocomposites have attracted considerable research interest over the last few years in order to develop advanced materials for a wide range of applications. One of the main goals of the addition of nanoparticles to polymers is to improve their mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy and density compared to microparticles; hence, lower nanofiller concentrations are needed to attain properties comparable to or even better than those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. Nonetheless, a number of challenges have to be faced. Nanoparticle agglomeration within the polymer matrix and poor interfacial adhesion between the nanofillers and the matrix frecuently hinder property improvements, demanding for modifying the surface chemistry to promote physical or chemical interactions with the polymer chains. Further, the fabrication procedure of the nanoparticle-modified polymers leads to different morphologies that have a strong influence on the final properties of the materials.

This Special Issue is planned to bring together a number of original papers and reviews covering (but not restricted to) the following topics:

  • Novel fabrication methods of polymer/nanoparticle composites
  • Properties of nanoparticle-reinforced polymers (mechanical, thermal, electrical, optical, chemical, magnetic, etc.)
  • Structure–property relationships in polymer nanocomposites
  • Applications of nanoparticle-reinforced polymers
  • Adverse effects of nanofiller-reinforced polymeric materials
  • Future perspectives for nanofiller-reinforced polymeric nanomaterials
Prof. Dr. Ana María Díez Pascual
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocomposites
  • nanoparticles
  • polymers
  • mechanical properties
  • electrical performance
  • thermal properties

Published Papers (17 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

6 pages, 204 KiB  
Editorial
Nanoparticle Reinforced Polymers
by Ana María Díez-Pascual
Polymers 2019, 11(4), 625; https://doi.org/10.3390/polym11040625 - 04 Apr 2019
Cited by 23 | Viewed by 3229
Abstract
The beginning of nanomaterials and nanoscience dates back to 1959 when the Nobel laureate in Physics Richard Feynman gave the famous lecture entitled “There’s Plenty of Room at the Bottom [...] Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)

Research

Jump to: Editorial, Review

20 pages, 4021 KiB  
Article
Carrier Transport and Molecular Displacement Modulated dc Electrical Breakdown of Polypropylene Nanocomposites
by Daomin Min, Chenyu Yan, Rui Mi, Chao Ma, Yin Huang, Shengtao Li, Qingzhou Wu and Zhaoliang Xing
Polymers 2018, 10(11), 1207; https://doi.org/10.3390/polym10111207 - 30 Oct 2018
Cited by 33 | Viewed by 3459
Abstract
Dielectric energy storage capacitors have advantages such as ultra-high power density, extremely fast charge and discharge speed, long service lifespan and are significant for pulsed power system, smart power grid, and power electronics. Polypropylene (PP) is one of the most widely used dielectric [...] Read more.
Dielectric energy storage capacitors have advantages such as ultra-high power density, extremely fast charge and discharge speed, long service lifespan and are significant for pulsed power system, smart power grid, and power electronics. Polypropylene (PP) is one of the most widely used dielectric materials for dielectric energy storage capacitors. It is of interest to investigate how to improve its electrical breakdown strength by nanodoping and the influencing mechanism of nanodoping on the electrical breakdown properties of polymer nanocomposites. PP/Al2O3 nanocomposite dielectric materials with various weight fraction of nanoparticles are fabricated by melt-blending and hot-pressing methods. Thermally stimulated current, surface potential decay, and dc electrical breakdown experiments show that deep trap properties and associated molecular chain motion are changed by incorporating nanofillers into polymer matrix, resulting in the variations in conductivity and dc electrical breakdown field of nanocomposite dielectrics. Then, a charge transport and molecular displacement modulated electrical breakdown model is utilized to simulate the dc electrical breakdown behavior. It is found that isolated interfacial regions formed in nanocomposite dielectrics at relatively low loadings reduce the effective carrier mobility and strengthen the interaction between molecular chains, hindering the transport of charges and the displacement of molecular chains with occupied deep traps. Accordingly, the electrical breakdown strength is enhanced at relatively low loadings. Interfacial regions may overlap in nanocomposite dielectrics at relatively high loadings so that the effective carrier mobility decreases and the interaction between molecular chains may be weakened. Consequently, the molecular motion is accelerated by electric force, leading to the decrease in electrical breakdown strength. The experiments and simulations reveals that the influence of nanodoping on dc electrical breakdown properties may origin from the changes in the charge transport and molecular displacement characteristics caused by interfacial regions in nanocomposite dielectrics. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

13 pages, 4256 KiB  
Article
Amino Functionalization of Reduced Graphene Oxide/Tungsten Disulfide Hybrids and Their Bismaleimide Composites with Enhanced Mechanical Properties
by Liulong Guo, Hongxia Yan, Zhengyan Chen, Qi Liu, Yuanbo Feng, Fan Ding and Yufeng Nie
Polymers 2018, 10(11), 1199; https://doi.org/10.3390/polym10111199 - 27 Oct 2018
Cited by 21 | Viewed by 4116
Abstract
A novel graphene-based nanocomposite particles (NH2-rGO/WS2), composed of reduced graphene oxide (rGO) and tungsten disulfide (WS2) grafted with active amino groups (NH2-rGO/WS2), was successfully synthesized by an effective and facile method. NH2 [...] Read more.
A novel graphene-based nanocomposite particles (NH2-rGO/WS2), composed of reduced graphene oxide (rGO) and tungsten disulfide (WS2) grafted with active amino groups (NH2-rGO/WS2), was successfully synthesized by an effective and facile method. NH2-rGO/WS2 nanoparticles were then used to fabricate new bismaleimide (BMI) composites (NH2-rGO/WS2/BMI) via a casting method. The results demonstrated that a suitable amount of NH2-rGO/WS2 nanoparticles significantly improved the mechanical properties of the BMI resin. When the loading of NH2-rGO/WS2 was only 0.6 wt %, the impact and flexural strength of the composites increased by 91.3% and 62.6%, respectively, compared to the neat BMI resin. Rare studies have reported such tremendous enhancements on the mechanical properties of the BMI resin with trace amounts of fillers. This is attributable to the unique layered structure of NH2-rGO/WS2 nanoparticles, fine interfacial adhesion, and uniform dispersion of NH2-rGO/WS2 in the BMI resin. Besides, the thermal gravimetrical analysis (TGA) revealed that the addition of NH2-rGO/WS2 could also improve the stability of the composites. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

16 pages, 7589 KiB  
Article
Effect of Morphological Changes due to Increasing Carbon Nanoparticles Content on the Quasi-Static Mechanical Response of Epoxy Resin
by Hamed Yazdani Nezhad and Vijay Kumar Thakur
Polymers 2018, 10(10), 1106; https://doi.org/10.3390/polym10101106 - 06 Oct 2018
Cited by 47 | Viewed by 6471
Abstract
Mechanical failure in epoxy polymer and composites leads them to commonly be referred to as inherently brittle due to the presence of polymerization-induced microcrack and microvoids, which are barriers to high-performance applications, e.g., in aerospace structures. Numerous studies have been carried out on [...] Read more.
Mechanical failure in epoxy polymer and composites leads them to commonly be referred to as inherently brittle due to the presence of polymerization-induced microcrack and microvoids, which are barriers to high-performance applications, e.g., in aerospace structures. Numerous studies have been carried out on epoxy’s strengthening and toughening via nanomaterial reinforcement, e.g., using rubber nanoparticles in the epoxy matrix of new composite aircraft. However, extremely cautious process and functionalization steps must be taken in order to achieve high-quality dispersion and bonding, the development of which is not keeping pace with large structures applications. In this article, we report our studies on the mechanical performance of an epoxy polymer reinforced with graphite carbon nanoparticles (CNPs), and the possible effects arising from a straightforward, rapid stir-mixing technique. The CNPs were embedded in a low viscosity epoxy resin, with the CNP weight percentage (wt %) being varied between 1% and 5%. Simplified stirring embedment was selected in the interests of industrial process facilitation, and functionalization was avoided to reduce the number of parameters involved in the study. Embedment conditions and timing were held constant for all wt %. The CNP filled epoxy resin was then injected into an aluminum mold and cured under vacuum conditions at 80 °C for 12 h. A series of test specimens were then extracted from the mold, and tested under uniaxial quasi-static tension, compression, and nanoindentation. Elementary mechanical properties including failure strain, hardness, strength, and modulus were measured. The mechanical performance was improved by the incorporation of 1 and 2 wt % of CNP but was degraded by 5 wt % CNP, mainly attributed to the morphological change, including re-agglomeration, with the increasing CNP wt %. This change strongly correlated with the mechanical response in the presence of CNP, and was the major governing mechanism leading to both mechanical improvement and degradation. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

11 pages, 2698 KiB  
Article
Highly Sensitive Detection of Melamine Based on the Fluorescence Resonance Energy Transfer between Conjugated Polymer Nanoparticles and Gold Nanoparticles
by Cui-jiao Zhang, Zhi-yan Gao, Qiu-bo Wang, Xian Zhang, Jin-shui Yao, Cong-de Qiao and Qin-ze Liu
Polymers 2018, 10(8), 873; https://doi.org/10.3390/polym10080873 - 06 Aug 2018
Cited by 20 | Viewed by 4226
Abstract
Adding melamine as additives in food products will lead to many diseases and even death. However, the present techniques of melamine detection require time-consuming steps, complicated procedures and expensive analytical apparatus. The fluorescent assay method was facile and highly sensitive. In this work, [...] Read more.
Adding melamine as additives in food products will lead to many diseases and even death. However, the present techniques of melamine detection require time-consuming steps, complicated procedures and expensive analytical apparatus. The fluorescent assay method was facile and highly sensitive. In this work, a fluorescence resonance energy transfer (FRET) system for melamine detection was constructed based on conjugated polymer nanoparticles (CPNs) and gold nanoparticles (AuNPs). The energy transfer efficiency is up to 82.1%, and the system is highly selective and sensitive to melamine detection with a lower detection limit of 1.7 nmol/L. Moreover, the interaction mechanism was explored. The results showed that the fluorescence of CPNs were firstly quenched by AuNPs, and then restored after adding melamine because of reducing FRET between CPNs and AuNPs. Lastly, the proposed method was carried out for melamine detection in powdered infant formula with satisfactory results. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Figure 1

7 pages, 765 KiB  
Article
Influence of SiO2/TiO2 Nanocomposite on the Optoelectronic Properties of PFO/MEH-PPV-Based OLED Devices
by Bandar Ali Al-Asbahi
Polymers 2018, 10(7), 800; https://doi.org/10.3390/polym10070800 - 20 Jul 2018
Cited by 32 | Viewed by 4491
Abstract
The influence of SiO2/TiO2 nanocomposites on the performance of organic light-emitting diodes (OLEDs) based on poly(9,9′-di-n-octylfluorenyl-2,7-diyl) (PFO) and various amounts of poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) was investigated. Prior to the fabrication of the OLEDs on indium-tin oxide (ITO) substrates, the hybrids of [...] Read more.
The influence of SiO2/TiO2 nanocomposites on the performance of organic light-emitting diodes (OLEDs) based on poly(9,9′-di-n-octylfluorenyl-2,7-diyl) (PFO) and various amounts of poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) was investigated. Prior to the fabrication of the OLEDs on indium-tin oxide (ITO) substrates, the hybrids of PFO/MEH-PPV, in the presence and absence of the SiO2/TiO2 nanocomposites, were prepared via the solution blending technique. Improvement of the performances of the devices in the presence of the SiO2/TiO2 nanocomposites was detected. The existence of the SiO2/TiO2 nanocomposites led to better charge carrier injection and, thus, a significant reduction in the turn-on voltage of the devices. The enhancement of MEH-PPV electroluminescence peaks in the hybrids in the presence of SiO2/TiO2 nanocomposites is not only a result of the Förster resonance energy transfer, but also of hole-electron recombination, which is of greater significance. Moreover, the existence of the SiO2/TiO2 nanocomposites led to a shift of the CIE chromaticity coordinates of the devices. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

11 pages, 3874 KiB  
Article
Adsorption Behavior of Polymer Chain with Different Topology Structure at the Polymer-Nanoparticle Interface
by Qingliang Song, Yongyun Ji, Shiben Li, Xianghong Wang and Linli He
Polymers 2018, 10(6), 590; https://doi.org/10.3390/polym10060590 - 28 May 2018
Cited by 8 | Viewed by 4519
Abstract
The effect of the polymer chain topology structure on the adsorption behavior in the polymer-nanoparticle (NP) interface is investigated by employing coarse-grained molecular dynamics simulations in various polymer-NP interaction and chain stiffness. At a weak polymer-NP interaction, ring chain with a closed topology [...] Read more.
The effect of the polymer chain topology structure on the adsorption behavior in the polymer-nanoparticle (NP) interface is investigated by employing coarse-grained molecular dynamics simulations in various polymer-NP interaction and chain stiffness. At a weak polymer-NP interaction, ring chain with a closed topology structure has a slight priority to occupy the interfacial region than linear chain. At a strong polymer-NP interaction, the “middle” adsorption mechanism dominates the polymer local packing in the interface. As the increase of chain stiffness, an interesting transition from ring to linear chain preferential adsorption behavior occurs. The semiflexible linear chain squeezes ring chain out of the interfacial region by forming a helical structure and wrapping tightly the surface of NP. In particular, this selective adsorption behavior becomes more dramatic for the case of rigid-like chain, in which 3D tangent conformation of linear chain is absolutely prior to the 2D plane orbital structure of ring chain. The local packing and competitive adsorption behavior of bidisperse matrix in polymer-NP interface can be explained based on the adsorption mechanism of monodisperse (pure ring or linear) case. These investigations may provide some insights into polymer-NP interfacial adsorption behavior and guide the design of high-performance nanocomposites. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Figure 1

10 pages, 1865 KiB  
Article
Thermo-Responsive Fluorescent Polymers with Diverse LCSTs for Ratiometric Temperature Sensing through FRET
by Zhaoyang Ding, Chunfei Wang, Gang Feng and Xuanjun Zhang
Polymers 2018, 10(3), 283; https://doi.org/10.3390/polym10030283 - 08 Mar 2018
Cited by 30 | Viewed by 6341
Abstract
Temperature is a significant parameter to regulate biological reactions and functions inside cells. Sensing the intracellular temperature with a competent method is necessary to understand life science. In this work, an energy-transfer polymeric thermometer was designed for temperature sensing. The thermometer was prepared [...] Read more.
Temperature is a significant parameter to regulate biological reactions and functions inside cells. Sensing the intracellular temperature with a competent method is necessary to understand life science. In this work, an energy-transfer polymeric thermometer was designed for temperature sensing. The thermometer was prepared from two thermo-responsive polymers with different lower critical solution temperatures (LCSTs) of 31.1 °C and 48.6 °C, coupling with blue and red fluorescent molecules, respectively, developed for ratiometric temperature sensing based on the Förster resonance energy transfer (FRET) mechanism. The polymers were synthesized from two monomers, N-isopropylacrylamide (NIPA) and N-isopropylmethacrylamide (NIPmA), which provided different temperature responses. The fluorescent intensity of each polymer (peaked at 436 and 628 nm, respectively) decreased upon the heating of the polymer aqueous solution. While these two polymer aqueous solutions were mixed, the fluorescent intensity decrease at 436 nm and substantial fluorescence enhancement at 628 nm was observed with the increasing temperature due to FRET effect. The cell imaging of HeLa cells by these thermo-responsive polymers was explored. The difference of LCSTs resulting in ratiometric fluorescence change would have a potential impact on the various biomedical applications. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

13 pages, 8675 KiB  
Article
Butyl Rubber Nanocomposites with Monolayer MoS2 Additives: Structural Characteristics, Enhanced Mechanical, and Gas Barrier Properties
by Chi-Yang Tsai, Shuian-Yin Lin and Hsieh-Chih Tsai
Polymers 2018, 10(3), 238; https://doi.org/10.3390/polym10030238 - 27 Feb 2018
Cited by 15 | Viewed by 5913
Abstract
Emerging two-dimensional (2D) materialsm, such as molybdenum disulfide (MoS2), offer opportunities to tailor the mechanical and gas barrier properties of polymeric materials. In this study, MoS2 was exfoliated to monolayers by modification with ethanethiol and nonanethiol. The thicknesses of resulting [...] Read more.
Emerging two-dimensional (2D) materialsm, such as molybdenum disulfide (MoS2), offer opportunities to tailor the mechanical and gas barrier properties of polymeric materials. In this study, MoS2 was exfoliated to monolayers by modification with ethanethiol and nonanethiol. The thicknesses of resulting MoS2 monolayers were 0.7 nm for MoS2-ethanethiol and 1.1 nm for MoS2-nonanethiol. MoS2 monolayers were added to chlorobutyl rubber to prepare MoS2-butyl rubber nanocomposites at concentrations of 0.5, 1, 3, and 5 phr. The tensile stress showed a maximum enhancement of about 30.7% for MoS2-ethanethiol-butyl rubber and 34.8% for MoS2-nonanethiol-butyl rubber when compared to pure chlorobutyl rubber. In addition, the gas barrier properties were increased by 53.5% in MoS2-ethanethiol-butyl rubber and 49.6% in MoS2-nonanethiol-butyl rubber. MoS2 nanosheets thus enhanced the mechanical and gas barrier properties of chlorobutyl rubber. The nanocomposites that are presented here may be used to manufacture pharmaceutical stoppers with high mechanical and gas barrier properties. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

14 pages, 3678 KiB  
Article
Effect of WS2 Inorganic Nanotubes on Isothermal Crystallization Behavior and Kinetics of Poly(3-Hydroxybutyrate-co-3-hydroxyvalerate)
by Tyler Silverman, Mohammed Naffakh, Carlos Marco and Gary Ellis
Polymers 2018, 10(2), 166; https://doi.org/10.3390/polym10020166 - 09 Feb 2018
Cited by 8 | Viewed by 4338
Abstract
Nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and tungsten disulfide inorganic nanotubes (INT-WS2) were prepared by blending in solution, and the effects of INT-WS2 on the isothermal crystallization behavior and kinetics of PHBV were investigated for the first time. The isothermal [...] Read more.
Nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and tungsten disulfide inorganic nanotubes (INT-WS2) were prepared by blending in solution, and the effects of INT-WS2 on the isothermal crystallization behavior and kinetics of PHBV were investigated for the first time. The isothermal crystallization process was studied in detail using various techniques, with emphasis on the role of INT-WS2 concentration. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) showed that, in the nucleation-controlled regime, crystallization rates of PHBV in the nanocomposites are influenced by the INT-WS2 loading. Our results demonstrated that low loadings of INT-WS2 (0.1–1.0 wt %) increased the crystallization rates of PHBV, reducing the fold surface free energy by up to 24%. This is ascribed to the high nucleation efficiency of INT-WS2 on the crystallization of PHBV. These observations facilitate a deeper understanding of the structure-property relationships in PHBV biopolymer nanocomposites and are useful for their practical applications. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

16 pages, 6099 KiB  
Article
Cross-Flow Catalysis Behavior of a PVDF/SiO2@Ag Nanoparticles Composite Membrane
by Wenqiang Wang, Xi Chen, Chu Zhao, Bowu Zhao, Hualin Dong, Shengkui Ma, Liying Li, Li Chen and Bin Zhang
Polymers 2018, 10(1), 59; https://doi.org/10.3390/polym10010059 - 10 Jan 2018
Cited by 9 | Viewed by 4054
Abstract
A blend of Polyvinylidene Fluoride (PVDF) and SiO2 microspheres in N,N-Dimethylformamide (DMF) underwent phase inversion to form a PVDF/SiO2 membrane with SiO2 microspheres in the membrane’s pores. Subsequently, the SiO2 microspheres have been used as platforms [...] Read more.
A blend of Polyvinylidene Fluoride (PVDF) and SiO2 microspheres in N,N-Dimethylformamide (DMF) underwent phase inversion to form a PVDF/SiO2 membrane with SiO2 microspheres in the membrane’s pores. Subsequently, the SiO2 microspheres have been used as platforms for in site Ag nanoparticles (NPs) synthesis, forming a composite membrane. Benefitting from the full exposure of Ag NPs to the reactants, the composite membrane shows high catalytic reactivity when catalyzing the reduction of p-nitrophenol under a cross-flow. The catalytic reaction follows the first-order kinetics, and the reaction rate increases with an increase in the amount of Ag NPs in the membrane, the reaction temperature, and the operating pressure. What is more, highly purified products can be produced and separated from the reactants in a timely manner by using the composite membrane. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

18 pages, 8270 KiB  
Article
Green and Facile Synthesis of Highly Stable Gold Nanoparticles via Hyperbranched Polymer In-Situ Reduction and Their Application in Ag+ Detection and Separation
by Xunyong Liu, Chenxue Zhu, Li Xu, Yuqing Dai, Yanli Liu and Yi Liu
Polymers 2018, 10(1), 42; https://doi.org/10.3390/polym10010042 - 03 Jan 2018
Cited by 21 | Viewed by 5009
Abstract
The development of a green and facile strategy for synthesizing high stable gold nanoparticles (AuNPs) is still highly challenging. Additionally, the main problems regarding AuNPs based colorimetric sensors are their poor selectivity and low sensitivity, as well their tendency to aggregate during their [...] Read more.
The development of a green and facile strategy for synthesizing high stable gold nanoparticles (AuNPs) is still highly challenging. Additionally, the main problems regarding AuNPs based colorimetric sensors are their poor selectivity and low sensitivity, as well their tendency to aggregate during their synthesis and sensing process. Herein, we present an in-situ reduction strategy to synthesize thermoresponsive hyperbranched polymer (i.e., Hyperbranched polyethylenimine-terminal isobutyramide (HPEI-IBAm)) functionalized AuNPs. The HPEI-IBAm-AuNPs show excellent thermal stability up to 200 °C, high tolerance of a wide range of pH value (3–13), and high salt resistance. HPEI-IBAm acted as the template, the reducing agent, and the stabilizing agent for the preparation of AuNPs. The HPEI-IBAm-AuNPs can be used as colorimetric sensors for the detection of Ag+. In the detecting process, HPEI-IBAm serves as a trigger agent to cause an unusual color change from red to brown. This new non-aggregation-based colorimetric sensor showed high stability (maintaining the color lasting without fading), high selectivity, and high sensitivity with an extremely low detection limit of 7.22 nM and a good linear relationship in a wide concentration range of 0–2.0 mM (R2 = 0.9921). Significantly, based on the thermoresponsive property of the HPEI-IBAm, the AuNPs/Ag composites can be separated after sensing detection, which can avoid secondary pollutions. Therefore, the green preparation and the applications of the unusual colorimetric sensor truly embody the concepts of energy saving, environmental protection, and sustainable development. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

4232 KiB  
Article
Silica Modified by Alcohol Polyoxyethylene Ether and Silane Coupling Agent Together to Achieve High Performance Rubber Composites Using the Latex Compounding Method
by Junchi Zheng, Xin Ye, Dongli Han, Suhe Zhao, Xiaohui Wu, Youping Wu, Dong Dong, Yiqing Wang and Liqun Zhang
Polymers 2018, 10(1), 1; https://doi.org/10.3390/polym10010001 - 21 Dec 2017
Cited by 48 | Viewed by 7511
Abstract
The study of preparing silica/rubber composites used in tires with low rolling resistance in an energy-saving method is fast-growing. In this study, a novel strategy is proposed, in which silica was modified by combing alcohol polyoxyethylene ether (AEO) and 3-mercaptopropyltriethoxysilane (K-MEPTS) for preparing [...] Read more.
The study of preparing silica/rubber composites used in tires with low rolling resistance in an energy-saving method is fast-growing. In this study, a novel strategy is proposed, in which silica was modified by combing alcohol polyoxyethylene ether (AEO) and 3-mercaptopropyltriethoxysilane (K-MEPTS) for preparing silica/natural rubber (NR) master batches. A thermal gravimetric analyzer and Raman spectroscopy results indicated that both AEO and K-MEPTS could be grafted on to the silica surface, and AEO has a chance to shield the mercaptopropyl group on K-MEPTS. Silica modified by AEO and K-MEPTS together was completely co-coagulated with the rubber in preparing silica/NR composites using the latex compounding method with the help of the interaction between AEO and K-MEPTS. The performance of composites prepared by silica/NR master batches was investigated by a rubber process analyzer (RPA), transmission electron microscopy (TEM) and a tensile tester. These results demonstrate that AEO forms a physical interface between silica and rubber, resulting in good silica dispersion in the matrix. K-MEPTS forms a chemical interface between silica and rubber, enhancing the reinforcing effect of silica and reducing the mutual friction between silica particles. In summary, using a proper combination of AEO and K-MEPTS is a user-friendly approach for preparing silica/NR composites with excellent performance. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

35 pages, 5121 KiB  
Review
Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior
by Corinna Dannert, Bjørn Torger Stokke and Rita S. Dias
Polymers 2019, 11(2), 275; https://doi.org/10.3390/polym11020275 - 06 Feb 2019
Cited by 152 | Viewed by 14452
Abstract
Hydrogels are materials used in a variety of applications, ranging from tissue engineering to drug delivery. The incorporation of nanoparticles to yield composite hydrogels has gained substantial momentum over the years since these afford tailor-making and extend material mechanical properties far beyond those [...] Read more.
Hydrogels are materials used in a variety of applications, ranging from tissue engineering to drug delivery. The incorporation of nanoparticles to yield composite hydrogels has gained substantial momentum over the years since these afford tailor-making and extend material mechanical properties far beyond those achievable through molecular design of the network component. Here, we review different procedures that have been used to integrate nanoparticles into hydrogels; the types of interactions acting between polymers and nanoparticles; and how these underpin the improved mechanical and optical properties of the gels, including the self-healing ability of these composite gels, as well as serving as the basis for future development. In a less explored approach, hydrogels have been used as dispersants of nanomaterials, allowing a larger exposure of the surface of the nanomaterial and thus a better performance in catalytic and sensor applications. Furthermore, the reporting capacity of integrated nanoparticles in hydrogels to assess hydrogel properties, such as equilibrium swelling and elasticity, is highlighted. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

61 pages, 14459 KiB  
Review
Polyethylene Nanocomposites for Power Cable Insulations
by Ilona Pleşa, Petru V. Noţingher, Cristina Stancu, Frank Wiesbrock and Sandra Schlögl
Polymers 2019, 11(1), 24; https://doi.org/10.3390/polym11010024 - 24 Dec 2018
Cited by 88 | Viewed by 15205
Abstract
This review represents a comprehensive study of nanocomposites for power cables insulations based on thermoplastic polymers such as polyethylene congeners like LDPE, HDPE and XLPE, which is complemented by original results. Particular focus lies on the structure-property relationships of nanocomposites and the materials’ [...] Read more.
This review represents a comprehensive study of nanocomposites for power cables insulations based on thermoplastic polymers such as polyethylene congeners like LDPE, HDPE and XLPE, which is complemented by original results. Particular focus lies on the structure-property relationships of nanocomposites and the materials’ design with the corresponding electrical properties. The critical factors, which contribute to the degradation or improvement of the electrical performance of such cable insulations, are discussed in detail; in particular, properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, space charge, electrical and water tree resistance behavior and electric breakdown of such nanocomposites based on thermoplastic polymers are described and referred to the composites’ structures. This review is motivated by the fact that the development of polymer nanocomposites for power cables insulation is based on understanding more closely the aging mechanisms and the behavior of nanocomposites under operating stresses. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

32 pages, 8443 KiB  
Review
In Situ Synthesis of Hybrid Inorganic–Polymer Nanocomposites
by Mohammed M. Adnan, Antoine R. M. Dalod, Mustafa H. Balci, Julia Glaum and Mari-Ann Einarsrud
Polymers 2018, 10(10), 1129; https://doi.org/10.3390/polym10101129 - 11 Oct 2018
Cited by 77 | Viewed by 9691
Abstract
Hybrid inorganic–polymer nanocomposites can be employed in diverse applications due to the potential combination of desired properties from both the organic and inorganic components. The use of novel bottom–up in situ synthesis methods for the fabrication of these nanocomposites is advantageous compared to [...] Read more.
Hybrid inorganic–polymer nanocomposites can be employed in diverse applications due to the potential combination of desired properties from both the organic and inorganic components. The use of novel bottom–up in situ synthesis methods for the fabrication of these nanocomposites is advantageous compared to top–down ex situ mixing methods, as it offers increased control over the structure and properties of the material. In this review, the focus will be on the application of the sol–gel process for the synthesis of inorganic oxide nanoparticles in epoxy and polysiloxane matrices. The effect of the synthesis conditions and the reactants used on the inorganic structures formed, the interactions between the polymer chains and the inorganic nanoparticles, and the resulting properties of the nanocomposites are appraised from several studies over the last two decades. Lastly, alternative in situ techniques and the applications of various polymer–inorganic oxide nanocomposites are briefly discussed. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Figure 1

22 pages, 2783 KiB  
Review
Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells
by Ana Maria Díez-Pascual, José Antonio Luceño Sánchez, Rafael Peña Capilla and Pilar García Díaz
Polymers 2018, 10(2), 217; https://doi.org/10.3390/polym10020217 - 22 Feb 2018
Cited by 105 | Viewed by 9235
Abstract
Graphene (G) and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO) have enormous potential for energy applications owing to their 2D structure, large specific surface area, high electrical and thermal conductivity, optical transparency, and huge mechanical strength combined with inherent flexibility. [...] Read more.
Graphene (G) and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO) have enormous potential for energy applications owing to their 2D structure, large specific surface area, high electrical and thermal conductivity, optical transparency, and huge mechanical strength combined with inherent flexibility. The combination of G-based materials with polymers leads to new nanocomposites with enhanced structural and functional properties due to synergistic effects. This review briefly summarizes recent progress in the development of G/polymer nanocomposites for use in polymer solar cells (PSCs). These nanocomposites have been explored as transparent conducting electrodes (TCEs), active layers (ALs) and interfacial layers (IFLs) of PSCs. Photovoltaic parameters, such as the open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF) and power-conversion efficiency (PCE) are compared for different device structures. Finally, future perspectives are discussed. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Figure 1

Back to TopTop