Viruses 2022 - At the Leading Edge of Virology Research

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "General Virology".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 31372

Special Issue Editor


E-Mail Website
Guest Editor
Director, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
Interests: HIV dynamics and replication
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is related to the conference “Viruses 2022—At the Leading Edge of Virology Research”, which will be held virtually online, 5–8 April 2022.

This Special Issue will provide an opportunity for the publication of research articles and reviews related to the themes of the conference.

Symposium participants, as well as all researchers working in the field, are cordially invited to contribute original research papers or reviews to this Special Issue of Viruses.

Dr. Eric O. Freed
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mechanisms of virus replication
  • antiviral innate immunity
  • virus-host interactions
  • antiviral therapeutics and vaccines
  • viral pathogenesis and evolution

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 7764 KiB  
Article
First Discovery of Phenuiviruses within Diverse RNA Viromes of Asiatic Toad (Bufo gargarizans) by Metagenomics Sequencing
by Zhangfu Chen, Haiyu Zhao, Zhongkuan Li, Mengkun Huang, Nan Si, Hui Zhao, Xiaolu Wei, Bo Sun, George F. Gao, Ziqian Xu and William J. Liu
Viruses 2023, 15(3), 750; https://doi.org/10.3390/v15030750 - 14 Mar 2023
Cited by 5 | Viewed by 2178
Abstract
Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the [...] Read more.
Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the diversity of RNA viruses in one important species of amphibians, the Asiatic toad (Bufo gargarizans), we obtained 44 samples including lung, gut, liver, and kidney tissues from Asiatic toads in Sichuan and Jilin provinces, China, for viral metagenomics sequencing. More than 20 novel RNA viruses derived from the order Bunyavirales and 7 families of Astroviridae, Dicistroviridae, Leviviridae, Partitiviridae, Picornaviridae, Rhabdoviridae, and Virgaviridae were discovered, which were distinct from previously described viruses and formed new clusters, as revealed by phylogenetic analyses. Notably, a novel bastrovirus, AtBastV/GCCDC11/2022, of the family Astroviridae was identified from the gut library, the genome of which contains three open reading frames, with the RNA-dependent RNA polymerase (RdRp) coded by ORF1 closely related to that of hepeviruses, and ORF2 encoding an astrovirus-related capsid protein. Notably, phenuiviruses were discovered for the first time in amphibians. AtPhenV1/GCCDC12/2022 and AtPhenV2/GCCDC13/2022 clustered together and formed a clade with the group of phenuiviruses identified from rodents. Picornaviruses and several invertebrate RNA viruses were also detected. These findings improve our understanding of the high RNA viral diversity in the Asiatic toad and provide new insights in the evolution of RNA viruses in amphibians. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

23 pages, 4995 KiB  
Article
CD24 Expression Dampens the Basal Antiviral State in Human Neuroblastoma Cells and Enhances Permissivity to Zika Virus Infection
by Kritika Kedarinath, Candace R. Fox, Erin Crowgey, Joseph Mazar, Peter Phelan, Tamarah J. Westmoreland, Kenneth A. Alexander and Griffith D. Parks
Viruses 2022, 14(8), 1735; https://doi.org/10.3390/v14081735 - 6 Aug 2022
Cited by 8 | Viewed by 2574
Abstract
Zika virus (ZIKV) exhibits distinct selectivity for infection of various cells and tissues, but how host cellular factors modulate varying permissivity remains largely unknown. Previous studies showed that the neuroblastoma cell line SK-N-AS (expressing low levels of cellular protein CD24) was highly restricted [...] Read more.
Zika virus (ZIKV) exhibits distinct selectivity for infection of various cells and tissues, but how host cellular factors modulate varying permissivity remains largely unknown. Previous studies showed that the neuroblastoma cell line SK-N-AS (expressing low levels of cellular protein CD24) was highly restricted for ZIKV infection, and that this restriction was relieved by ectopic expression of CD24. We tested the hypothesis that CD24 expression allowed ZIKV replication by suppression of the antiviral response. SK-N-AS cells expressing an empty vector (termed CD24-low cells) showed elevated basal levels of phosphorylated STAT1, IRF-1, IKKE, and NFκB. In response to exogenously added type I interferon (IFN-I), CD24-low cells had higher-level induction of antiviral genes and activity against two IFN-I-sensitive viruses (VSV and PIV5-P/V) compared to SK-N-AS cells with ectopic CD24 expression (termed CD24-high cells). Media-transfer experiments showed that the inherent antiviral state of CD24-low cells was not dependent on a secreted factor such as IFN-I. Transcriptomics analysis revealed that CD24 expression decreased expression of genes involved in intracellular antiviral pathways, including IFN-I, NFκB, and Ras. Our findings that CD24 expression in neuroblastoma cells represses intracellular antiviral pathways support the proposal that CD24 may represent a novel biomarker in cancer cells for susceptibility to oncolytic viruses. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

18 pages, 3040 KiB  
Article
Dynamic Interactions of Post Cleaved NS2B Cofactor and NS3 Protease Identified by Integrative Structural Approaches
by Jun-Ping Quek, Zheng Ser, Bing Liang Alvin Chew, Xin Li, Lili Wang, Radoslaw M. Sobota, Dahai Luo and Wint Wint Phoo
Viruses 2022, 14(7), 1440; https://doi.org/10.3390/v14071440 - 30 Jun 2022
Cited by 5 | Viewed by 3276
Abstract
Diseases caused by flaviviruses such as dengue virus (DENV) and West Nile Virus (WNV), are a serious threat to public health. The flavivirus single-stranded RNA genome is translated into a polyprotein which is cleaved into three structural proteins and seven non-structural proteins by [...] Read more.
Diseases caused by flaviviruses such as dengue virus (DENV) and West Nile Virus (WNV), are a serious threat to public health. The flavivirus single-stranded RNA genome is translated into a polyprotein which is cleaved into three structural proteins and seven non-structural proteins by the viral and cellular proteases. Non-structural (NS) protein 3 is a multifunctional protein that has N-terminal protease and C-terminal helicase domains. The NS3 protease requires co-factor NS2B for enzymatic activity and folding. Due to its essential role in viral replication, NS2B-NS3 protease is an attractive target for antiviral drugs. Despite the availability of crystal structures, dynamic interactions of the N- and C-termini of NS2B co-factor have been elusive due to their flexible fold. In this study, we employ integrative structural approaches combined with biochemical assays to elucidate the dynamic interactions of the flexible DENV4 NS2B and NS3 N- and C-termini. We captured the crystal structure of self-cleaved DENV4 NS2B47NS3 protease in post cleavage state. The intermediate conformation adopted in the reported structure can be targeted by allosteric inhibitors. Comparison of our new findings from DENV4 against previously studied ZIKV NS2B-NS3 proteins reveals differences in NS2B-NS3 function between the two viruses. No inhibition of protease activity was observed for unlinked DENV NS2B-NS3 in presence of the cleavage site while ZIKV NS2B-NS3 cleavage inhibits protease activity. Another difference is that binding of the NS2B C-terminus to DENV4 eNS2B47NS3Pro active site is mediated via interactions with P4-P6 residues while for ZIKV, the binding of NS2B C-terminus to active site is mediated by P1-P3 residues. The mapping of NS2B N- and C-termini with NS3 indicates that these intermolecular interactions occur mainly on the beta-barrel 2 of the NS3 protease domain. Our integrative approach enables a comprehensive understanding of the folding and dynamic interactions of DENV NS3 protease and its cofactor NS2B. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

15 pages, 2148 KiB  
Article
SERINC5 Restricts HIV-1 Infectivity by Promoting Conformational Changes and Accelerating Functional Inactivation of Env
by Junghwa Kirschman, Mariana Marin, Yen-Cheng Chen, Junhua Chen, Alon Herschhorn, Amos B. Smith III and Gregory B. Melikyan
Viruses 2022, 14(7), 1388; https://doi.org/10.3390/v14071388 - 25 Jun 2022
Cited by 7 | Viewed by 2428
Abstract
SERINC5 incorporates into HIV-1 particles and inhibits the ability of Env glycoprotein to mediate virus-cell fusion. SERINC5-resistance maps to Env, with primary isolates generally showing greater resistance than laboratory-adapted strains. Here, we examined a relationship between the inhibition of HIV-1 infectivity and the [...] Read more.
SERINC5 incorporates into HIV-1 particles and inhibits the ability of Env glycoprotein to mediate virus-cell fusion. SERINC5-resistance maps to Env, with primary isolates generally showing greater resistance than laboratory-adapted strains. Here, we examined a relationship between the inhibition of HIV-1 infectivity and the rate of Env inactivation using a panel of SERINC5-resistant and -sensitive HIV-1 Envs. SERINC5 incorporation into pseudoviruses resulted in a faster inactivation of sensitive compared to resistant Env strains. A correlation between fold reduction in infectivity and the rate of inactivation was also observed for multiple Env mutants known to stabilize and destabilize the closed Env structure. Unexpectedly, most mutations disfavoring the closed Env conformation rendered HIV-1 less sensitive to SERINC5. In contrast, functional inactivation of SERINC5-containing viruses was significantly accelerated in the presence of a CD4-mimetic compound, suggesting that CD4 binding sensitizes Env to SERINC5. Using a small molecule inhibitor that selectively targets the closed Env structure, we found that, surprisingly, SERINC5 increases the potency of this compound against a laboratory-adapted Env which prefers a partially open conformation, indicating that SERINC5 may stabilize the closed trimeric Env structure. Our results reveal a complex effect of SERINC5 on Env conformational dynamics that promotes Env inactivation and is likely responsible for the observed restriction phenotype. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

12 pages, 1222 KiB  
Communication
SARS-CoV-2 Accessory Protein ORF8 Decreases Antibody-Dependent Cellular Cytotoxicity
by Guillaume Beaudoin-Bussières, Ariana Arduini, Catherine Bourassa, Halima Medjahed, Gabrielle Gendron-Lepage, Jonathan Richard, Qinghua Pan, Zhen Wang, Chen Liang and Andrés Finzi
Viruses 2022, 14(6), 1237; https://doi.org/10.3390/v14061237 - 7 Jun 2022
Cited by 10 | Viewed by 2528
Abstract
Viruses use many different strategies to evade host immune responses. In the case of SARS-CoV-2, its Spike mutates rapidly to escape from neutralizing antibodies. In addition to this strategy, ORF8, a small accessory protein encoded by SARS-CoV-2, helps immune evasion by reducing the [...] Read more.
Viruses use many different strategies to evade host immune responses. In the case of SARS-CoV-2, its Spike mutates rapidly to escape from neutralizing antibodies. In addition to this strategy, ORF8, a small accessory protein encoded by SARS-CoV-2, helps immune evasion by reducing the susceptibility of SARS-CoV-2-infected cells to the cytotoxic CD8+ T cell response. Interestingly, among all accessory proteins, ORF8 is rapidly evolving and a deletion in this protein has been linked to milder disease. Here, we studied the effect of ORF8 on peripheral blood mononuclear cells (PBMC). Specifically, we found that ORF8 can bind monocytes as well as NK cells. Strikingly, ORF8 binds CD16a (FcγRIIIA) with nanomolar affinity and decreases the overall level of CD16 at the surface of monocytes and, to a lesser extent, NK cells. This decrease significantly reduces the capacity of PBMCs and particularly monocytes to mediate antibody-dependent cellular cytotoxicity (ADCC). Overall, our data identifies a new immune-evasion activity used by SARS-CoV-2 to escape humoral responses. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 2120 KiB  
Review
Atypical and Unique Transmission of Monkeypox Virus during the 2022 Outbreak: An Overview of the Current State of Knowledge
by Jade C. Riopelle, Vincent J. Munster and Julia R. Port
Viruses 2022, 14(9), 2012; https://doi.org/10.3390/v14092012 - 11 Sep 2022
Cited by 28 | Viewed by 5985
Abstract
An ongoing monkeypox outbreak in non-endemic countries has resulted in the declaration of a public health emergency of international concern by the World Health Organization (WHO). Though monkeypox has long been endemic in regions of sub-Saharan Africa, relatively little is known about its [...] Read more.
An ongoing monkeypox outbreak in non-endemic countries has resulted in the declaration of a public health emergency of international concern by the World Health Organization (WHO). Though monkeypox has long been endemic in regions of sub-Saharan Africa, relatively little is known about its ecology, epidemiology, and transmission. Here, we consider the relevant research on both monkeypox and smallpox, a close relative, to make inferences about the current outbreak. Undetected circulation combined with atypical transmission and case presentation, including mild and asymptomatic disease, have facilitated the spread of monkeypox in non-endemic regions. A broader availability of diagnostics, enhanced surveillance, and targeted education, combined with a better understanding of the routes of transmission, are critical to identify at-risk populations and design science-based countermeasures to control the current outbreak. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

15 pages, 1041 KiB  
Review
The ORF45 Protein of Kaposi’s Sarcoma-Associated Herpesvirus and Its Critical Role in the Viral Life Cycle
by Natalie Atyeo and Bernadett Papp
Viruses 2022, 14(9), 2010; https://doi.org/10.3390/v14092010 - 11 Sep 2022
Cited by 6 | Viewed by 2416
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) protein ORF45 is a virion-associated tegument protein that is unique to the gammaherpesvirus family. Generation of KSHV ORF45-knockout mutants and their subsequent functional analyses have permitted a better understanding of ORF45 and its context-specific and vital role in the [...] Read more.
Kaposi’s sarcoma-associated herpesvirus (KSHV) protein ORF45 is a virion-associated tegument protein that is unique to the gammaherpesvirus family. Generation of KSHV ORF45-knockout mutants and their subsequent functional analyses have permitted a better understanding of ORF45 and its context-specific and vital role in the KSHV lytic cycle. ORF45 is a multifaceted protein that promotes infection at both the early and late phases of the viral life cycle. As an immediate-early protein, ORF45 is expressed within hours of KSHV lytic reactivation and plays an essential role in promoting the lytic cycle, using multiple mechanisms, including inhibition of the host interferon response. As a tegument protein, ORF45 is necessary for the proper targeting of the viral capsid for envelopment and release, affecting the late stage of the viral life cycle. A growing list of ORF45 interaction partners have been identified, with one of the most well-characterized being the association of ORF45 with the host extracellular-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) signaling cascade. In this review, we describe ORF45 expression kinetics, as well as the host and viral interaction partners of ORF45 and the significance of these interactions in KSHV biology. Finally, we discuss the role of ORF45 homologs in gammaherpesvirus infections. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

14 pages, 1177 KiB  
Review
Virus Safety of Xenotransplantation
by Joachim Denner
Viruses 2022, 14(9), 1926; https://doi.org/10.3390/v14091926 - 30 Aug 2022
Cited by 27 | Viewed by 4330
Abstract
The practice of xenotransplantation using pig islet cells or organs is under development to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation may [...] Read more.
The practice of xenotransplantation using pig islet cells or organs is under development to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation may be associated with the transmission of potentially zoonotic porcine viruses. In order to prevent this, we developed highly sensitive PCR-based, immunologicals and other methods for the detection of numerous xenotransplantation-relevant viruses. These methods were used for the screening of donor pigs and xenotransplant recipients. Of special interest are the porcine endogenous retroviruses (PERVs) that are integrated in the genome of all pigs, which are able to infect human cells, and that cannot be eliminated by methods that other viruses can. We showed, using droplet digital PCR, that the number of PERV proviruses is different in different pigs (usually around 60). Furthermore, the copy number is different in different organs of a single pig, indicating that PERVs are active in the living animals. We showed that in the first clinical trials treating diabetic patients with pig islet cells, no porcine viruses were transmitted. However, in preclinical trials transplanting pig hearts orthotopically into baboons, porcine cytomegalovirus (PCMV), a porcine roseolovirus (PCMV/PRV), and porcine circovirus 3 (PCV3), but no PERVs, were transmitted. PCMV/PRV transmission resulted in a significant reduction of the survival time of the xenotransplant. PCMV/PRV was also transmitted in the first pig heart transplantation to a human patient and possibly contributed to the death of the patient. Transmission means that the virus was detected in the recipient, however it remains unclear whether it can infect primate cells, including human cells. We showed previously that PCMV/PRV can be eliminated from donor pigs by early weaning. PERVs were also not transmitted by inoculation of human cell-adapted PERV into small animals, rhesus monkey, baboons and cynomolgus monkeys, even when pharmaceutical immunosuppression was applied. Since PERVs were not transmitted in clinical, preclinical, or infection experiments, it remains unclear whether they should be inactivated in the pig genome by CRISPR/Cas. In summary, by using our sensitive methods, the safety of xenotransplantation can be ensured. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

Back to TopTop