Prevention and Control of Swine Infectious Diseases

A special issue of Veterinary Sciences (ISSN 2306-7381). This special issue belongs to the section "Veterinary Microbiology, Parasitology and Immunology".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 20994

Special Issue Editors


E-Mail Website
Guest Editor
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
Interests: host-pathogen interactions; pulmonary infectious diseases; neurological infectious diseases; bacterial genomics and evolution; immune response; myeloid cells; T cells

E-Mail Website
Guest Editor
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
Interests: viral disease of swine; vaccine; antiviral response; diagnostic assay; virus infection; virus endocytosis and replication; innate immunity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Disease, especially infectious disease, is one of the determinants of stability of swine production worldwide. Though a number of strategies have been developed for the prevention and control of swine infectious diseases, they are not yet enough for the complex situations including a variety of pathogens, different virulence strains for one pathogen, different serotype strains for one pathogen, and so on. Epidemiological studies have provided novel information about infectious disease characters. Progress in detection methods has benefited clinical studies in swine. Furthermore, progress in vaccine development has seen improvement according to epidemiological data.

This Special Issue of Veterinary Sciences will welcome original research and review articles aiming to provide an overview of advances in the prevention and control of infectious swine diseases. In this issue, research will focus on epidemiological studies in swine farms, progress of detection methods for different swine pathogens, and progress in vaccine development. Genomic analysis of different pathogens, characteristic of novel antigens, as well as effects of novel adjuvants will also be included in this Special Issue. Additionally, other research areas related to the prevention and control of swine disease are welcome.

We look forward to receiving your contributions.

Prof. Dr. Yafeng Qiu
Prof. Dr. Bin Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Veterinary Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Epidemiological investigations
  • Detection methods
  • Vaccine development
  • Infectious diseases
  • Genomic analysis
  • Antigens
  • Adjuvants
  • Immune protection

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

11 pages, 2778 KiB  
Article
Development of a Crystal Digital RT-PCR for the Detection of Atypical Porcine Pestivirus
by Huixin Liu, Kaichuang Shi, Shuping Feng, Yanwen Yin, Feng Long and Hongbin Si
Vet. Sci. 2023, 10(5), 330; https://doi.org/10.3390/vetsci10050330 - 4 May 2023
Viewed by 1515
Abstract
Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the [...] Read more.
Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the 5′ untranslated region (UTR) of APPV to amplify a 90 bp fragment, and the recombinant standard plasmid was constructed. After optimizing the concentrations of primers and probe, annealing temperature, and reaction cycles, a crystal digital RT-PCR (cdRT-PCR) and real-time quantitative RT-PCR (qRT-PCR) were successfully established. The results showed that the standard curves of the qRT-PCR and the cdRT-PCR had R2 values of 0.999 and 0.9998, respectively. Both methods could specifically detect APPV, and no amplification signal was obtained from other swine viruses. The limit of detection (LOD) of the cdRT-PCR was 0.1 copies/µL, and that of the qRT-PCR was 10 copies/µL. The intra-assay and inter-assay coefficients of variation of repeatability and reproducibility were less than 0.90% for the qRT-PCR and less than 5.27% for the cdRT-PCR. The 60 clinical tissue samples were analyzed using both methods, and the positivity rates of APPV were 23.33% by the qRT-PCR and 25% by the cdRT-PCR, with a coincidence rate of 98.33%. The results indicated that the cdRT-PCR and the qRT-PCR developed here are highly specific, sensitive methods for the rapid and accurate detection of APPV. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

14 pages, 1251 KiB  
Article
Porcine Reproductive and Respiratory Syndrome Virus Engineered by Serine Substitution on the 44th Amino Acid of GP5 Resulted in a Potential Vaccine Candidate with the Ability to Produce High Levels of Neutralizing Antibody
by Jong-Chul Choi, Min-Sik Kim, Hwi-Yeon Choi, Yeong-Lim Kang, In-Yeong Choi, Sung-Won Jung, Ji-Yun Jeong, Min-Chul Kim, Andrew Y. Cho, Ji-Ho Lee, Dong-Hun Lee, Sang-Won Lee, Seung-Yong Park, Chang-Seon Song, In-Soo Choi and Joong-Bok Lee
Vet. Sci. 2023, 10(3), 191; https://doi.org/10.3390/vetsci10030191 - 3 Mar 2023
Cited by 2 | Viewed by 1889
Abstract
N-linked glycans covering GP5 neutralizing epitopes of porcine reproductive and respiratory syndrome virus (PRRSV) have been proposed to act as a sheath blocking the production of neutralizing antibodies. Herein, we genetically engineered PRRSV with serine (S) substitution on the 44th asparagine (N) on [...] Read more.
N-linked glycans covering GP5 neutralizing epitopes of porcine reproductive and respiratory syndrome virus (PRRSV) have been proposed to act as a sheath blocking the production of neutralizing antibodies. Herein, we genetically engineered PRRSV with serine (S) substitution on the 44th asparagine (N) on the GP5 ectodomain of PRRSV-2 lineage-1. To evaluate the recombinant PRRSV, in vivo experiments were performed in piglets. The recombinant virus group showed no viremia until 42 days post-inoculation (dpi), and the rectal temperature and average daily weight gain were in the normal range at the same time point as the negative control group. On the 42 dpi, both groups were challenged with the wild-type virus. The recombinant PRRSV group showed lower rectal temperature, viremia, and the lung lesions than that of the negative control group for 19 days post-challenge (dpc). Additionally, the recombinant virus induced 4.50 ± 3.00 (log2) and 8.25 ± 0.96 (log2) of neutralizing antibody before and after challenge, respectively. Taken together, this study confirmed that N44S substitution can create an infectious PRRSV that strongly induces neutralizing antibodies. In addition, the vCSL1-GP5-N44S mutant that we produced was confirmed to have potential as a vaccine candidate, showing good safety and protective effects in pigs. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

12 pages, 1498 KiB  
Article
Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of African Swine Fever Virus, Porcine Circovirus 2, and Pseudorabies Virus in East China from 2020 to 2022
by Huaicheng Liu, Jianwen Zou, Rongchao Liu, Jing Chen, Xiaohan Li, Haixue Zheng, Long Li and Bin Zhou
Vet. Sci. 2023, 10(2), 106; https://doi.org/10.3390/vetsci10020106 - 1 Feb 2023
Cited by 3 | Viewed by 1691
Abstract
African swine fever virus (ASFV), porcine circovirus 2 (PCV2), and pseudorabies virus (PRV) are important DNA viruses that cause reproductive disorders in sows, which result in huge losses in pig husbandry, especially in China. The multiplex qPCR assay could be utilized as a [...] Read more.
African swine fever virus (ASFV), porcine circovirus 2 (PCV2), and pseudorabies virus (PRV) are important DNA viruses that cause reproductive disorders in sows, which result in huge losses in pig husbandry, especially in China. The multiplex qPCR assay could be utilized as a simultaneous diagnostic tool for field-based surveillance and the control of ASFV, PCV2, and PRV. Based on the conserved regions on the p72 gene of ASFV, the Cap gene of PCV2, the gE gene of PRV, and the porcine endogenous β-Actin gene, the appropriate primers and probes for a multiplex TaqMan real-time PCR test effective at concurrently detecting three DNA viruses were developed. The approach demonstrated high specificity and no cross-reactivity with major pathogens related to swine reproductive diseases. In addition, its sensitivity was great, with a detection limit of 101 copies/L of each pathogen, and its repeatability was excellent, with intra- and inter-group variability coefficients of <2%. Applying this assay to detect 383 field specimens collected from 2020 to 2022, the survey data displayed that the ASFV, PCV2, and PRV single infection rates were 22.45%, 28.46%, and 2.87%, respectively. The mixed infection rates of ASFV + PCV2, ASFV + PRV, PCV2 + PRV, and ASFV + PCV2 + PRV were 5.22%, 0.26%, 1.83%, and 0.26%, respectively. Overall, the assay established in this study provides an effective tool for quickly distinguishing the viruses causing sow reproductive disorders, suggesting its huge clinical application value in the diagnosis of swine diseases. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

11 pages, 824 KiB  
Article
Epidemiology and Genetic Characteristics of Porcine Reproductive and Respiratory Syndrome Virus in the Hunan and Hebei Provinces of China
by Wang Zhai, Siyu Yu, Pengxuan Zhang, Yuan Lin, Shenghu Ge, Taojie Zhang, Kun Zhang, Shicheng He, Qiaoyun Hu, Xiaomin Tang, Zhi Peng and Changjian Wang
Vet. Sci. 2023, 10(1), 63; https://doi.org/10.3390/vetsci10010063 - 16 Jan 2023
Cited by 3 | Viewed by 2001
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant threat to the pig industry in China. However, the epidemiological characteristics of PRRSV after the outbreak of African swine fever in China were not thoroughly investigated. In the present study, the serological and [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant threat to the pig industry in China. However, the epidemiological characteristics of PRRSV after the outbreak of African swine fever in China were not thoroughly investigated. In the present study, the serological and epidemiological investigations of PRRSV in pigs from the Hunan and Hebei provinces of China were assessed. The results showed that 73.12% (95% CI 71.74–74.49) of pigs were positive for PRRSV-special antibody by enzyme-linked immunosorbent assay. Out of 5799 samples, 482 (8.31%, 95% CI 7.60–9.02) samples were positive for PRRSV nucleic acids. The positive rates of PRRSV in healthy pigs from farms and slaughterhouses were 2.27% (47/2072) and 7.70% (217/2818), which were lower than that in diseased pigs (23.98%, 218/909). Furthermore, the full-length OFR5 gene sequences of 43 PRRSV strains were sequenced and analysed. Phylogenetic analysis revealed that 43 isolates were classified into three lineages, namely lineage 1 (n = 24), lineage 8 (n = 15), and lineage 3 (n = 4). Lineage 1 could be further divided into sublineage 1.5 (n = 2) and sublineage 1.8 (n = 22), and lineage 8 was classified into sublineage 8.1 (n = 3) and sublineage 8.7 (n = 12). Collectively, our findings revealed the severe prevalence of PRRSV in the Hunan and Hebei provinces, where sublineage 1.8 and sublineage 8.7 predominated. The present study provides the update information of the epidemiological and genetic characteristics of PRRSV in the investigated regions, which will be beneficial for PRRS control. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

11 pages, 1415 KiB  
Article
Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of Porcine Circovirus 2, 3, and 4 in East China from 2020 to 2022
by Jianwen Zou, Huaicheng Liu, Jing Chen, Jin Zhang, Xiaohan Li, Yunfeng Long, Yan Jiang, Wenliang Li and Bin Zhou
Vet. Sci. 2023, 10(1), 29; https://doi.org/10.3390/vetsci10010029 - 31 Dec 2022
Cited by 9 | Viewed by 2373
Abstract
Porcine circovirus disease (PCVD) caused by porcine circovirus (PCV) is an important swine disease that is characterized by porcine dermatitis, nephropathy syndrome, and reproductive disorders in sows. However, disease caused by PCV2, PCV3, or PCV4 is hard to distinguish, so a rapid and [...] Read more.
Porcine circovirus disease (PCVD) caused by porcine circovirus (PCV) is an important swine disease that is characterized by porcine dermatitis, nephropathy syndrome, and reproductive disorders in sows. However, disease caused by PCV2, PCV3, or PCV4 is hard to distinguish, so a rapid and sensitive detection method is urgently needed to differentiate these three types. In this study, four pairs of specific primers and the corresponding probes for PCV 2, -3, and -4, and porcine endogenous gene β-Actin as the positive internal reference index, were designed to establish a TaqMan multiplex real-time PCR (qPCR) assay for the simultaneous differential diagnosis of different types of viruses. The results showed that this assay has good specificity and no cross-reactivity with other important porcine viral pathogens. Furthermore, it has high sensitivity, with a detection limit of 101 copies/μL, and good reproducibility, with intra- and inter-group coefficients of variation below 2%. Subsequently, 535 clinical samples of suspected sow reproductive disorders collected from Shandong, Zhejiang, Anhui, and Jiangsu provinces from 2020 to 2022 were analyzed using the established assay. The results showed that the individual positive rates of PCV2, PCV3, and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rates of PCV2 and PCV3, PCV2 and PCV4, and PCV3 and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rate of PCV2, PCV3, and PCV4 was 28.22%. This indicated that this assay provides a convenient tool for the rapid detection and differentiation of PCV2, PCV3, and PCV4 in pig farms in East China. Our findings highlight that there are different types of porcine circovirus infection in pig farms in East China, which makes pig disease prevention and control difficult. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

11 pages, 3257 KiB  
Article
Climate Change Influences the Spread of African Swine Fever Virus
by Shraddha Tiwari, Thakur Dhakal, Tae-Su Kim, Do-Hun Lee, Gab-Sue Jang and Yeonsu Oh
Vet. Sci. 2022, 9(11), 606; https://doi.org/10.3390/vetsci9110606 - 1 Nov 2022
Cited by 4 | Viewed by 2553
Abstract
Climate change is an inevitable and urgent issue in the current world. African swine fever virus (ASFV) is a re-emerging viral animal disease. This study investigates the quantitative association between climate change and the potential spread of ASFV to a global extent. ASFV [...] Read more.
Climate change is an inevitable and urgent issue in the current world. African swine fever virus (ASFV) is a re-emerging viral animal disease. This study investigates the quantitative association between climate change and the potential spread of ASFV to a global extent. ASFV in wild boar outbreak locations recorded from 1 January 2019 to 29 July 2022 were sampled and investigated using the ecological distribution tool, the Maxent model, with WorldClim bioclimatic data as the predictor variables. The future impacts of climate change on ASFV distribution based on the model were scoped with Representative Concentration Pathways (RCP 2.6, 4.5, 6.0, and 8.5) scenarios of Coupled Model Intercomparison Project 5 (CMIP5) bioclimatic data for 2050 and 2070. The results show that precipitation of the driest month (Bio14) was the highest contributor, and annual mean temperature (Bio1) was obtained as the highest permutation importance variable on the spread of ASFV. Based on the analyzed scenarios, we found that the future climate is favourable for ASFV disease; only quantitative ratios are different and directly associated with climate change. The current study could be a reference material for wildlife health management, climate change issues, and World Health Organization sustainability goal 13: climate action. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

16 pages, 3008 KiB  
Article
Detection of Porcine Circovirus Type 2a and Pasteurella multocida Capsular Serotype D in Growing Pigs Suffering from Respiratory Disease
by Shuailong Du, Fan Xu, Yidan Lin, Yawen Wang, Yanan Zhang, Kai Su, Tanqing Li, Huanrong Li and Qinye Song
Vet. Sci. 2022, 9(10), 528; https://doi.org/10.3390/vetsci9100528 - 27 Sep 2022
Cited by 4 | Viewed by 1844
Abstract
In order to diagnose a respiratory disease in a pig farm, the lungs, spleen, and lymph nodes of three dead pigs were collected for pathogen detection by PCR and isolation on the basis of preliminary clinical diagnosis. The virus isolate was identified by [...] Read more.
In order to diagnose a respiratory disease in a pig farm, the lungs, spleen, and lymph nodes of three dead pigs were collected for pathogen detection by PCR and isolation on the basis of preliminary clinical diagnosis. The virus isolate was identified by gene sequence analysis and Immunoperoxidase monolayer assay (IPMA). The bacterial isolate was identified by biochemical tests, 16S rDNA sequence analysis, and species- and serotype-specific PCR, and the pathogenicity was analyzed. Porcine circovirus type 2a (PCV2a) genotype from the lungs, spleen, and lymph nodes and Pasteurella (P.) multocida capsular serotypes D from the lungs were found. The PCV2a isolates could specifically bound the anti-PCV2-Cap polyclonal antibody. The 16S rDNA sequence of P. multocida isolates had 99.9% identity with that of the strain from cattle, and the isolate was highly pathogenic to mice. The results showed that the co-infection of PCV2a and P. Multocida capsular serotypes D should be responsible for the disease. The uncommon PCV2a is still prevalent in some pig farms besides the dominant PCV2d genotype. This study could provide important etiological information for effective control and treatment of the disease in pig farms. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

11 pages, 1572 KiB  
Article
Establishment and Application of a Quantitative PCR Method for E248R Gene of African Swine Fever Virus
by Liwei Li, Nannan Du, Jinxia Chen, Kuan Zhang, Wu Tong, Haihong Zheng, Ran Zhao, Guangzhi Tong and Fei Gao
Vet. Sci. 2022, 9(8), 417; https://doi.org/10.3390/vetsci9080417 - 8 Aug 2022
Cited by 3 | Viewed by 2102
Abstract
ASF has caused huge economic losses to China’s swine industry. As clinical symptoms of ASF were difficult to distinguish from classical swine fever and porcine reproductive and respiratory syndrome (PRRS), rapid and effective differential diagnosis of ASFV seems very important to control the [...] Read more.
ASF has caused huge economic losses to China’s swine industry. As clinical symptoms of ASF were difficult to distinguish from classical swine fever and porcine reproductive and respiratory syndrome (PRRS), rapid and effective differential diagnosis of ASFV seems very important to control the spread of the disease. In this study, the ASFV E248R gene was selected to be the target for establishing a real-time PCR method. TaqMan real-time PCR for the detection of ASFV E248R gene did not cross-react with other porcine viruses that could cause similar symptoms. The results of the repeatability test showed that the coefficients of variation between and within groups were lower than 1.977%. This method can be used for the rapid detection and early diagnosis of ASF. Meanwhile, the recombinant PRRS virus (PRRSV)-expressing E248R gene of ASFV was constructed and rescued by using the reverse genetic platform of live-attenuated PRRSV vaccine. The ASFV E248R gene can be detected by using this real-time PCR detection method, confirming that the ASFV E248R gene could be stably amplified in PRRSV genome at least 20 cell passages. The detection methods can be used for the efficient detection of the ASFV infection and recombinant PRRSV live vector virus-expressing ASFV antigen protein. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

12 pages, 1209 KiB  
Article
Expression Analysis of Outer Membrane Protein HPS_06257 in Different Strains of Glaesserella parasuis and Its Potential Role in Protective Immune Response against HPS_06257-Expressing Strains via Antibody-Dependent Phagocytosis
by Xiaojun Chen, Hanye Shi, Xingyu Cheng, Xiaoxu Wang, Zongjie Li, Donghua Shao, Ke Liu, Jianchao Wei, Beibei Li, Jian Wang, Bin Zhou, Zhiyong Ma and Yafeng Qiu
Vet. Sci. 2022, 9(7), 342; https://doi.org/10.3390/vetsci9070342 - 6 Jul 2022
Cited by 2 | Viewed by 1709
Abstract
HPS_06257 has been identified as an important protective antigen against Glaesserella parasuis infection. However, little is known about the role of HPS_06257 in the protective immune response. A whole-genome data analysis showed that among 18 isolates of Glaesserella parasuis, 11 were positive [...] Read more.
HPS_06257 has been identified as an important protective antigen against Glaesserella parasuis infection. However, little is known about the role of HPS_06257 in the protective immune response. A whole-genome data analysis showed that among 18 isolates of Glaesserella parasuis, 11 were positive for the HPS_06257 gene, suggesting that not every strain contains this gene. We used PCR to investigate the presence of the HPS_06257 gene among 13 reference strains and demonstrated that 5 strains contained the gene. A polyclonal antibody against HPS_06257 was generated with a recombinant protein to study the expression of HPS_06257 in those 13 strains. Consistent with the PCR data, five strains expressed HPS_06257, whereas eight strains were HPS_06257 null. We also compared the protective effects of HPS_06257 against an HPS_06257-expressing strain (HPS5) and an HPS_06257-null strain (HPS11). Immunization with HPS_06257 only protected against HPS5 and not HPS11. Moreover, phagocytosis of antibody-opsonized bacteria demonstrates that the antibody against HPS_06257 increased the phagocytosis of the HPS5 strain by macrophages but not the phagocytosis of the HPS11 strain, suggesting that antibody-dependent phagocytosis is responsible for the protective role exerted by HPS_06257 in the immune response to HPS5. Our data also show that the antibody against HPS_06257 increased the phagocytosis of the other HPS_06257-expressing strains by macrophages but not that of HPS_06257-null strains. In summary, our findings demonstrate that antibody-dependent phagocytosis contributes to the protective immune response induced by immunization with HPS_06257 against HPS_06257-expressing strains. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

Other

Jump to: Research

12 pages, 2586 KiB  
Systematic Review
The Effectiveness of Commercial Vaccination against Lawsonia intracellularis in Mitigating the Reduction in ADWG, the Increased Mortality and Fecal Shedding of the Vaccinated Pigs: A Systematic Review and Meta-Analysis
by Gayeon Won, Na-Kyoung Chi and Yebin Park
Vet. Sci. 2022, 9(10), 536; https://doi.org/10.3390/vetsci9100536 - 28 Sep 2022
Viewed by 1982
Abstract
In this study, a systematic review and meta-analysis was conducted to assess the efficacy of commercial vaccines against PPE in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Of the 373 articles reviewed, 16 fulfilled the pre-specified inclusion [...] Read more.
In this study, a systematic review and meta-analysis was conducted to assess the efficacy of commercial vaccines against PPE in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Of the 373 articles reviewed, 16 fulfilled the pre-specified inclusion criteria. Three independent reviewers extracted the data, and vaccine effectiveness was assessed using the outcomes of interest. The majority of studies had a low or unclear risk of bias as assessed using the ARRIVE guidelines. The results of the meta-analysis indicated that the vaccination resulted in statistically significant reductions in bacterial fecal shedding (odds ratio, OR = 0.122, 95% confidence interval, CI 0.054–0.278) and mortality rate (risk ratio, RR = 0.199; 95% CI, 0.066–0.605). Furthermore, ADWG was significantly increased in the vaccinated pigs compared to the unvaccinated controls (standardized mean difference (SMD) = 0.606, 95% CI 0.243–0.969). In the subgroup analysis, the production phase and study type significantly influenced the effect size (p < 0.1). The Egger’s regression test showed no evidence of publication bias (p > 0.1). The effectiveness of commercially available vaccines against PPE-related weight loss, fecal shedding, and mortality suggests that the vaccines may help control PPE on affected swine farms. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

Back to TopTop